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Throughout this paper. all rings will be assumed commutative. and all
Galois extensions will mean Galois extensions in the sense of [1]. More-
over, A will mean a commutative ring with identity element 1, and all ring
extensions of A will be assumed with identity element 1, the identity element
of A. If A contains only finitely many maximal ideals then A will be called
a semi-local ring. A ring extension B/A will be called to be simple if B is
generated by a single element over A. that is, B/A has a primitive element.
A Galois extension B/A will be called to be trivial if B is A-algebra
isomorphic to a direct sum A & A ®---® A. A G-Galois extension will be
called an abelian (resp. cyclic) G-extension if G is abelian (resp. cyclic).
Furthermore, a G-Galois extension B/A will be called to be of Kummer
type (abbr. of K-type) if |G| = n € U(A) and A contains a primitive n-th
root £ of 1 with 1—¢* e U(A) for i =1,.... n—1, where |G| is the
order of G and U(A) is the set of the units in A.

In [4], [5] and etc, the authors made some studies on primitive ele-
ments of Galois extensions in several angles. In this paper, we shall make
a study on the simplicity of Galois extensions, the construction of primitive
elements, and the cardinality of the set of primitive elements. § 1 con-
cerns with primitive elements of Galois extensions (rings) of a field. and
so, A will mean a field throughout this section. The study is one maked
on a connection of primitive elements and maximal subfields in Galois exten-
sions of A. In [15], J. -D. Thérond made a study for separable extensions
of a semi-local ring. In § 2. the first half contains some preliminary
results for our studies in the subsequent section, some of which are dis-
cussions made on [15]. This contains such a result as all Galois extensions
of a semi-local rings of K-type are simple. The latter half is devoted to
some characterizations of primitive elements of Galois extensions over
a complete Noetherian local ring which contains some generalizations of § 1
to such Galois extensions, and this also may be taken as a continuation of
G. J. Janusz [3, § 3]). In § 3. we consider a tensor product B of Galois
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extensions of a semi-local ring A and an abelian extension B/A of K-type
in order to prove that B/A has a special type of primitive elements which
are closely related to the Galois structure of B/A, provided | A/M| =
(rank,B)?/2 for all maximal ideals M in A. For these purposes, we shall
treat A mainly as a semi-local ring in § 2 and § 3.

In what follows, for “a set E, a ring B, a subset C of B, a group G
of automorphisms of B, a subset S of G, and an A-module M”, we shall
use the following conventions :

| E| = the cardinal number of E,

{S) = the group generated by S,

S| C = the restriction of S to C,

BS=1{be B; ob) = b for all ¢ € S|,

Ge=1loe€ G; olc) = c for all ¢ € Cl,

U(B) = the set of all the units in B,

U B) = the length of composition series of B-module B,

[M: A] = the rank of A-module M if A is a field,

rank,M = ¢ if M, is projective, finitely generated, and rank, M, is
of constant ¢ for all prime ideals p of A where M, is the localization of
M, at p.

1. Simplicity of Galois extensions of a field. In this section, we
shall study necessary and sufficient conditions of the simplicity for a Galois
extension of a field by using its maximal subfields. For this discussion,
let A denote a field throughout this section.

The next lemma can be proved by making use of the same methods as
in the proofs of [3], [10, Lemma 10] and [16]. However, for the conve-
niences, we shall here present a direct proof.

Lemma 1.1. Let C be a local ring. Let B/C be a G-Galois extension,
and E the set of primitive idempotents of B. Then, E is non-emply and G
is transitive on the set E. Moreover, for any e, c € E, G.|eB= G. = G,
| Ge| |E| = | Ge| dB) = | G| and eB/eC is (G| eB)-Galois. Hence B is
C-algebra isomorphic to a C-algebra 3 [_,® B; such that B, = B, (1 < i
< r), B./C, is H-Galois, C = {(a,, a1,.... a,) ; a, € C\|, and B, has no
proper idempotents. When this is the case, H= G, for any e € E. If, in
particular, C is a field then B, is also a field, and r = #(B).

Proof. Let M be a unique maximal ideal of C. Then MB is contained
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in the Jacobson radical of B. Hence, there are no non-zero idempotents
in MB. As is easily seen, the factor ring B/MB is a Galois extension of
a field C/M, and whence this is a semi-simple ring. Noting those facts,
one will easily see that B has no infinite chains of idempotents. Thus, E
is non-empty. Now, let e € E, and set

lole); o€ Gl =laile) = e, = e. ale) = e,..... o.(e) = e}
where ¢, is identity, and e; & e; for each i %= j. We shall here set
f=e++e.

Since the e, are orthogonal and o(f) = f for all s € G, we have f=1,
the identity element of C C B. Hence {g(e) : ¢ € G} coincides with E.
Moreover, each Be; is a separable Ce;-algebra in the sense of [1] and [3]
(and if, in particular, C is a field then so is each Be,). Next, we consider

K = G.,. B*N Be,. and H = K| Be,.

Obviously 7 coincides with the index of K in G. Now. for any element
a, € B*¥ N Be,, we set

a,=o0fa) (1 £i<7r) and a = a,+---+a,.

Let o be an element of G. For any i (1 < i< 1), if ole,) = ¢ (1 < j
< r) then ¢;'co(e;) = e;. and so. o7 'soa,) = a, which implies o(a;)
= a;. It follows that ¢{a) = a for all ¢ € G, and so, a € C. Hence a,
= ae, € Ce,. Therefore, we have B¥ N Be, = Ce,. Moreover, for ele-

ments Xxy...., Xm, Yire-er Ym in Bwith 2% x,0(y;) = 81.0(c € G). we have
91251‘.“((3’1) = Zielxif(elyi) = ed.c(r € K).

where &, . means the Kronecker's delta. Thus, it follows that Be,/Ce,
is an H-Galois extension with H = K| Be,. and |H|r = (rank, Be)r =
rankceB = |G| = |K|r. Obviously H= K and r = #&(B), completing the

proof.

Lemma 1.2. Let B/A be a Galois extension of rank n. Let F be the
set of maximal subfields of B containing A, and |e,...., e,| the set of prim-
itive idempotents of B. Then, |F| = (n/2(B))*®"'. Moreover, for any
LeF, B=Le,® -®Le,, L=Le,=Be,(1<i=<r) [L:A4] =
n/O(B) and L/A is Galois.

Proof. By Lemma 1, we have
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B = Be, ®---&@ Be,

where Be, is a field which is a Galois extension of Ae, and this is A-
algebra isomorphic to each Be, (1 < i £ r). Let K be an arbitrary subfield
of B containing A. Then, for each i, there exists an A-algebra isomorph-
ism Ke, » Ke, C Be, (ke, —» ke;, k € K), and this can be extended to an
A-algebra isomorphism

7;: Be, > Be;

since Be, is a Galois extension of Ae,. From this, one will easily see

that K is a subfield of
T(z...... rr) = b+, tb) 1 b € Be,l.

If K € F then we have K = T(r,...., r.). Therefore, it follows that |F|
= (n/r)""'. The other assertions will be easily seen.

Remark 1.1. (1) Let N be a group of order r, and N={v, =1,
V3,..., ¥-|. We consider here a representation 7 of N into the symmetric
group S, on the set |1,..., | given by vp.o = vy, (i =1,...,7), v €N.
Let C be a ring with identity 1, and S = C, @---@ C, where C,=C
(1 i< r). Moreover, let ¢,=1(0,...,0,1,0,...,0) (1 € C,) for i =
1,.... 7. Then, for a composition NX S — S defined by

W cie) = 2lcienmn (c; € C 1 S i 7).

we shall prove that S/C is an N-Galois extension where C = {(c,..., ¢) :
¢ € C|. Since »(N) is transitive on the set {1,..., r|, N is also transitive
on the set le...., e,J. Hence we have S*= C and Y I_,e;v(e;) = 8,,.
(v € N). Hence S/C is an N-Galois extension of C. Now. let T be an
H-Galois extension of C. Then T ®. S is an (Hx N)-Galois extension and
T®S=T®--® T (r times). Hence. in particular, for any field H-
Galois extension L/A and for any finite group N, there exists an (Hx N)-
Galois extension B/A with B D L O A such that L is a maximal subfield
of B containing A and 2(B) = |N]|. )

(2) If B/A (i =1, 2) be G;-Galois extensions of rank n with B; D
L D A such that L is a maximal subfield of B; (i = 1, 2) then, by Lemma
1.1 and Lemma 1.2, B, and B, are A-algebra isomorphic (even for G,
+ G,).

(3) Let B/A be a Galois extension. If B has a maximal subfield L
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containing A which is a cyclic extension of A then we can choose a cyclic
group as a Galois group of B/A because of Lemma 1.1, Lemma 1.2 and
[11. Lemma 1.1]. Hence. in case that A is a finite field, we can consider
the Galois extension B/A as a cyclic extension.

Now, for the convenience. we shall here present the following lemma
whose result is contained in [9].

Lemma 1.3 ([9, Theorem 3.3 and Theorem 3.4]). Let B be a G-
Galois extension over a ring C with rankcB = n, and b an element of B.
Then, b is a primitive element of B/C if and only if b—o(b) € U(B) for
all 0 += 1 in G. When this is the case, |1. b, b*,..., b™ '} is a free C-basis
of ¢B.

Given a field extension E/A of degree m < oo, by I,(E), we denote
the set of monic irreducible polynomials g in A[X] of degree m with g{a)
= 0 for some a in E. Then, it is obvious that E/A is simple if and only
if I,(E) is non-empty.

Now, we shall prove the following proposition which is a special change
of ones in [2], [3) and etc. : however, this is useful in our study and
lately the result will be generalized to the case that B is a Galois exten-
sion of a complete Noetherian local ring (Theorem 2. 6).

Proposition 1.4. Let B/A be a G-Galois extension. Let L be an
arbitrary maximal subfield of B containing A, and le,...., e;| the set of
primitive idempotents of B. Then, there hold the following (1) and (2).

(1) Assume that B/A has a primitive element b. Then |1,(L)| =
2(B) = r. Moreover, there exists a pair of a subset |b,,.... byl in L and
a subset | fi,.... fr| in L{(L) such that f, & f; for each pair i + j (1 < i,
i), f(b) =0 fori=1....,r, and

b=be+--+bre,.

(2) Assume that |I,(L)| = 2(B) = r. Let |g\,..., g-| be a subset
of 1.(L) with g, + g; for each pair i %= j{(1 < i, j < r). Then, for any
subset | c,...., crl of L such that glc;) =0 for i = 1,..., r, the following

c= e+ +crer

is a primitive element of B/A, and 1], 8 = Moec(c—o(c)).
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Proof. By Lemma 1.2, we have
B=Le & ® Le,.

(1) Let b be a primitive element of B/A. Then
b=be+ --+bre,

where b, € L for i =1,..., r. Let f, be the (monic) minimal polynomial
of b, over A so that f;(b;) = 0. We set here

v Sl =1, wil, and v = wupe-ouy
where u; #+ u, for each pair i %= j(1 < i, j<t). Then r 2 ¢t and
ub) = . u(b)e, = 2 ulbe) e, = 251, u(b) e, = 0.

Let m=[L: A]. Then [B: A] = mr. Hence by Lemma 1. 3, {1, b,...,
b™"'l is a free A-basis of ;B. Since u{b) = 0, it follows that degu =
mr. On the other hand, we have degu = ))}_,degu, and degu, < m for
i=1,..., 1. Therefore, it follows that » = ¢, and degu, = m for i =1,
.... 7. This implies that f; € I,(L) for i=1,..., r.

(2) We assume that |1,(L)| = &(B) = 7. Let |Ig...., g} C I.(L)
with g, = g; for each pair i+ j(1 <i, j<7r) and |c,..., ¢,;| a subset
of L such that g,(¢;) =0 for i =1,..., . We set here

c=ce+-+cres.
Then, for g = II].,g:. we have

A[X]/gA[X] = A[X)/2, A[X] ®---® A[X]/g-A[X]
=~ Ala]ei+...+Alcr-Je, = B

where X+ gA[X] corresponds to c¢,e;+---+cre,. Hence c¢ is a primitive

element of B/A. Moreover, we have g{c) = 0. Now, we set h = [[,ee(X
—o(c)). Thenh e A[X] and A(c) = 0. By Lemma 1. 3, elements 1, c,...,
mr-1

c are linearly independent over A. Since degh = | G| = mr = degg.
it follows that h = g.

Now, let B/A be a Galois extension which is simple and with 2(B)
= 7. Moreover, let L be a maximal subfield of B containing A. In the
rest of this section, by P(B/A), we denote the set of primitive elements
of B/A. Given any b € B, by f(X: b), we denote the monic polynomial f
of minimal degree so that f{) = 0. Further, by S(I,(L)"), we denote the
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set of polynomials f= II[.,f; such that f...., f, € I,(L) and f; + f, for
each pair i+ j (1 i, j< r).
In virtue of Proposition 1. 4. we obtain the following

Corollary 1.5. Let B/A be a Galois extension.
(1) (cf. [3. Lemma 3.1])
(a) If |A| = oo then B/A is simple.
(b) If A is of characteristic 0 then B/A is simple.
(2) Let [B: Al =n, &B) = r, and L a maximal subfield of B con-
taining A. If B/A is simple then
(a) 1AX:b); be P(B/A)| = S(I.(L)").
(b) For any b € P(B/A), f(X; b) = Hoec(X—a(b)).
(¢) For any fe S(I.(L)"), |Ib € P(B/A); flb) =0} =
(n/7r)7r! .

Let A be a finite field with |A| = q. and B/A a Galois extension of
rank n with + = @(B) which contains a maximal subfield L containing A.
Then L is isomorphic to GF(¢g™7"). Hence, we denote this Galois extension
B/A by GE(q, n, r). Moreover, I,(L) coincides with the set of monic
irreducible polynomials in A[X] of degree [L: A]. Hence. we denote
I,(L) by I,(m) where m = [L: A). Further, we denote |I,(m)| by N (m)
which is as in [7]. By [7. Theorem 3. 25], there holds that

(%) No(m) = (1/m)Xajm el d) g™
where g is the Moebius function, that is,
1 ifd=1,
uld) = {(—=1)* if d is the product of k distinct primes,
0 if d is divisible by the square of primes.

Next, we shall prove the following theorem which is about primitive
elements of Galois extensions over a finite field.

Theorem 1.6. Let A = GF(q) and B = GE(q. n. 7).
(1) (a) B/A is simple if and only if r (= 8(B)) < No(n/7).
(b) If B/A is simple then

E\'q(rrt/r))

P(B/a)| = (n/7)7r1.

(2) Let r < n and n = z" for some prime z and some integer k.
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(a) B/A is simple if and only if n < q¥"—q™"'"?, and this is
equivalent to that there exists a maximal subfield L of B containing A such
that ([L: A] = c(q, 2. n) where c(q, z, n) = z-logqx, for the root x, of the
equation X*—X = n on (1, oo).

(b) If B/A is simple then

|P(B/A)| = ((T/”)(qﬂr_"m}))(n/r)’r! .

r

(¢) If B=GE(q, n,s) and No(n/s) = s > r then
(i) If n+ 2 then |P(B/A)| < |P(B/A)|.
(ii) If n=2 then |P(B/A)| = | P(B/A)]|.

Proof. The assertion (1) follows immediately from the result of Prop-
osition 1.4. Now. we shall prove (2)a). By (*) and (1). we see that
B/A is simple if and only if r < (#/2)(¢¥"—q™"?). Setting x = ¢,
this inequality is equivalent to that n < x*—x. Since f{X) = X*—X is
strongly monotone-increasing on (1, oo}, it follows that n < x*—x if and

Mz — x > x, for the root x, of the equation X*—X = on

only if ¢
(1, co0), which is equivalent to that n/r = z-log,x,. This shows (2)(a).
The assertion (2)(b) is a direct consequence of (1)(b).

Next, we shall prove (2)(c).

(i) Let n+2. Put n= 2*=ur = vs, and let x = Ny(u) and y
= Ng(v). Then x = (1/u)qg*—q%¥?), and y = (1/v)(g"—q"?) if n > s,

and y=q if n=3s. Since y = s, vy =2 vs = n = ur. Hence

u/z

uxr—ur = ux—vy = q¥—q¥*—q" = q*—2¢

Moreover, we note that the following inequality holds : For a, b, t = a+
1 € N and (a, b) = (1, 1),

t°—1 t*—2
* = 1.
(+) (t—a)® > (t—a)®
(Because f'(t) =0 (t = a+1) and fla+1) =0 for f(t) :=t*—2—(t—a)®).
Case 1. s < mn: Since r < s, s = rd and u = vd for some integer
d = z. Let v/z2 = a. Then we have

P(B/A)  x{x—1)---(x—r+1)u" (x—7)"u" _ (ux—ur)”

P(B/A)  yy—1)--(y—s+1)»° yvs o (vy)®
(qu__zqu/z)r _ (qadz_zqad)r
(qv_qv/z)s (qaz_ qa)rd
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adj .ad.z-1) T z-11|d T
z[q%q —2%]:[{q“ ’I—Z] =1

g r_1}e [¢®*V_1} (by (xx)).

Case 2. s=mn: Firstlet r=1. Thenn=s =u. Let v/z = a.
If a(z—1) =1 then a=1 and z= 2 because a, z € IN. This implies
that n = ru = rza = 2, which is a contradiction. Hence a{z—1) = 2.
Thus we have

P(B/4) _ q"—q"* > q*°—q°
P(B/A)  qlg—1)---(q—u+1) ~ ¢°(g—a)---(g—u+1)
. qmz-“_l qwiz—l)__l
 (g—a)-(g—u+1) = (g—a)*°
= (by (+).
(g—a)®="

Next let r = 2 and let u/z = a. Then, by the same ways as in the above,
we have

P(B/A)  xlx—1)--Ax—r+1)uw"  xulzu—u)--(xu—rutu)

P(B/A) qglg—1)--(g—s+1) a(g—1)---(g—s+1)
— xu . (xu—u)---(xu—ru+u)
olqg—1)--(g—u+1) (g—u)-(g—s+1)
> q*—q*'* (wu—ru)™!

glg—1)---(g—u+1) (g—u)*®
qmz—n_l (qu_zqu/z)r-l

Z T (o
=1 k] (by ()
i = T = I

(by (xx)).

(ii) Let n=2. Thenn=s=2=2 = ru. It follows from s > 7
that r =1 and u = 2. Hence we obtain

P(B/A) = No(2)-2 = g'—q = (g)-z — P(B/A).

2. Simplicity of a Galois extension of a semi-local ring. The follow-
ing proposition is fundamental and useful in the next section. Some part
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of this proposition is proved by making use of the same methods as in one

by J.-D. Thérond [16, pp. 33 —34].

Proposition 2.1. Let A be a semi-local ring with {M,, M,,.... M| the
set of maximal ideals in A and let B/A be a Galois extension. Then, B is
generated by r elements over A if and only if each B/M,B is generated by
r elements over A/M,(i = 1,..., m). When this is the case, if |z;+M,B;
j=1,....rl is a generating system of (B/M;B)/(A/M,) for each i then
there exist elements a,...., an in A such that {23 ay2y7 j=1,...,7} is
a generating system of B/A.

Proof. We first note that, as is well-known, each (B/M,B)/(A/M,) is
a Galois extension. Clearly, if B is generated by r elements over A then
each B/M;B is generated by r elements over A/M, (i =1,..., m). We
shall prove the converse.

LetI=MNMnN---NM,and J =M BN MBN---N M,B. Then,
as in Demonstration in [15, p.33], I= A N J and M;B4+M,;B= B(i + j),
and whence, there exist an isomorphism ¢ and elements a,, a,,..., ap in 4
such that

¢
B/J = B,:= B/M\B® B/M,B&---& B/M,B
) i) ) T T
A/I;> An:: A/Ml @& A/Mz DD A/Mm

and ¢(a;+J) =(0....,0,1+M;B,0,...,0) (1 <i<m). Now, assume
that each (B/M,B)/(A/M,) has a generating system {2z, +M,B; j=1,...,
rl. Moreover, set z, = >\, a;2; and zo; = ¢(2z;,+J) (1 < j< 7). Then,
25 = (2, +M B, 2, +M,B,..., 25;+M,B) and Aflz,; j=1,..., 7l] =
B,. Hence, for E=1{z; j=1,..., rl, it follows that A{E]+J = B and
so A[E]+M,B= B(1 <i<m). This means that A[E] = B (cf. [13,
p. 181, Lemma 1]), completing the proof.

The following corollary is obtained as a direct consequence of [15,
Theoreme de l'element primitif]. We here prove it by the result of Theo-
rem 1. 6.

Corollary 2.2. Let A be a semi-local ring and B/ A a Galois extension
of rank n. If | A/M| = n for all maximal ideals M in A then B/A is
simple.
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Proof. Let M be an arbitrary maximal ideal in A. Then, (B/MB)/
(A/M) is a Galois extension of rank n. Let q = |A/M| and t = n/
#(B/MB), and assume that ¢ = n. Noting that if GF(q*) = GF(q)[«] then
GF(q") = GF(q)[a+a] for any a in GF(q), one will easily see that
| P(GF(q")/GF(q))| = q and t-Ng(t) = q. It follows that ¢(B/MB) = n/t
< q/t < N,(t). Hence, (B/MB)/(A/M) is simple by Theorem 1.6, and
so, B/A is simple by Proposition 2. 1.

Corollary 2.3. Let A be a semi-local ring and B/ A a Galois extension
of rank n. If A contains n-elements a,, a,...., a, such that a,—a, € U(A)
Jor all i and j (1 < i+ j < n) then B/A is simple.

Proof. Let a; be as in the statement of the corollary. Then, for any
maximal ideal M in A, we see that

a,—a; € ULA/M) for any pair i = j (1 < i, j<n)

where @; = a,+ M, which implies that | A/M| = n. Therefore, by Corol-
lary 2.2, B/A is simple.

Proposition 2.4, Let A be a semi-local ring. If B/A is a Galois
extension of K-type then B/A is simple.

Proof. Let n=[B: A] and ¢ a primitive n-th root of 1. Then,

UA) 31,6 g™ 12t (1 < i< n-1).
Hence we see that for any pair (i, j) (0 < i j<n—1),
¢=¢ = (1=¢ %) e U(A).

It follows from Corollary 2.3 that B/A is simple.

Corollary 2.5. Let A be a semi-local ring and B/A an abelian G-
extension of K-type. Then, for any subgroup H of G, B"/A is simple.

Proof. Let n= |G|, r = |H| and s = |G/H|. Moreover, let ¢ be

a primitive n-th root of 1. Then, ¢ is a primitive r-th root of 1, and
{1—(¢%)': i =1....,7—1}1 C U(A). Hence B"/A is an abelian extension
of K-type. Therefore B¥/A is simple by Proposition 2. 4.

Example 2.1. Let
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B = GF(2%) @ GF(2*) @ GF(2%),
A =|(a, a a): a e GF(2)}

and 7 an automorphism of GF(2*) of order 4. Then we have automorphisms
o and p of B such that

0'((-751- XLz, Ia)) = (.133, X, .rz) and
p((xlv Xa, x3)) = (z(x), 7(xp), T(Ia))-

Then B/A is an abelian (o) X {p)-Galois extension. which is not of K-
type. Clearly B® = GF(2) @ GF(2) @ GF(2). By [7], we have N,(4)
= 3. Hence, by Theorem 1.6. B/A is simple. However, B°/A is not
simple by the theorem.

In the rest of this section, we study the simplicity of Galois extensions
of a complete Noetherian local ring. We write A = (A, M) (resp. (4, M. *))
if A is a local ring with a unique maximal ideal M (resp. which is
Noetherian and complete). By A, we denote the factor ring A/M, and given
an element f in A[X]. by f, we denote the image of f under the canonical
homomorphism A[X] — A[X]. A polynomial f in A[X] will be called to
be separable if f is monic and A[X]/(f) is a separable A-algebra where
(f) = A[X]f. Moreover, given a ring extension B/A, an element b of B
will be called to be a separable element of B over A if b is a root of some
separable polynomial of A[X].

First, for the reader’s conveniences, we shall present a remark on
local rings which is useful in the subsequent study.

Remark 2.1. Let A = (A, M), and f,. f, monic polynomials in A[X].
By &(fi), we denote the discriminant of f; in the sense of [9. p. 152].
Moreover, the ideals (f;) and (f;) of A[X] will be called to be comaximal
if (f)+(£) = A[X]. Then o

(1) (A +(fh) = A[X] if and only if (£)+(f) = A[X].
In fact, the part “only if” is obvious. To see the converse, we assume

that (f:)-.‘—(f,) = A[X]. and set

B, = A[XV/(f). b = X+(f) (i = 1. 2),
B=B @ B, and b = b+,

Then
B/MB = B,/MB, & B,/MB,.
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Moreover, one will easily see that B/MB = f_l[l;] Hence B = A[b] +MB,

and so B = A[b]. From this. we see that the canonical homomorphism

¢: A[X]/(/f) - B

is surjective. Clearly, A[X]/(fif) and B are projective over A and
rank,(A[X]/(f, £)) = rank,B. Hence ¢ is an isomorphism. This implies
that the ideals (f) and (f;) of A[X] are comaximal.

(2) By [9. Theorem 2.1]. we have that

fi is separable over A <> é:(f]) e UA) = ﬁ(ﬁ) e U(A)
<> f, is separable over A.

(3) By (1) and [9, Theorem 2. 2]. we have that

fify is separable over A<= 8(fif,) € U(A) <= &(f.f,) € UA)
<> (f)+(f) = A[X] and 6(f) € UA) (i =1.2)
< () + (L) = A[X] and 6(f,) € UA) (i=1.2)
<> (i) +(f2) = A[X] and the f, are separable over A.

Next, we shall prove the following theorem which is a generalization
of Proposition 1. 4 (and Lemma 1. 2 given for fields) to complete Noetherian
local rings. For the proof, we shall frequently use the results of G. J.
Janusz [3] which play essential roles.

Theorem 2.6. Let A = (A, M. *), and B/A a G-Galois extension of
rank n. Let F be the set of maximal local subrings of B containing A which
are separable over A, and le,,.... e;| the set of primitive idempotents of B.
Then

(1) |F| =®/r)™", and for any L € F,

B=Le, ®® Le, with L= Le;,= Be, (1 <i<r),

ML is a unique maximal ideal of L, und L/A is a Galois extension.
(2) Let L be an arbitrary element of F.

(1) Assume that B/A has a primitive element b. Then|1;:(L/ML)|
= r. Moreover, there exists a pair of a subset | b, ..., byl in L and a subsel
| fiennn, fit in A[X] such that

(a) fiels(L/ML) (1 <i<r),
(b) fi+f for each pair i = j (1 < i, j < r),
(¢) flb)=0(1<i<r) and
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b=b el+“'+b'rer-

(ii) Assume that |Ii(L/ML)| = r. Let lgi...., g} be a subset
of A[X] such that
(a) gieli(L/ML)(1 <is 1),
(b) g, & for each pair i + j(1 < i

ST
Let |c,..... c;| be a subset of L such that g,(c;) = 0 (i

1,..., 7). Then

Il

c=ce+-+crey

is a primitive element of B/A.

When this is the case, for each i (1 < i < r), there exists an element
h, in A[X] such that h; is monic, h, = g, and hic;) = 0. Moreover, for
such the h,’s, there holds that TII_,hi = Moec(X—alc)) =: f, ALX]/(f)
= B (as A-algebras), and f is separable over A.

Proof. (1) By Lemma 1.1, we have that
B = Be, &---® Be,,

A = Ae, (a > ae,) and Be,/Ae, is a Galois extension. Since A = (A4, M, *)
(a complete Noetherian local ring) and Be, has no proper idempotents, Be,
is a local ring with a unique maximal ideal MBe,. Moreover, since G is
transitive on the set {e,...., e,;], Be, is A-algebra isomorphic to each Be,
(1 i< r). Now, let S be a local subring of B containing A which is
separable over A. Since each Se; is separable over Ae;, it is projective
over Ae; by [3, Proposition1.5] (1 < i < r). Hence, by [3, Lemma 1. 6],
we have A-algebra isomorphisms S — Se; (s - se;), i =1,..., r. Since
the Be;/Ae; are Galois and the Be, are local, it follows from [1, Theorem
2.3] and [3, Lemma 1.3 and Corollary 1. 8] that each isomorphism Se, —

Se, (se, » se;) can be extended to an isomorphism
7;: Be, > Be;.
Hence S is a subring of the ring
T(zy.... 7,) = 1+, 7b) ; b € Bel.

If S € F then we have S = T(r,,..., 7r). Moreover, as is easily seen,
the cardinality of the set of A-algebra isomorphisms of Be, to Be, coincides
with n/r (1 < i = r). Therefore, it follows that |F| = (n/7)""'. The
other assertions in (1) will be easily seen.

(2) Let L € Fand m = n/r (= rank,L). Then by (1). we have that
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B=Le,®® Le,, Le, = L (1 <i<r), and
B/MB = (L/ML)e, ®---® (L/ML)e,
= L/ML &---@® L/ML (r times)

which is a Galois extension of a field A (= A/M), where & = e,+MB
(1 £i<r). Moreover, by Lemma 1.2, L/ML is a maximal subfield of
B/MB containing A.

(i) We assume that B/A has a primitive element b. Then, we have

b=be+--+bre,

for some elements b, of L. It is obvious that A[6] = B/MB. Hence, by
Proposition 1.4(1), there exists a pair of a subset |d,,..., d,} in L and
a subset | fi,..., fr] in A[X] such that the f; satisfy the conditions (a) and
(b) of (i), f(d)) =0(1 <i<r), and
E - alél‘f_"'—f_c_zrér.

Since b = b,8,+---+b,é,and b;,d; € L/ML (1 =i < r), it follows that
b,=d; (1 i = r), and this implies the assertion (i).

(ii) We assume that |I;(L/ML)| = r. Let |g,..., g/} (C A[X])
and {c,..., ¢} (C L) be as in the (ii) of our theorem. Since L/ML is

a maximal subfield of B/MB containing A, for ¢ = c,e,+---+cre,, it fol-
lows from Proposition 1. 4(2) that A[¢] = B/MB. This implies that

Alc]4+MB = Band so A[c] = B.

Thus, ¢ is a primitive element of B/A. Now, since g, € I:(L/ML) and
g(c) =0(1 <i<r), it follows that Al¢,] = L/ML (1 < i < r), that

is,
Ale]J+ML =L and so Ale;] =L (1 i< r).
Combining this with Lemma 1.3, we obtain
L=A@Ac;® @ A" (1 i)

Hence, for each i, there exists a monic polynomial h; of degree m with
hi(c,) = 0. Noting [A[c,]: A] = [L/ML: A] = m, elements 1, &, (&,)?,
.oy (€)™ " are linearly independent over A. Since k/(¢;) = z,(c) = 0 and
degh, = m = degg;, it follows that b, = g,(1 < i < r). Next, we set h =
II-.k; and f= MMocc(X—o(c)). Then A(c) = 2lih(c)e, = 2{=1h(6i)ei
=0 and f(¢) = 0. By Lemma 1.3, elements 1, c, c%..., ¢*' (n =
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rank,B) are linearly independent over A. Hence, noting degh = n = deg f,
we obtain h = f. Moreover, we have A[X]/(f) = A[c] = B (as A-alge-
bras) by Lemma 1.3 and [9, Lemma 2.2]. Since B is separable over A,
so is f by the definition of separable polynomials.

As a direct consequence of Theorem 2.6, we obtain the following
corollary which contains the result of Corollary 1.5(1) and a partial result
of [3, Lemma 3.1].

Corollary 2.7. Let A=(A, M, *), and B/A a Galois extension. Let
L be an arbitrary maximal local subring of B containing A which is separable
over A. Then, the following conditions are equivalent.

(a) B/A is simple.

(b) (B/MB)/A is simple.

(¢) [I(L/ML)| = (rank,B)/(rank,L).

Let A= (A, M). A polynomial fin A[X] will be called to be decom-
posable (resp. indecomposable) if f= f,f, in A[X] of degrees =1 (resp.
if fis not decomposable). Moreover, by X,, we denote the canonical iso-
morphism A[X] —» A[X]. Now, let S be a local ring which is a Galois
extension of A of rank m. Then, for the unique maximal ideal M of S,
we have that rank;(S/M') = m = rank;(S/MS) which implies M = MS.
By 1,(S), we denote the set of monic indecomposable polynomials fin A[X]
of degree m with f{c) = 0 for some separable element ¢ of S over A. In
addition, let A = (A, M, *). By T(S). we denote the class of all Galois
extensions of A each of which has a maximal local subring L containing A
which is separable over A such that L = S (as A-algebras).

Under this situation, we have the following theorem which contains
some part of corollary 1.5(2).

Theorem 2.8. Let A = (A, M, *), and S a local ring which is a Galois
extension of A. Then
(1) x4(1.(8)) = 14(8/MS), and for any f in 1,(S), A[X]/(f) =S
(as A-algebras),
(2) Let B/A be a Galois extension. Then, the following conditions
are equivalent.
(a) B/A e T(S), and B/A is simple.
(b) Bz= A[X])/(fi fo---f) (as A-algebras) for some finite number
of fi’s in 1,(S) such that x,(f;) are distinct to each other.
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Proof. (1) Let f&€ I.(S). Then f{c) = 0 for some separable ele-
ment ¢ in S over A. Since S has no proper idempotents and A[c] is
separable over A, S is Galois over A[c] by [1. Theorem 2. 2]. Hence,
by [9, Theorem 3. 4], there exists a monic polynomial g in A[X] such that
deg g = rank,A[c] and g(c) = 0. This implies that g is a divisor of f.
Therefore, it follows that rank,A[c] = degg = degf = rank,S, and so
Alc] = S. Moreover, we have deg f = deg f = rank,S = rank;(S/MS) =
rank;A[¢] and ) = 0. Hence fl= x.,(f)) € I:(S/MS) and A[X]/(f) =
S (as A-algebras) by Theorem 2.6. Next, let f € I;(S/MS). Then f(¢)
= 0 for some ¢ € S. Hence, by Theorem 2.6, there exists a separable
polynomial h in A[X] such that 2 = fand h(c) = 0. Then degh = degh
= deg f = rank;(S/MS) = rank,S. Since % is indecomposable in A[X],
so is h in A[X]. Hence h € 1,(S) and ¥,(h) = f. Thus, we obtain that
Ki(14(S)) = I:(S/MS).

(2) (a)=>(b): We assume (a). Let L be a maximal local subring
of B containing A which is separable over A. Then, by Theorem 2.6,
there exists a subset | A,,.... h,l in A[X] such that each A, is monic, &, €
[z(L/ML), hic;) = 0 for some c; in L, and B = A[X]/(h, h,--h,) (as A-
algebras). Then degh; = degh; = ranks(L/ML) = rank,L. Since each A,
is indecomposable in A[X], so is h; in A[X]. Hence, it follows that &,
L) (1 =i<7r) Since L= S (as A-algebras), we obtain the asser-
tion (b).

(b) = (a): We assume (b). Then, it is obvious that B/A is simple.
By Remark 2.1, the ideals (f;) of A[X] are pairwise comaximal. Hence
we obtain B = A[X]/(fi f---f) = AIX)/(f) & AXV/(f) =S &
S (r times) (by (1)). Therefore, it follows from Theorem 2.6(1) that
B/A € T(S), completing the proof.

As an addition, we shall prove the following corollary whose proof
owes essentially to the result of G. J. Janusz [3. Theorem 4. 6].

Corollary 2.9 (cf. [3, Theorem 4.6)). Let A = (A, M, *). Let ¥ the
set of A-algebra isomorphism classes of all Galois extensions of A, and
F the set of A-algebra isomorphism classes of all Galois extensions of A.
Then, there exists a one-to-one correspondence @ : ¥ - F; W: F - L such
that ¥ =1, Ud =1, and

(a) for Be [B] € & ®(B]) = the class of L/ML &---&® L/ML
(r times) where L is any maximal local subring of B containing A which
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is separable over A, and r = (rank,B)/(rank,L) ;

(b) for Ce [C] € &, W([C]) = the class of L ®---® L (r times)
where for any maximal subfield E of C containing A, r = (rank;C)/(rank;E),
and L is a local ring containing A which is Galois over A such that L/ML
is A-algebra isomorphic to E.

When this is the case, W([C]) contains simple extensions of A if and
only if [C] contains simple extensions of A.

Proof. Let S be a projective, separable A-algebra without proper
idempotents such that (S/MS)/(A/M) is a Galois extension. Then, S is
a local ring with a unique maximal ideal MS. By [3, Theorem 1.1], S/A
can be imbedded in a G-Galois extension T/A without proper idempotents.
Then, T is also a local ring with a unique maximal ideal MT. Moreover,
G = G|(T/MT), and (T/MT)/(A/M) is. a G|(T/MT)-Galois extension.
We set H=Gs (=o€ G; ols) =s for all s € S|). Then |H| =
ranksT = rankus;(T/MT). Hence (T/MT)/(S/MS) is a H|(T/MT)-
Galois extension. Since (S/MS)/(A/M) is a Galois extension, H|(T/MT)
is a normal subgroup of G|(T/MT). Hence H is also a normal subgroup
of G. Thus, S/A is a Galois extension. Moreover. by Remark 1.1(1),
we see that any finite direct sum S of copies of S is a Galois extension
of A. Further, S is A-algebra isomorphic to any maximal local subring of
S” containing A which is separable over A. Combining these facts with
[3, Theorem 4. 6] and Theorem 2.6, we obtain the corollary.

Remark 2.2. Let A = (A, M), and B/A a Galois extension of rank
n. Let F(B/A) be the set of maximal subrings of B containing A without
proper idempotents which are separable over A, and {e,,..., e,] the set of
primitive idempotents of B. Then, by making use of the same methods as
in the proof of Theorem 2.6(1), we obtain that | F(B/A)| = (n/r)""}, and
for any L € F(B/A),

B=Le,® @ Le,with L= Le,= Be,;(1 <i=<r), and L/A is Galois.

Moreover, the results of Theorem 2. 6(2) and Corollary 2.7 also hold for
A = (A, M) provided F(B/A) contains a local ring.

Now, let S be a local ring which is a Galois extension of A, and let
T(S) denote the class of all Galois extensions B of A such that for an L
in F(B/A), L = S (as A-algebras). Then, by making use of the same

methods as in the proof of Theorem 2.8, we obtain the following
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Theorem 2.8. Let A = (A, M), and S a local ring which is a Galois
extension of A. Then
(1) x(1.(S)) = 1s(S/MS), and for any f in I(S), A[X)/(f) = S
(as A-algebras).
(2) Let B/A be a Galois extension. Then, the following conditions
are equivalent.
(a) B/A € T(S), and B/A is simple.
(b) Bz= A[X)/(fi fp---f-) (as A-algebras) for some finite number
of fi’s in 1,(S) such that x,(f,) are distinct to each other.

Remark 2.3. Let A = (A, M) which is Noetherian. Let A* denote
the completion of A. Then A* is a local ring with a unique maximal ideal
MA* and A*/MA* = A/M. Hence the result of Corollary 2.9 also holds
for the set & of A*-algebra isomorphism classes of all Galois extensions

of A* and the set & of A-algebra isomorphism classes of all Galois exten-
sions of A where A = A/M.

Remark 2.4. Obviously, any Artinian local ring is Noetherian and
complete. Hence, Theorem 2.6 and etc. also hold for the replacing of
a complete Noetherian local ring A to a (commutative) Artinian local ring.

3. Primitive elements of tensor products of Galois extensions of
a semi-local ring. First, we shall prove the following lemma which plays
an essential role in this section.

Lemma 3.1. Let A be a field. Let S;/A be Gi-Galois, n, = | G| (i
=1.2), n=mn, and B= S, ®4 S,. Assume that | A| = n*/2 and S, =
Alx;) for some x; € S; (i = 1, 2). Then, there is an element a in A such
that B= Alx,+ax,] where x, =2, ® 1 and x;, =1 ® x,.

Proof. 1If either n, = 1 or n, = 1 then our assertion is trivial. Hence
we assume that #, > 1 and n, > 1. Let E be the set of (non-zero) prim-
itive idempotents of B. Since B/A is (G,XG,)-Galois, it follows from
Lemma 1.1 that given an element z in B, z € U(B) if and only if ze = 0
for all e € E. Now, by Lemma 1.3, we have that x,— z(x,), x,—v(ax,)
e U(B) for all r € G\|1} and v € G,\{1|. For an element e of E, we
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set

T, = | —(o(x)) — v(x)) el x;) — v(x:)) e s
o.t1€ G, uve Gy, o+ 1. u+ vl
Ac=1lae€ A; ae € T} and Ap = U e 4,

Then, one will easily see that | T,| < n,(n,—1)n,(n,—1)/2 < 2%/2 < | 4].
Moreover, for any p € G,XG,, we have p(T.) = Tye, aple) = plae) €
o(T.) for every a € A., and so A, = Ape. Since G,X G, is transitive on
E, we have A, = A, for all f € E. Hence, it follows that A, = A, and
| Ag| = | Ael = | T.| < | A]. Now, let a be an element of A\A;. and
o := (r. v) an arbitrary element of G,X G,\{(1, 1)|. Then, setting z = x,
+ax,, we see that

(z—p(2))e = (x;—z(xy)) +alx,— v(x;))) e == 0 for all e € E.

Hence, we obtain z—p(2) € U(B) for all p € G, X G,\{(1, 1)|. Therefore,
by Lemma 1.3, z is a primitive element of B/A.

Lemma 3.2. Let A be a field and let S;/A be G-Galois, n, = | G4
(i=1,.... k), n=TE n, and B=S, ®4+ ®4 Sx. Assume that |A| =
n*/2 and S; = Alx;] for some x; € S; (i = 1,..., k). Then, there are ele-
ments ai, ..., ax in A such that B= A[D 5 a;x,].

Proof. In case k = 2, the assertion is a direct consequence of L.emma
3.1. Hence, for £ > m = 2. we assume that the assertion holds for C,
=S, ®4--®,4S,. Then, there are elements «,,..., an in A such that C,
= A[X" . a;x;]. Then, applying Lemma 3.1 again, we obtain C,,, =
Cn®a Snirv = A a,x;+aXp.,] for some @ € A, completing the proof.

Theorem 3.3. Let A be a semi-local ring. Moreover, let S;/A be G;-
Galois, n, = |G| (i =1,...,k), n=1\n;, Bn =8 Qs @, Sn (m=
1.,..., k), and B = B,.

(1) Ifxiai+x:a:++xpar withx, € S;and e, € A(1 i< k) is
a primitive element of B/A then

(i) a; € U(A) for i with n; > 1, and
(ii) foranym(l1=m<k), 2", x;a; is a primitive element of B,/ A.

(2) Assume that S; = Alx;] for some x;, € S; (1 £ i< k). Then,
B/A has a primitive element x,a:+ X;a,+ - +xrar witha, € A(1 £ i <
k) if one of the following conditions is satisfied :
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(a) |A/M| 20n/2 for all maximal ideals M of A.
(b) There exist elements a,, a,,.... a: € A such that a,—a, €
U(A) for each pair i + j(1 < i, j < n?).

Proof. (1) Let z = iy +xar+++xrax (x: € S;, o, € A) be
a primitive element of B/A. Further, for each ¢, € G,, ¢; denotes also
an automorphism f, ®---® f; of B such that f; = g, and f, =1 if j+ i.

(i) If ;> 1 then, for o, # 1 € G, aflxi—ai(x)) = z2—0,(2) €
U(B) by Lemma 1.3. Hence a; € U(B) and so o; € U(A).

(ii) We set z, = tya1+++Znam and Hp = G, X+ X Gn. Then we
have z, € B, and, for g1 € H,. zn—o(2zn) = 2—0o(2) € U(B). Hence
zn—ol(zn) € U(B,). Since B,/A is H,-Galois, it follows from Lemma
1.3 that B, = A[za].

(2) Case (a): Let |M,,.... M;| be the set of all maximal ideals of
A. Then

B/MiB = (Sl/Mi Sl) ®A/M,"' ®A/M,- (Sk/Mi Sk)-

Since S;/M;S, = (A/M;)[x;+M;S;] for j=1....,k it follows from
Lemma 3.2 that B/M,B = (A/M)[2F., a,x;+M,B] for some au...., o
€ A(i=1,..., t1). Hence, by Proposition 2.1, we obtain that B =
A B0k ayx;) for some G, ..., 8. € A. We set here v, = 2., Biay;.
Then

B = A[X}..7x]. and

, €A for j=1,..,k

Case (b): This is proved by the same argument as in the proof of
Corollary 2. 3, and by the case (a).

Lastly, we shall prove the following theorem.

Theorem 3.4. Let B/A be an abelian G-Galois extension of K-type of
rank n such that A is a semi-local ring. Moreover, let ¢ be a primitive n-th
root of 1 with1—¢' € U(A)(1 £ i< n—1) (and n € U(A)). Then, G =
(1) X {02y X++X (o for some elements o\, 03,..., ox in G such that | {o;) |
=n,(>1) and n;1|n, (1 < i < k—1). For this decomposition of G, the
following (1)—(3) hold.

(1) There exist elements x,, x,.... xx in B such that

B: A[I], P o7 SRR Ik] = 2 @ (xll‘xziz"'x}zck)A (0 é ij < nj)r
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x.&: ifi=j

xft = o, € UA) and o)(x) = {7 17y L5

where &, = ™™
(2) If z=mar+xrar+-+xcar (a; € A) is a primitive element of
B/A then
(i) e, € UA) (1 i< k),
(ii) for any subset |ji, jo...., jul of 11, 2,..., kl, 2% x,0;, is @
primitive element of Alx,,, x;,,..., X;,)/ A, and
(iii) z € U(B).
(3) B/A has a primitive element z = x,a\+ X2az+ -+ Xrax with some
a, € A if one of the following conditions is satisfied :
(a) |A/M| = n*/2 for all maximal ideals M of A.
(b) There exist elements a,...., an € A such that a,—a; € U(A)
for each pair i = j (1 < i, j < n?).
(¢c) A/M =+ (Z[£]+M)/M for all maximal ideals M of A where
Z is the subring of A generated by 1.

Proof. By the fundamental theorem of finitely generated abelian groups,
we have ‘

G = (1) X{a2) X+ X {ox)

where |[(op| = n, (> 1) and ny|n; for i =1,2, .., k—1. Clearly
1L ,n, = n, and so, n; € U(A). We set here

T,=B9%' i=1,2,...,k
for <0t>' = (o) X"'X(O’tq) X<0z+1> XX {ax. Then
B=T ® T Qs ®4 Ty

and T,/A is a cyclic {o,)-extension. Since A is semi-local, it is well-
known that T;/A has a {g,)-normal basis, that is, there exists an element
e in T, such that

T, = Aa @ Aci(a) & & Agl"'(a).
We set
x = e+ oda)+o o+ L™ ol a)

where ¢, = t™™. Then, g(x;) = x:¢; and Ngy(x)) = zi“a for some a €
U(A), where Ni,,(x,) denotes the norm of x; with respect to (o). Let M
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be a maximal ideal of A. Then x; ¢ MT, because &' ¢ M. Since T,/MT,
is Galois over A/M, T,/MT, is semi-simple (Lemma 1.1). If Ny, (x;) €
M then x* € M, and so, x; € MT;, which is a contradiction. It follows
that N, (x;) € U(A), and so. x; € U(T,). Hence T,/A is a strongly
cyclic (o;; n;; x;)-extension in the sense of [12, Definition 1.1]. Thus,
by [12, Theorem 1. 2]. we have

T, = A[.x‘,-] = A[Xi]/(X;ll—a[) (Ii - Xi+(XM—a,)

where a; = x*. From this, the assertion (1) follows immediately.

The assertions (2) (i)(ii) and the cases (a) and (b) of (3) are direct
consequences of Theorem 3.3. Hence we shall prove (2) (iii) and the case
(c) of (3).

(2) (iii) : Let z = 2% x;a, (a; € A) be a primitive element of B/A.
For each 1 < i < k, we have o™ (x;) = x;&™™ = x,;£x. We set here

n/ny

ny/ N,
T = 0 g ke

Tt —y/ Ty
=1

Tk Ok-

Then we have U(B) 2 2—(z) = z2—z¢, = 2(1 —¢;). Hence z € U(B).

(3) Case (c): Let M be a maximal ideal of A. If [(Z4+M)/M| = o
then |A/M| = 0. If {(Z4+M)/M| < o then (Z+M)/M is a field and
so is (Z[¢]+M)/M. Hence [A/M:(Z[¢]+M)/M] = 2, which implies

| A/M| = n®. Thus this assertion follows immediately from the case (a).

Corollary 3.5. Let A be a semi-local ring whose Jacobson radical is zero,
and B/ A a Galois extension. If one of the following conditions is satisfied
then B/A is a cyclic {o)-extension for some automorphism ¢ of B:

(a) For each primitive idempotent e of A, Be has a maximal subfield
containing Ae which is a cyclic extension of Ae.

(b) [A] < oo
When this is the case, B = Alx] = 2,70 @ Ax* for n = rank, B and some
x € B with x™ € U(A) provided B/A is of K-type.

Proof. Let {e,..... en! be the set of primitive idempotents of A. If
| Ae;| < oo then any maximal subfield of Be; containing Ae, is a finite field,
which is a cyclic extension of Ae;. Hence the case (b) is contained in the
case (a). Now, we assume (a). Then, it follows from Remark 1.1 that
each Be;/Ae, is a cyclic {g;)-extension for some automorphism ¢, of Be; of
order n. We denote here an automorphism ¢ of B = > ", @ Be; by

U(Z‘J:";lbiei) = ?:lo'i(biei)
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where b, € B(1 < i < m). Then, noting A = > 7., Ae;, one will easily
see that B/4 is a cyclic (¢)-extension with |{(s)| = n. Then other asser-

tions are immediate from the result of Theorem 3. 4.
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