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A NOTE ON FIXED RINGS

Dedicated to Professor Hiroyuki Tachikawa on his 60th birthday

Yosuii KITAMURA

Let A be an associative ring with identity and G a finite group acting as
automorphisms on A. Let A® denote the fixed subring of A consisting of the
elements left fixed by every element of G.

In [3], Handelman and Renault showed that for a certain class of rings,
A is finitely generated projective over A®. In this note we consider the ques-
tion of when the ring extension A of A®is a Frobenius one in the sense of
Kasch [4], and a characterization of A to be a Frobenius extension of A°
having the trace tr : A— A® defined by tr(a) = 2 e o(a) as a Frobenius
map is obtained by using the trivial crossed product of A relative to G. As
a consequence, we can give another proof of our previous result of [5] and
sharpen Theorem 4 of [3] slightly.

Throughout this paper A denotes an associative ring with identity 1.
The notation M, (resp. .M ) denotes M a unital, right (resp. left) A-module.

Let B be a subring of A containing the same identity 1. According to
Kasch [4], a ring extension A/B is called a Frobenius one if 4 is finitely
generated projective as a right B-module and A = Hom(A4,, By) as B-A-bi-
modules. The conditions are equivalent to the existence of a B-B-homomor-
phism h: A— B and a finite number of elements r;'s, /;’s in A such that x =
T rh(lix) = X hlxr) I; for all x € A ([8]). When this is the case, we
shall call a system (h ; 7;, {;); a Frobenius one for the Frobenius extension
A/B. In particular, the map A corresponding to the identity 1 under the B-
A-isomorphism A = Hom(Aj, By) is called a Frobenius map.

The following, which can be seen easily, is well-known.

Lemma 1. Let A/B be a Frobenius extension and (h :r;, l,); its Frobe-
nius system. Then

(1) For any X, a mapping uy : Hom(,X. ,A)— Hom(zX, ,B) de-
fined by ux(f) = hofis an isomorphism, whose inverse is given by uy, '(g)(x)
= Z.( Tig(l,;.l').

(2) For any Y a mapping vy: Y ® A — Hom(Ag, Yy) defined by
vy(y ® a) =y oh ca is an isomorphism, whose inverse is given by vy~ (k) =

Z.i k("z) ® 1.
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A ring extension A/B is said to be separable if the canonical epimor-
phism @: A ® ;A— A defined by @(x ® y) = xy splits as an A-A-bimodule
map. A B-B-subbimodule X of A is said to be invertible if there exists a
B-B-subbimodule Y of 4 such that XY = YX = B([6]).

The following is an extended version of Handelman and Renault [3, The-
orem 1] and its proof runs after them.

Lemma 2. Let A/B be a separable extension. Suppose either there ex-
ist elements a;’s in A such that A= 2., a;B and a,B = Ba, for all i or there
exist invertible B-B-subbimodules X;'s of A such that A= 2.; X;. If Bis a

finite product of simple rings, then A is also a finite product of simple rings.

Proof. Noting B semisimple as a B-B-bimodule, A is semisimple as a
B-B-bimodule in either case. Since A/B is separable, we have finitely many
elements u;, v, € A(j=1,...,n) such that 27_, xu; ® v, = 27, u; ® vx
inA®zAforallx € Aand 27, u;v; = 1. Let I be any two-sided ideal
of A. Let f: A— I be a B-B-bimodule map fixing [ pointwise. Then one can
see a mapping F : A— I defined by Flx) = X%, (u,flv,(xu)))vsx an A-A-
bimodule map fixing I pointwise. Hence A is semisimple as an A-A-bimodule,
and so it is a finite product of simple rings.

Let G be a group. A ring A is called a G-graded ring if we can write A
as a direct sum of additive subgroups A = @,ec A (o) where A (o) A(z) C
A(or) for all o, r € G. A is said to be strongly G-graded if A(o) A(7)
= A(gz) forall ¢, 7€ G.

The following is due to Miyashita [6, Theorem 2.11].

Lemma 3. Let A= @ec A(o) be a strongly G-graded ring with G a
finite group. Then A is a Frobenius extension of A(1). If, in addition, the
order of G is invertible in A (1) then A is a separable extension of A(1).

From Lemmas 2 and 3, we have

Proposition 4. Let A= @,c; Alo) be a strongly G-graded ring. Sup-
pose G is a finite group and its order is invertible in A(1). If A(1) is a fi-
nite product of simple rings then A is also a finite product of simple rings.

Recall that a ring A is biregular if for any a € A, the two-sided ideal
AaA is generated by a central idempotent. It is well-known that any bireg-
ular ring is non-singular on both sides, hence a biregular right self-injective
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ring is also regular in the sense of von Neumann.
The next is a generalization of [3, Corollary 2] to strongly G-graded
rings of finite groups. The proof is essentially same as in there.

Corollary. Under the same notation and assumption as in Proposition 4.
if A(1) is a biregular right self-injective ring, then A is also a biregular right
self-injective ring.

Proof. Since A(1) is a regular right self-injective ring, A is so from
Lemma 3. By [9, Proposition 1.6], it suffices to show that every prime ide-
al of A is maximal. Let P be a prime ideal of A and let B= A{1). Then,
by [7, Theorem 4.1], we have PN B = (),ec Q° for some prime ideal Q of
B, where Q°= A(c7") QA(s). But @ is maximal by our assumption on B,
hence the factor ring B= B/BN P is a finite product of simple rings.
Since the factor ring A = A/P is a strongly G-graded ring with 4 (1) iso-
morphic to B, A is a finite product of simple rings by Proposition 4, which
implies P maximal.

Let G be a finite group acting as automorphisms on A. Let A= A(4;G)
be the trivial crossed product of A relative to G. A is a free (left) A-mod-
ule with free generator |u,| indexed by G. It becomes a ring by means of
xugyur = x0(y)usr and has u, for its identity. Moreover, it is a G-graded
ring and a mapping x— xu, imbeds A as a subring of A. Further, A can be
regarded as a left A-module by means of (au,)*x = ao(x), and the endomor-
phism ring of the left A-module A is anti-isomorphic to the fixed subring A°.
Let j: A— BiEnd(;A) be the canonical ring homomorphism given by j(2_,
aous)(x) = X, a,0(x), where BiEnd(,A) denotes the biendomorphism ring
of ,A.

We are now in position to state the main theorem of this paper.

Theorem 5. Let G be a finite group acting as automorphisms on A, A
the trivial crossed product of A relative to G and B= A®. Let I, J be the trace
ideal and the annihilator of the left A-module A, respectively; I =3 {Im(f) :
fi2A— Al J=1{d € A; dxx= 0 for all x € Al|. Then the following
statements (1) and (2) are equivalent.

(1) 1) A is finitely generated projective as a right B-module.

ii) Hom(Ajp, By) is generated by the trace tr : A— B as a right A-
module.

(2) A=1I+J.
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Moreover, A is a Frobenius extension of B having the trace tr: A— Bas a
Frobenius map if and only if A= 1@ J.

Proof. Recall that a mapping h: A — A defined by A(X, aou,) = a
gives a Frobenius system (h; %s, 1,™") vec of the ring extension A/ A.

Assume (2) letl =d+d (del d € J)andd= 2", flx,) for f;:
2A— A x, € A. Applying Lemma 1 to the Frobenius extension A/A with
the above system, the canonical homomorphism u, : Hom(, 4, ;4) — Hom(, 4,
1A ) given in there is isomorphic. Setting y; = u (f)(1) € A(i=1....,m),
we have

(*) d= 2oec (Z:’Ll sz(yt))uo
(*x) x= 2", x; tr(y;x) for all x € A,
which yields (1).

Conversely assume the conditions i) and ii). Let x;'s and ¥'s (i = 1,
...,m) be elements of A satisfying the condition ( %*), and let d the element
of Agivenby (*). We have thend—1 € J. and so A = [+J. Assume fur-
ther IN J=0, and let trca = 0 for ain A. Since X gec o(a)us = uz'(a”)
(1) € IN J, we have @ = 0. Here a” denotes the right multiplication in-
duced by a; a": A— A, x— xa. It follows that A is a Frobenius exten-
sion of B having tr : A— B as a Frobenius map.

Assume now that A/ B is such a Frobenius extension. Let d be an arbi-
trary element of the intersection of I and J. Since d is contained in I, there
exist a finite number of elements x;'s and y;'s in A satisfying ( *) as men-
tioned above. But d*x = 2 ; x; tr(y;x) = 0 for all x in A, and hence X_; x;
® y,=0in A® A by Lemma 1(2). It follows that 2=, x;0(y;) = 0 forall
o in G, and so d = 0, proving the theorem.

Corollary. If A is a Frobenius extension of A® having the trace tr: A—
A® as a Frobenius map, then j: A— BiEnd(,A) is an epimorphism.

As an application of the preceding theorem, we have

Proposition 6. Let G be a finite group acting as automorphisms on A.
Assume that the trivial crossed product A of A relative to G is biregular and
that tr(c) = 1 for some ¢ € A. Then A is a Frobenius extension of A® having
tr: A— A° as a Frobenius map.

Proof. Let I, Jbe same as in Theorem 5. Let e = X ,e; o(c)u, € A.
Then e = e? and A = Ae as left A-modules, and so I = AeA. But, since A
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is biregular, I = Af for some central idempotent f of A. It follows that A =
I ® J. Thus the proposition follows from Theorem 5.

As a consequence of Proposition 6, we have the following which sharp-
ens slightly Theorem 4 of [3] and extends a result of [5].

Corollary 1. Let G be a finite group acting as automorphisms on A.
Assume that the order of G is invertible in A. If either A is a finite product of
simple rings or A is a biregular right self-injective ring, then A is a Frobenius
extension of A° having tr : A— A° as a Frobenius map.

Proof. In either case, A is biregular from Proposition 4 and its corol-
lary, and so this follows from Proposition 6.

Corollary 2. Let G be a finite group acting as automorphisms on A.
Assume that the order of G is invertible in A. If A is a commutative, von
Neumann regular ring, then A is a Frobenius extension of A° having tr : A—
A® as a Frobenius map, and moreover A is separable over A°,

Proof. Let |G| be the order of G. Set e = |G |™' Lyec s € A and
B= A° Then e = e* and A = Ae as left A-modules. Since A is a von
Neumann regular ring, eAe, and hence B is also a von Neumann regular
ring. Let I and J be same as in Theorem 5, and put K= I+J. Then I =
AeA and J = [, (Ae), the left annihilator of Ae in A. Obviously, IN J=
0. We shall show K= A. Let m be an arbitrary maximal ideal of B. Then
the factor rings A/mA and B/m are isomorphic to the localizations A, and
B, of A and B at m. respectively, and (A,)° = B.. Thus A, is finitely
generated over B, by [2, Theorem 3]. It follows from Corollary 1 and The-
orem 5 that K, = A(An: G)eA(A,; G) ® Ly,.o(AA,; Gle) = AlA,;
G) = A,, which implies that K = A as desired. Hence, by Theorem 5, A
is a Frobenius extension of B having tr: A— B as a Frobenius map. Noting
|G |7' € A, A is separable over B from [1. Proposition A.4].

Remark. Combining the above result with [9, Corollary 1.2], A is bi-
regular if A is commutative, von Neumann regular and |G |™' € A.
The following is an extended version of Corollary 1.

Proposition 7. Let G, A, Iand J be same as in Theorem 5. Let N be
the Jacobson radical of A, and let K be the set consisting of d € A withd*x €
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Nforallx € A. Assume that |G |”' € A and that either the factor ring A=
A/N is a finite direct product of simple rings or A is a biregular right self-in-
jective ring. Then the following are equivalent.

(1) A is a Frobenius extension of A° having tr : A— A° as a Frobenius
map.

(2) INJ=0and K= J+2 se; Nu,.

Proof Let e € A be same as in the proof of Corollary 2. Then A =
Ae as left A-modules and I = AeA. Since G acts as automorphisms on A in
a natural way, we have a mapping f: A— A(A; G) defined by A2, asu,) =
Y, astus. Then Ker(f) = Yo Nug, and fIK) is the left annihilator of A in
A(A; G). By Corollary 1 and Theorem 5, we have {A) = flA)fle)A4) &
RK), which yields that A = AeA+K and AeA N K = Ker(f).

(1) 2(2) By Theorem5, A=I+JandINJ=0. Let L=J+2,
Nu,. Obviously, L is contained in K. But, noting I N K =Ker(f), L con-
tains K, hence L. = K.

(2) (1) Since A= AeA+K, we have A = (AeA+J)+ 2, Nuy =
(AeA+J )+ Rad(,A), where Rad(,A) denotes the radical of the left A-mod-
ule A. It follows that A = AeA+J, which yields (1) from Theorem 5.
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