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Throughout this paper, all rings will be assumed to be commutative
and to have identities, and a subring of a ring will mean one containing the
same identity. Moreover, all Galois extensions will mean ones in the sense
of [1]. A ring extension R/S will be called to be simple if R is generated
by a single element over S, that is, R/S has a primitive element. Further,
a Galois extension R/S will be called to be trivial if R is S-algebra iso-
morphic to the direct sum S & S ®.--@® S of S. For a G-Galois extension
R/S, if G is a cyclic group then R/S will be called to be a cyclic extension.

In §1, we present some preliminary results for our study in the sub-
sequent sections. In § 2, we first consider the simplicity of Galois exten-
stons which are the tensor products of Galois extensions over a field. We
later study the simplicity of Galois extensions of a semi-local ring by using
the results in the preceding part of this section. In § 3, we treat Galois
extensions with no primitive elements. We give a condition that a Galois
extension of a finite field is generated by m elements in this section. Fur-
thermore, we also give a condition in case of a Galois extension of a semi-
local ring.

In what follows, ¢ will mean a power of a prime number and GF(q)
will denote the finite field consisting of ¢ elements. Moreover, “given a set
S, a field K, a K-module M, a ring R, a group G of automorphisms of R,
a subset H of G, and positive integers m,,..., m,”, we will use the following
conventions :

| S | = the cardinal number of S.

[M: K] = the dimension of M.

(o) = the group generated by ¢.

R(H)=1la€ R: o(a) =a for all ¢ € HI.

(R ) = the length of the composition series of R.

(m,, m,) = the greatest common divisor of m, and m,.

Max;(m;) = the maximum of m,,...., m,.

o7



58 I. KIKUMASA
As to other notations and terminologies used in this paper we follow [4].

1. Preliminary Lemmas. In this section, we prepare some lemmas for
our study in the subsequent sections.

We first recall the following lemma which is basic but important to
study Galois extensions over fields.

Lemma 1.1 ([4, Lemma 1.1 and Lemma 1.2]). Let K be a field and
R/K a G-Galois extension. Then, there exists an H-Galois extension R,/K
such that

(i) R, is a field,

(ii) |G| = |H|&R), and

(iii) R is K-algebra isomorphic to Ry, = R, ®---® R, where r = dR),
R,=R (1 =i=r), and R, is a K-algebra with K = {(a,...,a) ; a € K |.

When this is the case, R, is isomorphic to any maximal subfield of R.

Remark 1.1. Let K be a finite field. If R/K is a Galois extension
then, as in [4, Remark 1.1(3)], we can choose a cyclic group as a Galois
group of R/K. Moreover, for any field extension L/K with [L: K] < oo,
L™ is a cyclic extension of K = {(a,...,a): a € K| where r is an arbi-
trary natural number and L7 is the direct sum of r copies of L (cf. [10,
Lemma 1.1]). Hence, we may always regard a Galois extension over a finite
field as a cyclic extension when we concern with the study of simplicity.
Throughout, by CG(R/K ), we denote a cyclic Galois group of R/K.

Now we set
No(n) = (1/n) 2lap u(d) g™

where p is the Moebius function. If K = GF(q) then Ny(n) denotes the
number of the monic irreducible polynomials in K[X] of degree n (cf. [6,
p. 93]). We shall present a lemma about some properties of this No(n).

Lemma 1.2. Let d, m, n and t be positive integers.
(1) There holds the inequality
q" '/t = No(2) = ¢/t = Ng«(1).
(2) Ifm=3 and n 2 2 then
No(md)Ng(nd )d < No(mnd).
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(3) Incase m=2 and n =2,

Ne(m)Ng(n) < No(mn).

Proof. (1) It is obvious that the last inequality of (1) holds. Hence
we shall show the first and second inequalities to hold.

If t = 1 then clearly Ng(t) = q = ¢/t > q*'/t. Moreover, in case
is a prime number,

@/t = (g—1)g" Y/t = (q'—q" ")/t
= (g'—q)/t= No(t) < q¥/t.

Hence we may assume that ¢ = ps for some integer s = 2 where p is the
least prime divisor of . We note here that, for any integer k = 1,

No(2) 2 (¢"—(q°+ ¢ ' +--+q))/t > (¢*—q° ")/t
2 (¢ +q" —g%") /1 2 ¢/t

since t—1—(s+1) = s(p—1)—2 = 0, and further.

No(t) = (¢'—q5+q5 '+~ +q)/t
= (¢'—q°+¢%)/t = q'/t.

Thus we have (1).
(2) By(1), g™ /(mnd) = Ng(mnd). On the other hand, also by
(1), Ne(md) = q™*/(md) and No(nd) = ¢q™/(nd), and so we see that

Ne(md)No(nd)d = q™*"¢/(mnd).

Since mnd—1—(md+nd) = 0, we have the inequality of (2).

(3) If m=3 and n = 2 then, putting d = 1 in (2), we have imme-
diately the inequality of (3). Moreover, if m = 2 and n = 3 then it suffices
to exchange m for n. In case m = n = 2, by a direct computation, we obtain

No(mn) = (¢*—q*)/4 > (q°—q)*/4 = Ng(m )Ng(n).
Hence we get (3).
Lemma 1.3. Let K = GF(q) and R/K a Galois extension of rank n.
Moreover, let t = n/4(R) and
f=Tap (X=X )% = ] 4, (X' X )ua,

Then the following conditions are equivalent.
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(i) R/K is simple.

(ii) £&(R) = Ng(t).

(iii) R = K[X]/(g) for a factor g of degree n of f.
In particular, R/K is simple and (R ) = Ng(t) if and only if R = K[X]/
(f).

Proof. The equivalence (i) <= (ii) is shown in [4, Theorem 1.6].

(i) <> (iii) : As in [4, Theorem 1.4] and its proof, R/K is simple if
and only if R = K[X]/(g) for the product g of ¢(R) distinct monic ir-
reducible polynomials in K[X] of degree . On the other hand, by [6, The-
orem 3.29], the polynomial f in the lemma is the product of all the monic
irreducible polynomials in K[X] of degree t. Hence our assertion is obtained.

Example 1.1. Let K = GF(3) and R,/K (i = 1, 2, 3) Galois exten-
sions such that #(R;) = i+1 and [R,: K] = 2(i+1) for i =1, 2, 3. Note
that such Galois extensions surely exist (Remark 1.1). Now, we set

f= HdI2 (X3 X )Ha,
Then,

f=X¥-X)(X*-X)"'"=(X-X)/(X*-X)
= (X?*+1)(X*+1) = X+ X+ X?+1.

By Lemma 1.3, we see that R,/K and R,/K are simple, and moreover,
R, = K[X])/(X*+1) and R, = K[X]/( X+ X'+ X?+1).

However, since f cannot be divided by any polynomial of degree 8, R;/K
is not simple.

2. Simplicity of Galois extensions of semi-local rings. A tensor prod-
uct of two (and more than two) Galois extensions over a field is also a
Galois extension. In this section, we first discuss whether a Galois exten-
sion maked by such a way is simple or not, and then, we study the simplicity
of Galois extensions of a semi-local ring.

We begin our study in this section with the following lemma which is
fundamental on simplicity of Galois extensions obtained as tensor products
of Galois extensions over a field.

Lemma 2.1. Let K be a finite field, and R/K and S/K Galois
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extensions. Moreover, let R, and S, be maximal subfields of R and S
containing K, respectively.

(1) Assume that [R,: K] ¥ [S,: K] and[S,: K] ¥ [R\: K]. If R/K
and S/K are simple then (R ®,; S)/K is so and non-trivial,

(2) In case that [R,: K]|[S,: K] or [S,: K]|[R,: K]. if neither
R/K nor S/K is simple then (R ®¢S )/K is not simple.

Proof. let K = GF(q). By Lemma 1.1, we have
R ; Rl @"'@ Rr and S ; S] @"'@ SS

where 7 = 4(R), s =40S). R, =R (1=£i=<7), §,=8 (1=j<5s),
and R, and S, are fields. Then, we have

R ®:S=2X,,;®(R; ®&3S,).
Now we put d = ([R,: K], [Si: K]). Then, [R,: K] = md and [S, : K] =

nd for some integers m and n withm =21, n 2 1 and (m, n) = 1. Further,
there exist subfields E; and F; of R, and S,, respectively, such that E, =
F and [E : K] = [F, : K] = d. We may assume that E:= E, = F,. Since
E/K is a Galois extension of rank d, E ® S, is K-algebra isomorphic to
the direct sum of d copies of S,. Hence,

R1 ®K Sl = Rl ®EE ®A‘ Sl = Rl ®E(Sl G)@ Sl)
= (R] ®E S[) @'“@ (R] ®E Sl) (d times)

and so,
R ®K S ; (R] ®E Sl) $"'$ (R) ®E Sl) (T’Sd times).

Since [R,: E] = m and [S, : E] = n are relatively prime, R, ®: S, is a
field with [(R, ®: S,) : K] = mnd.

(1) Let R/K and S/K be simple. Then, using Lemma 1.3, we get
r < Ng(md) and s < Ng(nd). Moreover, let [R,: K] ¥ [S,: K] and [S; :
K] ¥ [R,: K]. Then we may assume, without loss of generality, that m =
3 and n = 2. Hence, by Lemma 1.2(2),

2R ®S) = rsd = Ng(md)Ny(nd)d = Ng(mnd).

This implies that (R ® S )/K is simple. Further, it is obvious that (R ®
S)/K is non-trivial.
(2) Assume that [R,: K]JI[Si: K] or [S:: K]|[R,: K]. Then m =

1 or n = 1. Hence it suffices to prove the assertion in case m = 1. If
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R/K and S/K are not simple then r > Ng(d) and s > Ng(nd). Hence we
obtain

UR @ S) = rsd > No(d)Ny(nd)d 2 Ng(nd).

Combining this with Lemma 1.3, we have the assertion (2).

Proposition 2.2. Let K= GF(q) and S,/K a Galois extension such
that [S; : K] = p% where p is a prime number and a; = 1 for each i (1 =
i=n). Let t := Max,([S;: K]/8(S;)) = [S:: K]/8(S,). Then(S, & S,
®x ®x Sp)/K is simple if and only if (S,) 1, [S,: K] = No(t). When
this is the case, S\/K is simple.

Proof. Let L, be a maximal subfield of S; containing K for every i
(1 =i<n). Then, we have L, @ L, =L, ®---® L, ([L;: K] times).
From this, one will easily see that L, is a maximal subfield of R := S; ®;
S, @+ ® Spand (R ) = £(S,) I, [S;: K]. Hence, it follows from Lem-
ma 1.3 that R/K is simple if and only if

'e(sl) Hzn=z [Si: K] = Nq(t)-

When this is the case, we have £(S,) = Nq(t), and whence S,/K is simple.

Lemma 2.3. Let K be a field and S;/K (i = 1,..., n) Galois exten-
sions such that [S;: K] and [S,: K] are relatively prime for each i # j. If
all the S;/K are simple and non-trivial then so is (S, ®; S; ®--- x S,)/K.

Proof. It is enough to verify our assertion in case n = 2. For we
have the lemma by induction if n = 3.
let R=S,and S = S,. Then, by Lemma 1.1, we may write

R=E & -®E and S=F &---® F,

E,=E,F,=F(1=<i<r,1=<j=s5), and E, and F, are fields. Since
([R: K], [S: K]) =1, ([E.: K]. [F,: K]) = 1. Moreover, since R/K
and S/K are non-trivial, we have [E,: K] ¥ [F,: K] and[F,: K] ¥ [E,: K].
Therefore it follows from Lemma 2.1 that (R ®; S)/K is simple and non-
trivial if K is a finite field. Assume that | K | = oo, Then, it suffices to
show that (R ®, S)/K is non-trivial. However, it is clear by the argument
in the above,.

We have already noted that, for a G-Galois extension R over a finite
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field K, we may replace G with a cyclic group CG(R/K). Using this fact
we obtain the following corollary.

Corollary 2.4. Let K = GF(q) and R/K a Galois extension with [R :
K] = pi®..-p,® where the p, are distinct prime numbers and each o; = 1.
Moreover, put (o) = CG(R/K) and S, = R({c*%)) (1 =i = n).

(1) If S;/K is simple and non-trivial for each i (1 = { < n) then so
is R/K.

(2) Lett,=p%/8S;)(i=1,....n). If t, #1 and p,% < qti—q""™
for all i (1 = i = n) then R/K is simple and non-trivial.

Proof. Since each S;/K is a cyclic extension of rank p,% and R =
S, ®: S, ®y-- ® S,. we have (1) immediately from Lemma 2.3. Moreover,
(2) is obtained as a direct consequence of (1) and Lemma 1.3.

Remark 2.1. Let K be a field and R/K a G-Galois extension. If G
is a nilpotent group then we can write G = P,X---X P, where the P, are
the Sylow subgroups of G. Hence, though K is infinite, if G is nilpotent

then the above corollary (1) holds by using the given G and the fixring
R(P,---P,_\P.,,---P,) in R instead of CG(R/K ) and S;. respectively.

We here present some examples.

Example 2.1. (1) Let K = GF(4). We consider R = K ® K and
S=K®K® K. Then R/K and S/K are Galois extensions whose ranks
are relatively prime. Moreover. they are trivial and simple by Lemma 1.3.
However, since ¢(R ®x S) =6 >4 = N,(1), (R ®; S)/K is not simple
by the lemma.

(2) Let K= GF(2), R = GF(4) & GF(4) and S = GF(8). Then
R/K and S/K are Galois extensions such that [R: K] and [S: K] are rel-

atively prime. We here consider
R ®: S = (GF(4) ®, GF(8)) ® (GF(4) ®, GF(8)).

Since GF(4) ®, GF(8) is a field, we have {{(R ®; S) = 2 < 9 = N,(6)
(cf. [6, p. 553]). Hence (R ®,; S)/K is simple because of Lemma 1.3.
Further, this is non-trivial. However, R/K is not simple since §(R) =
2 >1 = Ny(2).

(3) Let K= GF(2), R= GF(4) ® GF(4) and S = GF(8) & GF
(8) ® GF(8). Then, R/K and S/K are not simple, and their ranks are
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relatively prime. In this case, (R ® S)/K is simple. Indeed, &R ®; S) =
6 < 9 = Nu(6).

Lemma 2.5. Let K = GF(q) and R/K a {o)-Galois exiension with
[R: K] = p°% where p is a prime number, a = 1 and (p, u) = 1. Assume
that there is a subfield M of R properly containing K such that, for t:=
[M: K], tis a power of p and

P = g¢'—q*.
Then, R({c*")) is simple and non-trivial over K.

Proof. Let L be a maximal subfield of R containing M. Moreover,
set S, = R({c”")) and S, = R({6¥)). Then, R = S, ®S,. Let L, be
a maximal subfield of S, containing K(i =1, 2). Then, by [4, Lemma 1.1
and Lemma 1.2], we see that S, = L, ®---® L, (4(S;) times) for i =1,
2,and R= L ®---® L (4(S,)L(S,) times) for L := L, & L,. Since L
is a field, it follows that L = L. Hence, since t|[L: K] and (p, [L,:
K]) =1, we have t|[L, : K]. This implies that S,/K is non-trivial. Noting
[S,: K] = p? we obtain from our assumption and Lemma 1.2(3) that, for
k:=[L,: K],

US)) = p%k < p¥/t = (1/1)(q'—q"?) = No(t) = No(k).
Thus S,/K is simple by Lemma 1.3.

Theorem 2.6. Let K = GF(q) and R/K a Galois extension with [R :
K] = p\®---p,% where p,,..., p, are distinct primes and each a; = 1. As-
sume that, for every i (1 = i = n), there is a subfield M, of R properly
containing K such that t,:= [M;: K] is a power of p; and

p = gli— g,
Then R/K is simple and non-trivial.

Proof. Let S; be as in Corollary 2.4. Then R = S, ®--- ®, S, and,
by Lemma 2.5, each S; is simple and non-trivial over K. Therefore R/K
is simple by Lemma 2.3.

Corollary 2.7. Let K = GF(q) and R/K a Galois extension with [R:
K] = p@---p,® where p,,..., pn are distinct primes and a; 2 1 for i =
1.....n. Let L be a maximal subfield of R and [L: K] = p,®---p,"+. Then
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R/K is simple and non-trivial if one of the following conditions is satisfied :
(a) 21 and p,™ < qti—q%? with t, = p,® for all i (1 < i< n).
(b) B=1 and(p,—1)/log,p: 2 a; for all i (1 £ i< n).
When this is the case, the condition of £, 2 1(1 =i = n) is equivalent
to that p;|[([R: K]/#R)) (1 = i< n).

Proof. Case (a): Since L is a finite field, L contains subfields M,
with [M,: K] = p® (i =1,..., n). Hence the assertion is immediate from
Theorem 2.6.

Case (b) : From the condition of (b), it follows that

o < 21 < gri! < qp,—l(qt,.—pp»l_q:z,-/p,-1—p,.+1) < q’r_qli/ﬁt

where i = 1,..., n. Hence R/K is simple and non-trivial by (a).
The other assertion follows immediately from that [R: K]=[L: K]-
/(R) (Lemma 1.1).

Remark 2.2. (1) In the statement of Theorem 2.6, the condition
“properly” is necessary. For example, consider the case that K = GF(5)
and R = GF(5%) @-.-® GF(5?) the direct sum of 12 copies of GF(52).
Then R/K is a Galois extension of rank 23-3. Choose GF(52) = |(a,...,
a); a € GF(52){(C R) and K as M, and M, respectively. Then, the con-
dition p,% = qti—q%* is fulfilled for each i. But, since (R) =12 >
10 = No([R: K]/4(R)). R/K is not simple because of Lemma 1.3.

(2) Let K= GF(2) and R = GF(2¢) & GF(2¢). Then, R/K is a
simple Galois extension of rank 2%-3. Moreover, by [4, Lemma 1.2], every
maximal subfield of R containing K is isomorphic to GF(2¢). Hence, if M,
is a subfield of R properly containing K such that # = [M;: K] is a power
of pp = 2 then M, = GF(2?). In this case,

plm = 92 > 22_9 — qz._qt./.o,-

This shows that the converse of Theorem 2.6 does not hold.

(3) In Corollary 2.7, the condition (p;—1)/log, p; =2 a, is independent
of | K| and 4(S;). Moreover, since the function ¥y = (x—1)/log, x is mono-
tone increasing on the interval x = 2, this inequality holds if p;, is large

enough. For example, for a G-Galois extension R over a finite field K, if
|G| = 7% 133 then

(7—1)/log, 7 >6/3 =2 and (13—1)/log, 13 > 12/4 = 3.

Hence if §(R) < 7-13% then the Galois extension R/K is simple.



66 I. KIKUMASA

Now, in the rest of this section, we study the simlicity of Galois ex-
tensions of a semi-local ring. For this purpose, let A denote a semi-local
ring and | M;,..., M, | the set of maximal ideals of A.

First we shall prove the following theorem.

Theorem 2.8. Let S,,..., S, be Galois extensions of A whose ranks
are relatively prime. If the extensions (S;/MS;)/(A/M) (1 < i< n) are
simple and non-trivial for each maximal ideal M of A then so is (S, ®u
Sz ®A ®.4 Sn)/A-

Proof. Let M be an arbitrary maximal ideal of A. Moreover, we set

R=S, ®- ®4S,. Then
R/JMR - S]/IWSI ®A/M'" ®A/M Sn/lwsn.

It is well-known that [S;/MS,;: A/M] = rank,S; for i = 1,..., n. Since
the rank,S; are relatively prime, it follows from Lemma 2.3 that R/MR
is simple over A/M. Therefore, in virtue of [4, Proposition 2.1], we obtain
that R/A is simple.

Corollary 2.9. Let S,,..., S, be Galois extensions of A with rank,S, =
n,(1 = i < n) such that the n; are relatively prime. If all S;/A are simple
and U(S;) < mn;, for i=1,...,n then (S, ®, S, ®,--- ®, S,)/A is simple.

Proof. Let M be an arbitrary maximal ideal of A. Since S,/A is
simple, so is (S,/MS;)/(A/M) for each i. Moreover, the extensions (S,/
MS;)/(A/M) are non-trivial for all i (1 = i = n). Otherwise, for some i,

Q(S;) = e(Ss/MSi) = [SE/A'ISI . A/M] =n; > E(Si)

which is a contradiction. It follows therefore from Theorem 2.8 that
(Sl ®A"'®A Sn)/A iS Simple.

Corollary 2.10. Let R/A be a G-Galois extension such that G is nil-
potent and G = Po,X P, X+ X P, where the P, are Sylow subgroups of G.
For each i (1 £ i< ), let S; be the fixring of P,+--P,_,P,,y+--P, in R. If
the (S;/MS;)/(A/M) are simple and non-trivial for all maximal ideals M
of A then so is R/A.

Proof. We see that R = S, ®,---®, S, and the rank,S, are relatively
prime. Hence the assertion is a direct consequence of Theorem 2.8.
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Now, let T/K be a G-Galois extension. Let K be a field and L an
arbitrary maximal subfield of T containing K. Then, by [4, Lemma 1.2],
any maximal subfield of T containing K is K-isomorphic to L. Given a
prime number p, p(7/K ) denotes a power p® such that « = 0, p?|[L: K]
and p®*' ¥ [L: K]. Clearly, if p(T/K) 1 then p|[L: K] and p is a
divisor of [T: K]. Next, let K= GF(q). [T: K] = p.®---p,® and [L:
K] =p®.p®. Thenp(T/K) = p,® (i = 1,..., n). Therefore, it follows
from Corollary 2.7 that T/K is simple and non-trivial if one of the fol-
lowing conditions is satisfied :

(a) p(T/K) # 1 and p,% < q#?d7F—_g2i™®0o: for all {(1 i< n).

(b) p(T/K) =#1 and (p;—1)/log.p;: = a; for all i (1 £ i< n).

Let A be a semi-local ring with the maximal ideals M, (1 £ i< m),
and R/A a G-Galois extension with |G| = p,®---p,% where the p; are dis-
tinct primes. We set here

Q=1j: |A/M,| <o, 1Zj<ml.

If Q is empty then R/A is simple by [4, Corollary 1.5 and Proposition
2.1]. Combining this and the above facts with the result of [4, Proposition
2.1], we obtain the following theorem under the above situation.

Theorem 2.11. Let R/A be a G-Galois extension.

(1) If Q is empty then R/A is simple.

(2) Assume that Q is non-empty. Set q; =|A/M,| and t;; = p((R/
M,R)/(A/M;)) (j€ Q, i=1,....,n). Then, R/A is simple and non-trivial
if one of the following conditions is satisfied :

(a) t, +1 and p,% < q,t—q,;%" for all i (1 = i< n) and all
jE€ Q.

(b) t;+ 1 and (p;—1)/logap; = a; for all i (1 =i = n)and all
JE Q.

3. Generating elements of Galois extensions of finite fields. The main
objects of our study in this section are Galois extensions of finite fields
with no primitive elements. We study conditions that a Galois extension of
a finite field can be generated by m elements for a positive integer m.

We first give a lemma in case of a trivial Galois extension.

Lemma 3.1. Let K = GF(q) and R/K a trivial Galois extension.
Then, R is generated by m elements over K if and only if 4(R) < q™.
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Proof. let m be an integer such that 4(R) < q™, and put s = ¢™.
Moreover, let S = K, ®.--® K, where K, = K(1 =i=<s). Since R is
a direct summand of S, if S is generated by m elements over K then so
does R. Hence, in order to show the “if” part of the lemma, it is enough
to prove that for S/K. As is noted in Remark 1.1, S/K is a cyclic (¢)-
extension where K = |(a,...,a): a € K{. We set T, = S(¢%) for i = 0,
1,....,m. Let 1 £i{= m and M an arbitrary maximal ideal of T;_,. Since
S/T,_, is Galois and S is semi-local, T,_, is semi-local and there exists
a maximal ideal M’ of S with M' N T,_, = M. Noting S = K (mod M’)
and T;_, D K, we obtain T;_; = K (mod M). Hence |T,_.,/M| = |K| = ¢
for all maximal ideals M of T,_,. Since T;/T,_, is a Galois extension of
rank g, T;/T,_, is simple by [4, Corollary 2.2]. Noting T, = S and T, =
K, we see that S/K has a generating system consisting of m elements.

To see the converse, we set r = (R) and R=K":=K®.-® K(r

times). Let R be generated by m elements z,,..., 2, over K. We first con-
sider K[2,] (1 = k<= m). Put zx = (c1,..., ¢;) (¢c; € K) and let {c},....
cs| be the maximal subset of {ci,..., ¢, | such that c; = ¢, if i+ j Itis
obvious that sx:= s < q. Then, 2z, = (¢, ..., cs) is an element of K¢ and

K[zx] = K[2%x] = K°(cf. [4, Theorem 1.4]). From this, we obtain
R) =< [Klz1,..., zn]) : K] = [(K[21] ®x+ O« K[2s]) : K]

= 8§83 5p = q™.

This completes the proof.

Theorem 3.2. Let K = GF(q) and R/K a Galois extension and t =
[R: K]/¥R).
(1) Let m be a positive integer satisfying the following inequality :

(R) = Ny(t)-q"™ v,

Then, R is generated by m elements over K.
(2) Assume that R is generated by m elements over K. Then,

4(R) = q'™.

Proof. Let L= GF(q%) and L™ denote the direct sum of n copies of
L for n=1. By Lemma 1.1, we may consider R = L"¥,

(1) Let m be a positive integer such that 4(R) < Ng(t)- g®™~ ",
Further, put © = No(¢) and v = ¢*™". Then, by Lemma 1.3, L* is gen-
erated by an element over K. Moreover, LY is generated by m—1 elements
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over L because of Lemma 3.1. Since R is a direct summand of L** =
L* ®, L*, R/K has a generating system consisting of m elements.

(2) Assume that R is generated by m elements over K, and so, over
L. Then, since R/L is a trivial Galois extension, our assertion is obtained
from Lemma 3.1.

We here study Galois extensions generated by 2 elements in particular.

Let p be a prime number, K = GF(q), R/K a Galois extension of rank
p™(m =1) and t = p™/#(R). Moreover, let L be a maximal subfield of
R containing K. Then, as a direct consequence of Lemma 1.3. we obtain
the following (a)—(c).

(a) Ift=+1 and &R) > (1/t)(q*—q'*) then R/K is not simple.

(b) Assume that t =1 and £(R) > q. Then R/K is not simple.

(e¢) If4(R)=(1/t)(q*—q'®) then R/K is simple. In case t = 1, if
2(R) = q then R/K is simple.

Even if R/K has no primitive elements as in (a) and (b), if {R) =
Ng(2)q? then R/K has a generating system consisting of 2 elements. In this
case, more in detail the following proposition holds.

Proposition 3.3. In the notation of the above, the following (1) and
(2) hold.

(1) If E is an intermediate field of L/K with E < L then, R/E is
simple if and only if ¢(R) = (k/t)(q*—q*®) for k = [E: K].

(2) R/L is simple if and only if 4(R) < q°.

Proof. Let E be an intermediate field of L/K and k = [E: K]. We
first note that L = GF(q*) by Lemma 1.1. Further, as is seen in Remark
1.1, a ring extension R/E is a Galois extension of rank ¢(R)#/k. Hence.
R/E is simple if and only if £(R) = Ng«x(#/k) because of Lemma 1.3.
Noting that if E =L then i/k = 1, we obtain the assertion from the def-
inition of Ng(t/k).

Remark 3.1. Under the hypotheses of Proposition 3.3, we see that if
¢(R) = q! then R/K has a generating system consisting of 2 elements in
which one is in L. At the same time, the proposition shows that if qf <
UR) = (1/t) (q*—q'?)q* then both generating elements of R/K must be
contained in R\L.

Finally, we present a theorem concerned with generating elements of
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Galois extensions of a semi-local ring. Let A be a semi-local ring and
{Mi,..., M, | the set of maximal ideals of A. Moreover, let R/A be a G-
Galois extension and, as in § 2, set @ =1j; |[A/M,| <o, 1 =j=<ml|
Then, by Theorem 2.11, if @ is empty then R/A is simple. Hence we
assume that Q is non-empty. Then we have the following theorem as a
direct consequence of Theorem 3.2 and [4, Proposition 2.1].

Theorem 3.4, Put q; = |A/M,| and t; = |G |/ R/M,R) (j € Q).
(1) Let m, be a positive integer such that

Q(R/MJR ) < qu( tj) . qjlﬂm_i—l)

Jor each j € Q. Then, R is generated by Max,co(m;) elements over A.
(2) If R is generated by m elements over A then, for any j € Q,

0(R/M,R) < q,u.

Corollary 3.5. Under the hypotheses of Theorem 3.4, assume that
|G| = p® with p a prime and @ = 1. Let m, be a positive integer such that

a tjm tyim;—1+1/p)
p g qu J__qj SR

Jor each j € Q. Then R is generated by Max,co(m;) elements over A.
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Added in Proof: The results of [4, Theorem 1.6] and Lemma 1.3
have been sharpened in “On primitive elements of Galois extensions of commu-
tative rings, ” Proc. 21st Symp. Ring Theory (Hirosaki Univ., Hirosaki,
1988), 14 —20 (with T. Nagahara). The details and other assertions will
appear lately.



