A NOTE ON FIXED RINGS

Dedicated to Professor Hiroyuki Tachikawa on his 60th birthday

Yoshimi KITAMURA

Let A be an associative ring with identity and G a finite group acting as automorphisms on A. Let A^G denote the fixed subring of A consisting of the elements left fixed by every element of G.

In [3], Handelman and Renault showed that for a certain class of rings, A is finitely generated projective over A^c . In this note we consider the question of when the ring extension A of A^c is a Frobenius one in the sense of Kasch [4], and a characterization of A to be a Frobenius extension of A^c having the trace $\operatorname{tr}: A \to A^c$ defined by $\operatorname{tr}(a) = \sum_{\sigma \in G} \sigma(a)$ as a Frobenius map is obtained by using the trivial crossed product of A relative to G. As a consequence, we can give another proof of our previous result of [5] and sharpen Theorem 4 of [3] slightly.

Throughout this paper A denotes an associative ring with identity 1. The notation M_A (resp. $_AM$) denotes M a unital, right (resp. left) A-module.

Let B be a subring of A containing the same identity 1. According to Kasch [4], a ring extension A/B is called a Frobenius one if A is finitely generated projective as a right B-module and $A \cong \operatorname{Hom}(A_B, B_B)$ as B-A-bimodules. The conditions are equivalent to the existence of a B-B-homomorphism $h:A \to B$ and a finite number of elements r_i 's, l_i 's in A such that $x = \sum_i r_i h(l_i x) = \sum_i h(x r_i) \ l_i$ for all $x \in A$ ([8]). When this is the case, we shall call a system $(h:r_i,l_i)_i$ a Frobenius one for the Frobenius extension A/B. In particular, the map A corresponding to the identity 1 under the B-A-isomorphism $A \cong \operatorname{Hom}(A_B, B_B)$ is called a Frobenius map.

The following, which can be seen easily, is well-known.

Lemma 1. Let A/B be a Frobenius extension and $(h; r_i, l_i)_i$ its Frobenius system. Then

- (1) For any $_AX$, a mapping u_X : $\operatorname{Hom}(_AX, _AA) \to \operatorname{Hom}(_BX, _BB)$ defined by $u_X(f) = h \circ f$ is an isomorphism, whose inverse is given by $u_X^{-1}(g)(x) = \sum_i r_i g(l_i x)$.
- (2) For any Y_B , a mapping $v_Y: Y \otimes {}_BA \to \operatorname{Hom}(A_B, Y_B)$ defined by $v_Y(y \otimes a) = y \circ h \circ a$ is an isomorphism, whose inverse is given by $v_Y^{-1}(k) = \sum_i k(r_i) \otimes l_i$.

86 Y. KITAMURA

A ring extension A/B is said to be separable if the canonical epimorphism $\varphi \colon A \otimes_B A \to A$ defined by $\varphi(x \otimes y) = xy$ splits as an A-A-bimodule map. A B-B-subbimodule X of A is said to be invertible if there exists a B-B-subbimodule Y of A such that XY = YX = B([6]).

The following is an extended version of Handelman and Renault [3, Theorem 1] and its proof runs after them.

Lemma 2. Let A/B be a separable extension. Suppose either there exist elements a_i 's in A such that $A = \sum_i a_i B$ and $a_i B = B a_i$ for all i or there exist invertible B-B-subbimodules X_i 's of A such that $A = \sum_i X_i$. If B is a finite product of simple rings, then A is also a finite product of simple rings.

Proof. Noting B semisimple as a B-B-bimodule, A is semisimple as a B-B-bimodule in either case. Since A/B is separable, we have finitely many elements $u_j, v_j \in A$ (j = 1, ..., n) such that $\sum_{j=1}^n xu_j \otimes v_j = \sum_{j=1}^n u_j \otimes v_j x$ in $A \otimes_B A$ for all $x \in A$ and $\sum_{j=1}^n u_j v_j = 1$. Let I be any two-sided ideal of A. Let $f: A \to I$ be a B-B-bimodule map fixing I pointwise. Then one can see a mapping $F: A \to I$ defined by $F(x) = \sum_{j,k=1}^n (u_j f(v_j(xu_k))) v_k$ an A-A-bimodule map fixing I pointwise. Hence A is semisimple as an A-A-bimodule, and so it is a finite product of simple rings.

Let G be a group. A ring A is called a G-graded ring if we can write A as a direct sum of additive subgroups $A = \bigoplus_{\sigma \in G} A(\sigma)$ where $A(\sigma) A(\tau) \subset A(\sigma\tau)$ for all σ , $\tau \in G$. A is said to be strongly G-graded if $A(\sigma) A(\tau) = A(\sigma\tau)$ for all σ , $\tau \in G$.

The following is due to Miyashita [6, Theorem 2.11].

Lemma 3. Let $A = \bigoplus_{\sigma \in G} A(\sigma)$ be a strongly G-graded ring with G a finite group. Then A is a Frobenius extension of A(1). If, in addition, the order of G is invertible in A(1) then A is a separable extension of A(1).

From Lemmas 2 and 3, we have

Proposition 4. Let $A = \bigoplus_{\sigma \in G} A(\sigma)$ be a strongly G-graded ring. Suppose G is a finite group and its order is invertible in A(1). If A(1) is a finite product of simple rings then A is also a finite product of simple rings.

Recall that a ring A is biregular if for any $a \in A$, the two-sided ideal AaA is generated by a central idempotent. It is well-known that any biregular ring is non-singular on both sides, hence a biregular right self-injective

ring is also regular in the sense of von Neumann.

The next is a generalization of [3, Corollary 2] to strongly G-graded rings of finite groups. The proof is essentially same as in there.

Corollary. Under the same notation and assumption as in Proposition 4, if A(1) is a biregular right self-injective ring, then A is also a biregular right self-injective ring.

Proof. Since A(1) is a regular right self-injective ring, A is so from Lemma 3. By [9, Proposition 1.6], it suffices to show that every prime ideal of A is maximal. Let P be a prime ideal of A and let B = A(1). Then, by [7, Theorem 4.1], we have $P \cap B = \bigcap_{\sigma \in G} Q^{\sigma}$ for some prime ideal Q of B, where $Q^{\sigma} = A(\sigma^{-1}) QA(\sigma)$. But Q is maximal by our assumption on B, hence the factor ring $\overline{B} = B/B \cap P$ is a finite product of simple rings. Since the factor ring $\overline{A} = A/P$ is a strongly G-graded ring with $\overline{A}(1)$ isomorphic to \overline{B} , \overline{A} is a finite product of simple rings by Proposition 4, which implies P maximal.

Let G be a finite group acting as automorphisms on A. Let $\Delta = \Delta(A; G)$ be the trivial crossed product of A relative to G. Δ is a free (left) A-module with free generator $\{u_{\sigma}\}$ indexed by G. It becomes a ring by means of $xu_{\sigma}yu_{\tau} = x\sigma(y)u_{\sigma\tau}$ and has u_1 for its identity. Moreover, it is a G-graded ring and a mapping $x \to xu_1$ imbeds A as a subring of Δ . Further, A can be regarded as a left Δ -module by means of $(au_{\sigma})*x = a_{\sigma}(x)$, and the endomorphism ring of the left Δ -module A is anti-isomorphic to the fixed subring A^{σ} . Let $j: \Delta \to \operatorname{BiEnd}(_{\Delta}A)$ be the canonical ring homomorphism given by $j(\sum_{\sigma} a_{\sigma}u_{\sigma})(x) = \sum_{\sigma} a_{\sigma}\sigma(x)$, where $\operatorname{BiEnd}(_{\Delta}A)$ denotes the biendomorphism ring of $_{\Delta}A$.

We are now in position to state the main theorem of this paper.

Theorem 5. Let G be a finite group acting as automorphisms on A, Δ the trivial crossed product of A relative to G and $B = A^c$. Let I, J be the trace ideal and the annihilator of the left Δ -module A, respectively; $I = \sum |\operatorname{Im}(f)|$; $f: {}_{\Delta}A \rightarrow {}_{\Delta}\Delta|$, $J = \{d \in \Delta : d*x = 0 \text{ for all } x \in A \}$. Then the following statements (1) and (2) are equivalent.

- (1) i) A is finitely generated projective as a right B-module.
 - ii) $\text{Hom}(A_B, B_B)$ is generated by the trace $tr: A \to B$ as a right Amodule.
- (2) $\Delta = I + J$.

88 Y. KITAMURA

Moreover, A is a Frobenius extension of B having the trace $\operatorname{tr}: A \to B$ as a Frobenius map if and only if $\Delta = I \oplus J$.

Proof. Recall that a mapping $h: \Delta \to A$ defined by $h(\sum_{\sigma} a_{\sigma}u_{\sigma}) = a_1$ gives a Frobenius system $(h; u_{\sigma}, u_{\sigma}^{-1})_{\sigma \in G}$ of the ring extension Δ/A .

$$d = \sum_{\sigma \in G} \left(\sum_{i=1}^{m} x_i \sigma(y_i) \right) u_{\sigma}$$

$$(**) \qquad x = \sum_{i=1}^{m} x_i \operatorname{tr}(y_i x) \text{ for all } x \in A,$$

which yields (1).

Conversely assume the conditions i) and ii). Let x_i 's and y_i 's $(i=1,\ldots,m)$ be elements of A satisfying the condition (**), and let d the element of Δ given by (*). We have then $d-1\in J$, and so $\Delta=I+J$. Assume further $I\cap J=0$, and let $\mathrm{tr}\circ a=0$ for a in A. Since $\sum_{\sigma\in G}\sigma(a)u_{\sigma}=u_A^{-1}(a^{\tau})$ $(1)\in I\cap J$, we have a=0. Here a^{τ} denotes the right multiplication induced by a; $a^{\tau}:A\to A$, $x\to xa$. It follows that A is a Frobenius extension of B having $\mathrm{tr}:A\to B$ as a Frobenius map.

Assume now that A/B is such a Frobenius extension. Let d be an arbitrary element of the intersection of I and J. Since d is contained in I, there exist a finite number of elements x_i 's and y_i 's in A satisfying (*) as mentioned above. But $d*x = \sum_i x_i \operatorname{tr}(y_i x) = 0$ for all x in A, and hence $\sum_i x_i \otimes y_i = 0$ in $A \otimes_B A$ by Lemma 1(2). It follows that $\sum_i x_i \sigma(y_i) = 0$ for all σ in G, and so d = 0, proving the theorem.

Corollary. If A is a Frobenius extension of A^c having the trace $\operatorname{tr}: A \to A^c$ as a Frobenius map, then $j: \Delta \to \operatorname{BiEnd}(_{\Delta}A)$ is an epimorphism.

As an application of the preceding theorem, we have

Proposition 6. Let G be a finite group acting as automorphisms on A. Assume that the trivial crossed product Δ of A relative to G is biregular and that tr(c) = 1 for some $c \in A$. Then A is a Frobenius extension of A^c having $tr: A \to A^c$ as a Frobenius map.

Proof. Let I, J be same as in Theorem 5. Let $e = \sum_{\sigma \in G} \sigma(c) u_{\sigma} \in \Delta$. Then $e = e^2$ and $A \simeq \Delta e$ as left Δ -modules, and so $I = \Delta e \Delta$. But, since Δ

is biregular, $I = \Delta f$ for some central idempotent f of Δ . It follows that $\Delta = I \oplus J$. Thus the proposition follows from Theorem 5.

As a consequence of Proposition 6, we have the following which sharpens slightly Theorem 4 of [3] and extends a result of [5].

Corollary 1. Let G be a finite group acting as automorphisms on A. Assume that the order of G is invertible in A. If either A is a finite product of simple rings or A is a biregular right self-injective ring, then A is a Frobenius extension of A^G having $tr: A \rightarrow A^G$ as a Frobenius map.

Proof. In either case, Δ is biregular from Proposition 4 and its corollary, and so this follows from Proposition 6.

Corollary 2. Let G be a finite group acting as automorphisms on A. Assume that the order of G is invertible in A. If A is a commutative, von Neumann regular ring, then A is a Frobenius extension of A^G having $\operatorname{tr}: A \to A^G$ as a Frobenius map, and moreover A is separable over A^G .

Proof. Let |G| be the order of G. Set $e = |G|^{-1} \sum_{\sigma \in G} u_{\sigma} \in \Delta$ and $B = A^{G}$. Then $e = e^{2}$ and $A \cong \Delta e$ as left Δ -modules. Since Δ is a von Neumann regular ring, $e\Delta e$, and hence B is also a von Neumann regular ring. Let I and J be same as in Theorem 5, and put K = I + J. Then $I = \Delta e\Delta$ and $J = l_{\Delta}(\Delta e)$, the left annihilator of Δe in Δ . Obviously, $I \cap J = 0$. We shall show $K = \Delta$. Let G be an arbitrary maximal ideal of G. Then the factor rings G and G are respectively, and G and G and G are respectively. And G are G and G are G and G are G and G are G and G and G and G are G and G and G are G and G are respectively. An are isomorphic to the localizations G and G are isomorphic to the localizations G and G and G are isomorphic to the localizations G and G and G are isomorphic to the localizations G and G is finitely generated over G by G and G are isomorphic to the localizations G and G are isomorphic to the localization G and G are isomorphic to the localization G and G are isomorphic to G and G are isomorphic to G and G are isomorphic to G

Remark. Combining the above result with [9, Corollary 1.2], Δ is biregular if A is commutative, von Neumann regular and $|G|^{-1} \in A$.

The following is an extended version of Corollary 1.

Proposition 7. Let G, Δ , I and J be same as in Theorem 5. Let N be the Jacobson radical of A, and let K be the set consisting of $d \in \Delta$ with $d*x \in$

90 Y. KITAMURA

N for all $x \in A$. Assume that $|G|^{-1} \in A$ and that either the factor ring $\overline{A} = A/N$ is a finite direct product of simple rings or \overline{A} is a biregular right self-injective ring. Then the following are equivalent.

- (1) A is a Frobenius extension of A^c having $tr: A \to A^c$ as a Frobenius map.
 - (2) $I \cap J = 0$ and $K = J + \sum_{\sigma \in G} Nu_{\sigma}$.

Proof Let $e \in \Delta$ be same as in the proof of Corollary 2. Then $A \cong \Delta e$ as left Δ -modules and $I = \Delta e \Delta$. Since G acts as automorphisms on \overline{A} in a natural way, we have a mapping $f: \Delta \to \Delta(\overline{A}; G)$ defined by $f(\sum_{\sigma} a_{\sigma}u_{\sigma}) = \sum_{\sigma} \overline{a}_{\sigma}u_{\sigma}$. Then $\operatorname{Ker}(f) = \sum_{\sigma} Nu_{\sigma}$ and f(K) is the left annihilator of \overline{A} in $\Delta(\overline{A}; G)$. By Corollary 1 and Theorem 5, we have $f(\Delta) = f(\Delta)f(e)f(\Delta) \oplus f(K)$, which yields that $\Delta = \Delta e \Delta + K$ and $\Delta e \Delta \cap K = \operatorname{Ker}(f)$.

- (1) \Rightarrow (2) By Theorem 5, $\Delta = I + J$ and $I \cap J = 0$. Let $L = J + \sum_{\sigma} Nu_{\sigma}$. Obviously, L is contained in K. But, noting $I \cap K = \text{Ker}(f)$, L contains K, hence L = K.
- (2) \Rightarrow (1) Since $\Delta = \Delta e \Delta + K$, we have $\Delta = (\Delta e \Delta + J) + \sum_{\sigma} Nu_{\sigma} = (\Delta e \Delta + J) + \text{Rad}(_{A}\Delta)$, where $\text{Rad}(_{A}\Delta)$ denotes the radical of the left A-module Δ . It follows that $\Delta = \Delta e \Delta + J$, which yields (1) from Theorem 5.

References

- M. AUSLANDER and O. GOLDMAN: The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409.
- [2] D. FARKAS and R. SNIDER: Noetherian fixed rings, Pacific J. Math. 69 (1977), 347-
- [3] D. HANDELMAN and G. RENAULT: Actions of finite groups on self-injective rings, Pacific J. Math. 89 (1980), 69-80.
- [4] F. KASCH: Projective Frobenius-Erweiterungen, Sitzungsber. Heidelberger Akad. Wiss. 1960/61 (4), 89-109.
- [5] Y. KITAMURA: Fixed rings of simple rings, Math. J. Okayama Univ. 30 (1988), 21-24.
- [6] Y. MIYASHITA: On Galois extensions and crossed products, J. Fac. Sci. Hokkaido Univ. 21 (1970), 97-121
- [7] C. NASTASESCU: Strongly graded rings of finite groups, Comm. Algebra 11 (1983), 1033— 1071.
- [8] T. ONODERA: Some studies on projective Frobenius extensions, J. Fac. Sci. Hokkaido Univ. 18 (1964), 89-107.
- [9] G. RENAULT: Anneaux bireguliers auto-injectifs a droite, J. Algebra 36 (1975), 77-84.

DEPARTMENT OF MATHEMATICS
TOKYO GAKUGEI UNIVERSITY
KOGANEI, TOKYO, 184 JAPAN

(Received May 23, 1988)