Math. J. Okayama Univ. 31 (1989), 93—99

SOME DECOMPOSITION THEOREMS FOR
PERIODIC RINGS AND NEAR-RINGS

Howarp E. BELL* and Steve LIGH

A recent note in the American Mathematical Monthly [10] establishes
commutativity of a ring R satisfying the condition (xy)™®” = xy with
n(x, y)>1. More recently, S. Ligh and J. Luh [7] have given a proof that such
rings are direct sums of J-rings (i.e. rings satisfying Jacobson’s x” = x
property) and zero rings. It is natural to consider the related properties
xy = (xy)?p(xy) or xy = (yx)?p(yx), where p(X) € Z[X]: and H. Tomi-
naga and A. Yaqub [11, Theorem 2] have obtained a commutativity result
under such hypotheses. These theorems are the jumping-off point for the
work in Section 1, which considers slightly more general polynomial-con-
straint conditions and establishes direct-sum decomposition theorems. Section
2 deals with some related problems for near-rings.

1. Some decomposition theorems for rings. For the purposes of this
section, R will denote a ring and N its set of nilpotent elements. The set
of potent elements — that is, {x € R|x" = x for some n > 1| — will be
denoted by P. The symbol Z will denote the ring of integers, Z[X] the ring
of polynomials in one indeterminate and Z{X, Y ) the ring of polynomials in
two noncommuting indeterminates.

The ring R is called periodic if for each x € R there exist distinct
positive integers m = m(x) and n = n(x) for which x™ = x™ A sufficient
condition for R to be periodic is Chacron’s criterion: for each x € R, there
exists a positive integer m and a polynomial p(X) € Z[X] such that x™ =
x™* 'p(x) ([6], [3, Theorem 1]).

Theorem 1. Suppose that for each x,y € R, there exists p(X, Y) €
Z{X, Y) such that '
(*) xy = (xy)’plx, y).
Then R is a direct sum of a J-ring and a zero ring.

Proof. Taking x =y in (*), we get ¢(X) € Z[X] for which x* =
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x'q(x); hence R is periodic by Chacron’s criterion, and by [1, Lemma 1
(¢)], R = P+N. ltis clear from (*) that R is 0-commutative — i.e. xy =
0 implies yxr = 0; hence, as is easily verified, N is an ideal. Since (*)
yields xy = (xy)™p(x, y))™ ! for all n = 2, it is now immediate that

(1) RN = NR =10};

in particular, N is a zero ring.

To complete the proof, it is sufficient to show that each element of R
is uniquely representable as the sum of a potent element and a nilpotent
element [5, Theorem 3]. Accordingly, suppose that a+u = b+v, where q,
b€ P and u,v € N; rewrite as

(2) a—b=v—u.

Choose a single odd integer k& > 1 for which a* = a and b* = b, and note
that e, = a* ! and e, = b* ' are idempotents with e;a = a and e,b = b.
Left-and-right-multiplying (2) by ¢ and b, and recalling (1), we get a® =
ab = ba and @b = ba = b*; hence a’ = b® and e, = e,. Left-multiplying
(2) by e, now yields @ = b, and we are finished.

A slight modification of the proof yields

Theorem 2. Suppose that for each x, y € R, there exists p(X, Y) €
Z{(X, Y) such that xy = (yx)*p(x, y). Then R is a direct sum of a J-ring
and a zero ring.

Our next theorem, which extends Theorem 2 of [11], shows that under
appropriate restrictions, it is enough to require (*) for a proper subset
of R.

Theorem 3. Let R be a ring with N = {0|, and let A be an additive
subgroup of R with A & N. Suppose that for each x, y € R\A, there exists
p(X,Y) e Z(X, Y) such that (*) is satisfied. Then R is a direct sum of

a J-ring and a zero ring.

Proof. Taking y = x € R\A shows that
(3) for each x € R\A, there exists p(X) € Z[X] such that x* = x*p(x).
Furthermore, since elements of A are nilpotent, for each x € A there exist m
and n such that x™ =x™*" Once again, R is periodic by Chacron’s criterion.
If we can show that N is an ideal which annihilates R on both sides, we are
finished ; the rest of the argument is the same as in Theorem 1. Observe that
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(4) if x € N\A, then 22 =0
this follows directly from (3). Next we show that
(5) if x € N\A, y € R, and xy = 0, then yx = 0.

Clearly this is the case if y € R\A, so we suppose xw = 0, where x €
N\A and w € A. Now x+w & A, and x{x+w) = x*+xw = 0; hence
(x+w)x =0 =x*+wxr = wx.

Next we show that N is an ideal. If x,y € A, then x—y € A C N.
On the other hand, if x € N\A, we see from (4) and (5) that

(6) xRx =10} ;

hence if y € N and y” = 0, every product of 2+ factors, each an x or y,
is trivial, so that (x—y)?" = 0. Now if x € N\ A, (6) shows that (xr)* =
(rx)? =0 for all » € R; and if w € A, choosing x € N\ A and writing
wr = (x+w )r—xr shows that wr € N. Thus N is an ideal as claimed.

If x € N\A and y € R\ A, (*) and the fact that N is an ideal imply
that y = 0. Thus, capitalizing again on the fact that every element of A
is a difference of two elements of R\ A, we show easily that RN = NR =
{01}, thereby completing the proof of Theorem 3.

Our last theorem of this section is, in the end, a corollary of Theo-
rem 3.

Theorem 4. Let R be a 2-torsion-free ring, J its Jacobson radical, and
A an additive subgroup with A & J. Suppose that (*) holds for each x,y €
R\A. Then R is a direct sum of a J-ring and a zero ring.

Proof. If x € J\A, (*) yields ¢(X) € Z[X] such that x* = x‘q(x)
— a property which for elements of J implies x* = 0. Thus, if y € A
and x € J\A, we have 2 = 0 = (x+y)? so that

(7) xy+yx+y2 =0 for all x € J\A, y € A.

Replacing x by x+y in (7) and then subtracting (7) from the result gives
2y* =0, hence y* = 0; thus J is a nil ideal. Now R = R/J satisfies the
hypotheses of Theorem 1, hence is certainly commutative. Consequently
[x,y] € J for all x,y € R and [x, v]2=0 for all x, y € R. But this
condition is known to imply that N is an ideal : hence N = J, and our con-
clusion follows from Theorem 3.
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2. Some near-ring results. For near-rings, the analogous hypotheses
do not quite yield direct-sum decompositions, so we define a weaker notion
of orthogonal sum. Specifically, a near-ring R is an orthogonal sum of sub-
near-rings A and B — denoted R = A+B — if AB = BA = |0/ and each
element is uniquely representable in the form a+b, with a € 4 and b €
B. We also define R to be 0-commutative if xy = 0 implies yx = 0. For
this section, N and P are as before, and C denotes the multiplicative center
of R. The symbol R’ denotes the commutator subgroup of the additive group
(R, +).

Before stating our theorems, we present some lemmas to be used in
the proofs.

Lemma 1. Let R be a near-ring in which idempotents are multiplica-
tively ceniral. If e and f are any idempotents, there existis an idempotent g
such that ge = e and gf = f.

Proof. Note that R = eR+A(e), where A(e) denotes the annihilator
of e; and write f = f,+f,, where f, € eR and f, € A(e). In view of the
uniqueness-of-representation built into the definition of orthogonal sum, it
is easy to show that f, and f, are idempotents. Take g to be e+f,. Then

gt =(et+fi)et(et+f))f, =elet+f))+filetf) =e+f, =g
Moreover, ge = (e+f,)e = e(e+f,) = e and

gf = let+flht(etf)fe = filetf)thlet+f)) = fi+hfo = f

Lemma 2. If R is a 0-commutative periodic near-ring, then R = N+

P.

Proof. The 0-commutativity allows us to adapt the proof in [1, Lemma
1].

The remaining lemma, to be given without proof, simply collects results
which are readily accessible in the literature.

Lemma 3. (a) [9, Corollary 1.8] If R is a 0-commutative near-ring,
then N is an ideal.

(b) [3, Theorem 12] Let R be a distributively-generaied (d-g) near-ring
such that for each x € R, there exist a positive integer n = n(x) and an
element u in the sub-near-ring generated by x, for which x™ = x™u. If N C
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C, then R is periodic and commulative.

(¢) [2, Lemma 2(2)]. If R is a periodic d-g near-ring and N C C,
then R' C N.

(d) [4, Theorem 1) If R is a periodic near-ring with 1 and N C C,
then (R, +) is abelian.

Theorem 5. Let R be a d-g near-ring with the property that for each
x,y € R,

(1) xy = plxy),

where p(xy) denotes an element of R which is a finite sum of powers (xy)*
k = 2, and additive inverses of such powers. Then R is periodic and com-
mutative. Moreover, R = N-I-P, where N is a near-ring with trivial multi-
plication and P is a J-ring.

Proof. It is clear that R is O-commutative, hence N is an ideal by
Lemma 3(a). It follows from (1) that NR = RN = {01, so that N C C and
N? =|0}. Taking y = x in (1) gives an element r in the sub-near-ring gen-
erated by x such that x?> = x?r, hence R is periodic and commutative by
Lemma 3(b). From Lemma 2, we now know that R = N+ P.

It remains to show that (i) P is aJ-ring and (ii) each element of R
has at most one representation in the form u+a with « € N and a € P.
Proceeding to (i), let a, b € P and choose k > 1 such that ¢* = a and
b*=b. Then e = a*~! and f = b*~' are idempotents such that ea = a and
fb = b. Obviously (ab)* = a*b* = ab, hence ab € P. Moreover, since R/N
has the x™ = x property, we have j > 1 such that

(**) (a—b) =a—b+u, u € N.

Using Lemma 1, choose an idempotent g for which ge = ¢ and gf = f: and
noting that ga = a and gb = b, multiply (**) by g. obtaining (a—b)’ =
a—b — that is, a—b € P. Since R’ C N by Lemma 3(c), we now have
a+b—a—b € PN N=10}: hence (P, +) is abelian and P is a J-ring.
To establish (ii), suppose that u+a = v+b, where u, v € N and q,
b€ P. Then —v+u=b—a € PN N=1{0{, hence a = b and u = v.

Theorem 6. Let R be a near-ring such that for each x, ¥y € R, there
exists n = n(x, y) > 1 such that

(t1) xy = (yx)™
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Then N is a near-ring with trivial multiplication, P is a sub-near-ring with

(P, +) abelian, and R = N+P.

Proof. Since R is obviously 0-commutative, IV is an ideal by Lemma
3(a); and it follows that RN = NR = {0}, and hence that N C C. Taking
y =x in(+1) shows that R is periodic, and we conclude from Lemma 2
that R = N+ P.

Now look at a typical idempotent e. For x € R, we have n, m > 1
such that ex = (xe)™ and xe = (ex)”. Right-multiplying the first of these
by e and left-multiplying the second by e, we get ex = exe = xe ; thus,
idempotents are central.

Next we show that P is a sub-near-ring and (P, +) is abelian. That
P is closed under addition is shown as in the proof of Theorem 5, and
a similar argument yields multiplicative closure. To show that (P, +) is
abelian, let a* = a and * = b6, £k > 1: and for the idempotents e = a*!
and f = b*', let g be an idempotent such that ge = e and gf = f. Now gR
is a periodic near-ring with multiplicative identity element whose nilpotent
elements are central, hence (gR, +) is abelian by Lemma 3(d). Therefore
gat+gb—ga—gh =0; and since ga = a and gb = b, we have a+b—a—
b=0.

Finally, we note that the uniqueness-of-representation argument is as
for Theorem 5.

Example. From the list of near-rings R with additive group S;, con-
sider Example 29 on p. 342 of [8]. This near-ring is commutative and sat-
isfies the identity xy = (xy)?, but P is not an ideal. Thus, we cannot get
a direct-sum decomposition under the hypotheses of Theorem 3 or Theorem 6.
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