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ON GALOIS H-DIMODULE ALGEBRAS

KarL-H. ULBRICH*

Let & be a commutative ring and H a finite commutative, cocommutative
Hopf k-algebra with dual H* = Homi(H, k). An H-Galois extension A of
k is called a Galois H-dimodule algebra, [1], [4], [5]. if A has an additional
structure of an H-module (algebra) satisfving

h(ga) = glha)., a€ A, h € H, g € H*.

By definition, a morphism of Galois H-dimodule algebras is an H-linear
morphism of the underlying Galois extensions. It is shown in this paper
that the set D(H) of isomorphism classes of Galois H-dimodule algebras
decomposes into

(1) D(H) = E(H)XHopfx(H, H*)

where E(H) is the group of isomorphism classes of H-Galois extensions
of k, and Hopf.(H, H*) the group of Hopf algebra homomorphisms H — H*.
In [1] a certain product for Galois H-dimodule algebras was defined, and
[1], prop. 2.4, says that D(H) is a group. This generalizes [5], theorem
1.9, which states that D(H) is a monoid if H is a free k-module. Under
(1) the product reads

(2) (A, ).(B, ¢) = (A®. B, ¢¢)
where A® equals A as H-comodule and has multiplication
a.b= XL aol@lan)b), a b€ A

But if the product (2) is associative, or has a unit element, then A* = 4
for all A and ¢, and we shall give examples where H® Z H. Consequently,
we obtain that the above mentioned results are not correct, even in the
special cases considered in [5], theorems 2.4 and 2.6.

Notations. The counit of H(or H*) will be denoted by €, its antipode
by A. For H-Galois extensions A and B of k their product A.B is defined

to be the equalizer of the comodule structures

AB->A®B 3A® B® H,
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where ® = ®,. We refer to [2] for a proof that A. B agrees with various
other definitions of the product of Galois extensions.

In the following let A be an H-Galois extension of k. Thus A is an
H-comodule algebra and the map

@: H* ® A - End,(4), @(g®b)(a) = (ga)b,

is an isomorphism where ga = 2. ao (g, an), g € H*, a, b € A, (see for
example [8]). Also, @ induces an isomorphism

(3) H* :Endu‘(A).

Indeed, consider w € H* ® A such that @w(w) is H*-linear. Then since
glab) = X gnya.geyb for all g € H* and a, b € A, we have

wlg ®1) =(Z g ® gs)w, g € H*.

Therefore, e(g)w = (X A(gn)gn ® 1w = L (A(gn) ® 1)w(gy ® 1) =
2 (Algu)ge ® gs)w = (1 ® g)w. Hence w € H* ® A" = H*. Since
A is finitely generated and projective over H*, (3) says that A is an in-
vertible H*-module.

Assume in the following that A is also an H-module satisfying h(ga) =
glha) for all h € H, g € H*, and @ € A. By (3) this means we are given
a k-algebra homomorphism ¢: H — H* such that

(4) ha = ¢(h)a = L an{p(h), an,), a € A, h € H.
Proposition 1. A is an H-module algebra with respect to (4) if and
only if ¢ is a homomorphism of Hopf k-algebras.
Proof. That A be an H-module algebra means
(5) ¢(h)(ab) =2 ¢(h(1))(1- §0(h.;z;.)b, h€ H, a, b€ A,

and E(h)14 = ?(h)11 == EgO(h)lA, Since ¢(h)(ab) = Z. ¢(h)|1;a. gp(h)(z)b,
A is an H-module algebra if ¢ is a coalgebra morphism. Conversely, let
x.y € H and choose 2 a; ® b, and 2 ¢; ® d; in A ® A such that

i Jj

(6) 1®x=2 abuoy ® by,
and 1 ® y = X c;0d; ® cju) holds in A ® H. Then assuming (5) we have
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<§0(h)9 1‘_’)’) =1 fiibi(mcﬂmdj< ¢(h)~ bm)C,im>
=X at(?(h) (bicj))dj
=2 ai(?’(hm)bt)(?(hm)cj)dj
= X (9olha), x) (plha), ).

Since {@(h), xy) = X (@(h);, x) (@(h)s, y) this implies that ¢ is a

coalgebra morphism as required.
Given ¢ € Hopf.(H, H*) we define on A a new multiplication by
a.b =X apbo; {Plan;), b)), a, b € A.
This gives us an H-comodule algebra A® having the same comodule structure
as A.
Lemma 2. A® is an H-Galois extension of k.

Proof. Letu € H* ® H* denote the preimage of ¢ under the canonical
isomorphism H* ® H* = Homi(H. H*). (g ® g')(h) = (g, h)g'. Then u
is a 2-cocycle, (cf. [6], sec. 1.5), and if A = H then A?® coincides with
the (associative) H-Galois algebra (H, @) of [3], prop. 1.6. But

Aq, — A.H¢CA® H, a—’Za.;n.®a.1;,,

is an isomorphism of H-comodule algebras, and this completes the proof.

Obviously A° = A and since the product in Hopf.(H, H*) is defined by
(¢¢)(h) = Z. ?(h(l)) Sb(h(z;), h (S H, one has

(7) (Asv)st' —_ Aww_

Let D(H) denote the set of isomorphism classes of Galois H-dimodule
algebras.

Theorem 3. By viewing each Galois H-dimodule algebra as a pair (A,
@) as above one obtains a bijection

(8) D(H) = E(H)XHopf,(H, H*).
It transforms the product of Galois H-dimodule algebras of [1] into

(9) (A, ¢).(B, ¢) = (A®. B, ¢¢)

where A®. B denotes the product of the Galois extensions A® and B.
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Proof. let f: (A, ¢) = (B, ¢) be a homomorphism of Galois H-
dimodule algebras; to prove (8) it suffices to show ¢ = ¢. Let x € H and
write] ® xinA® Hasin(6). Sol ® x = X f(a,)f(biu;) ® by, Since
fle(h)b,) = sb(h)f(bi)‘for h € H we obtain

(e(h), x) = Z fla) f(bi) (@(R), bin))
= Zf(ai)f(buo;‘) <¢’(h) biﬂ)) = <¢(h), 1>-

Thus ¢(h) = ¢(h) and we are done. Next consider the product A.B of
any Galois H-dimodule algebras A = (4, ¢) and B = (B, ¢). By definition,
[1], 2.1, we have A.B = (A®. B, ¢¢) as H-comodules. Furthermore, also
the H-module structures are the same. For let h € H and 2 a; ® b, €

A.B; by abuse of notation we denote the latter by a ® 5. Then

h(a®b) =X hyha® ho.b
= L aw {lh), an;) ® b {¢(ha), buy)
= L am (b)), any) ® (P(he), ap)b
= L an {Plha)P(ha), an) ® b
= (¢¢) (h)(a ® b).

Finally, multiplication in A.B is defined by the smash product formula.
This means

(a ® b).(c ® d) = Z a(me) ® bw)d
= Z aco { (bw)), cay) ® bud
= X aoco{Plan), ca;) ® bd

since 2. a ® by ® by = 2 apy ® b ® ay,. Hence A.B = A®. B as k-
algebras and this completes the proof.

Lemma 4. If the product (9) is associative, or has a unit element,
then A® = A(as Galois extensions) for all ¢ € Hopf,(H, H*) and H-Galois

extensions A of k.

Proof. Associativity of (9) implies therefore (A®B)®¥ = A?B" because
E(H) is a group. Since (Ag).p = € holds in Hopfi(H, H*), we have
(H*®)®? = H® = H. Setting A= H*® we obtain B®¥ = B¥ by (7). Hence
B? = B. The other statement is evident. '

Remark 5. Given H-dimodule algebras A, B, and C, the natural map
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A#(B#C)—(A # B) # C is an isomorphism of H-dimodule algebras
by [4], thm. 3.3. But in general the inclusion B.C = B # C is not H-
colinear, because the comodule structure of B 4 C is given by 6 ® ¢ = 2
boy ® cioy ® bujcy), whereas that of B.C by 6 ® ¢ = X b ® ¢ ® by, =
22 b ® co ® cyy. It follows that, in general, A.(B.C) is not a subalgebra
of A # (B # C).

In the following, let A’ for A = (A, ¢) be defined as in [1], and let
A™! be the H-Galois extension A°® having H-comodule structure a = )
an ® Alay). We claim that A" = ((A7')®, A¢). It is clear that both sides
have the same H-comodule structure, and that they are equal to A as H-
modules. Furthermore, by [1], prop. 1.2¢), multiplication of A" is given by
a.b = L boaw(¢(an), by since A*> = id. However, (¢(a), B) = (¢(a),
A(B)) = (Ap(a), A(B)) = (¢(A(a)), A(B)) for a, B € H. Hence the
multiplication of A’ coincides with that of (A~')? and this proves our claim.
Obviously, one has A.A' = A. A™' as H-comodules but, in general, not as
k-algebras. Consider then the isomorphism

(10) A®A:A®H, a®b“"Zab(m®A(b(1,).

It is shown in the proof of [1], prop. 2.4, that restricting (10) gives an
isomorphism of H-comodules

f: AXSk®H=H.

Furthermore, it is claimed there that f is also a morphism of k-algebras.
But in general this fails to be true. Actually, f respects multiplication of
A.A™'. Indeed, let (by abuse of notation) a ® b, ¢ ® d € A. A™" and write
flce®d)=1® h. Then

f(aC ® db) = Z aCdlo)bm:u ® A(b.;;)/\(d.l))
=2 (a ® "(bm))(Cd:m ® A(dm))(bm) ® 1)
=2 (a ® A(bm))(bmj ® h) :f(a ® b)f(C ® d)

In other words, f({(a ® 5°°)(c ® d°®)) = f(a ® b°")f(c ® d°°), so that
f: A.A™' > H is an algebra homomorphism. This shows that A™! repre-
sents the inverse of the class of A in the abelian group E(H). (Actually
the H-Galois extensions of £ form a symmetric Picard category in the sense

of [9]).

Remark 6. The Hopf k-algebra homomorphism ¢ : H = H* is bijective
if and only if (A, @) is an H*-Galois extension of k. For example this is
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the case for Kummer extensions of %, cf. [7].

Let H=k[G], G a finite abelian group. Then one has a natural iso-
morphism of Hopf.(H, H*) with the group of bimultiplicative mappings of
GXG into the group k* of units of k. Then k[G]® = k[G] if and only if
@: GXG = k* is a 2-coboundary, and in general there are pairings ¢
which define non-trivial cocycles, even if G has order two, cf. [10], p. 160,
remark.

Finally let k£ be a field of characteristic 2, and let H = k[X]/X* =
k[0] be as in[5], 2.2. Let (1, 8*) be the dual basis of (1, §). Then

7: k* - Hopfu(H, H*), 7(1)(8) = t8*, t € k,

is an isomorphism of groups. Further, one has H™" = k[X]/(X*—t). So
H = H™ implies that ¢ is a square in k.
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