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ON GENERALIZED PF-RINGS

Hasan AL-EZEH

Throughout this paper a ring denotes a commutative ring with unity. A
ring R is called a PP-ring if for every a € R, the principal ideal eR is a
projective R-module. Hirano [4] defined a ring R to be a generalized PP-
ring (or GPP-ring) if for every @ € R, there exists a positive integer n
such that @"R is a projective R-module. Astudy of this class of rings was
carried by Hirano [4]. Recall that a ring R is called a PF-ring if for every
a € R, the principal ideal aR is a flat R-module. Now. we define a ring R
to be a generalized PF-ring (or GPF-ring) if for every a € R, there exists
a positive integer n such that a"R is a flat R-module. Our aim in this paper
is to study the class of GPF-rings and how it is related to GPP-rings. In
§1, we study some of the basic properties of GPF-rings. Then in § 2, we
give a different proof for a result that was proved by Hirano [4].

1. Some results on GPF-ring. An ideal I of a ring R is called pure if
for every x € I, there exists ¥ € I such that xy = x. It is well known that
an ideal I of a ring R is pure if and only if R/I is a flat R-module, see
Matlis [5]. For any @ € R, the mapping f: R = aR defined by flx) = ax
is an R-module epimorphism. Now, the annihilator ideal, annz(a) is pure if
and only R/anng(a) is a flat R-module. Since R/annk(a) is isomorphic to
aR, aR is a flat R-module if and only if annk(a) is a pure ideal of R. Thus,
we get the following easy lemma.

Lemma 1.1. A ring R is a PF-ring if and only if for every a € R,
anng(a) is a pure ideal of R.

Also from the above argument we obtain the following easy lemma.

Lemma 1.2. A ring R is a GPF-ring if and only if for every a € R,
there exists a positive integer n such that anny(a™) is a pure ideal of R.

Now, we prove an easy result that will be used frequently later on.

Lemma 1.3. Let R be a ring, and a € R. If anng(a) is pure, then
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Jor any positive integer m, anng(a™) is pure.

Proof. Let x € anni{@™). Then xe™ = 0. If m = 1, we are done. If
m> 1, then xaa™™' =0, and hence xa" ' € anng(a). Since anng(a) is
pure, there exists b € anng(a) such that xa™ 'b = xa™'. So, xa™' = 0.
Inductively, we get xa =0. So there exists ¢ € anng(a) such that xc = x.
Since ¢ € anng{a™), we are done.

Corollary 1.4. Let R be a ring. For any a € R, if aR is a flat R-

module, then for any positive integer n, a"R is a flai R-module.

For more details about PF-rings, see Matlis [5], Al-Ezeh ([1], [2]),
Al-Ezeh et al. [3] and Naoum [6].
First, we characterize local GPF-rings.

Lemma 1.5. A local ring R is GPF-ring if dnd only if every element
a in R is either a non-zero-divisor or a nilpotent element.

Proof. Assume that R is a local GPF-ring. lLet a € R. Since Ris a
GPF-ring, there exists a positive integer n such that anni(a™) is pure. If
anng(a”) = 0, then a is a non-zero-divisor. If anny(a¢") = 0, there exists a
non-zero b € anng(a™). So there exists ¢ € anng(a”) such that bc = b, If
a” % 0, then 1 —c is a unit because R is local. Thus, b =0, a contradic-
tion. Consequently, a" = 0, i.e. a is nilpotent.

Conversely, let a € R. If a is a non-zero-divisor, then annga) =0
which is pure. If a is nilpotent, then there exists a positive integer n such
that a® = 0. So. anng(a”) = R which is a pure ideal of R. Consequently,
R is a GPF-ring. ‘

Lemma 1.6. Let R be a GPF-ring. If P is a prime ideal of R, then
the localization, Rp, is a GPF-ring.

Proof. let a/s € R,. Since R is a GPF-ring, there exists a positive
integer n such that a"R is a flat R-module. But (a/s)" = a"R,, so (a/s)"R;
is a flat Rp-module because flatness is a local property. Thus R, is a GPF-
ring.

So, we get the following corollary which was proved differently in
Matlis [5].

Corollary 1.7. A ring R is a PF-ring if and only if every localization
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R, is an integral domain.

Proof. Assume R is a PF-ring. Taking =1 in the proof of Lemma
1.6, we get the if direction.

Conversely, let a € R, then eR, is a flat Rp-module since R, is an
integral domain. Because flatness is a local property, aR is a flat R-

module. So R is a PF-ring.

The following theorem characterizes GPF-rings through localizations.

Theorem 1.8. A ring R is a GPF-ring if and only if for every a € R
either a is a non-zero-divisor in each localization R, or there exists a positive
integer n such that a"=0 in each Ry, where a is not a zero-divisor.

Proof. Assume that R is a GPF-ring. Let a € R, then there exists a
positive integer n such that a"R is a flat R-module. So a@"R; is a flat Rp-
module, i.e. anng.(a”) is a pure ideal in R, Exactly as in the proof of
Lemma 1.5, either a is a non- zero-divisor in Rpor a"=0 in R,.

Conversely, assume that the condition holds. Let a € R. If a is a non-
zero-divisor in each Rjp, then aR, is a flat Rp-module for each P. Since
flatness is a local property, aR is a flat R-module. If for some prime P,
a”=0 in R, while for the others a is a non-zero-divisor, then a"R; is a flat
Rp-module for all such prime ideals P of the first type. For all prime ideals
of the second type, aR; is a flat Rp-module. Consequently, a”R is a flat R-
module.

Theorem 1.9. A ring R is a reduced GPF-ring if and only if R is a
PF.ring.

Proof. Clearly, every PF-ring is a GPF-ring. Also every PF-ring is
reduced (without nontrivial nilpotent elements) see Al-Ezeh [1]. So R is
a reduced PGF-ring.

Conversely, assume that R is a reduced GPF-ring. So for each prime
ideal P, R, is a reduced GPF-ring. That is R, is an integral domain. By
Corollary 1.7, R is a PF-ring.

More generally we prove the following theorem.

Theorem 1.10. Let R be a GPF-ring. Then if N is the nilradical of
R, R/N is a PF-ring.
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Proof. Let a+N € R/N and b+N € anngy(a+N). Then ba € N.
So, there exists a positive integer n such that 5"a"=0, i.e. b" € annz(a™).
Since R is a GPF-ring, there exists a positive integer m such that anng(a™)
is pure. By Lemma 1.3, anni(a™) is pure. Since b" € annz(a™™), there
exists ¢ € anng{a™™) such that 6"c=54". Hence bc—b € N. Moreover, ca €
N, since ca™=0. Thus ¢+ N € anng, \(a+N) and (b+N)(c+N)=b+N.
Consequently, R/N is a PF-ring.

Theorem 1.11. Let R be a GPF-ring. For any pure ideal I of R, R/I
is a GPF-ring.

Proof. Let a+I€ R/I Since R is a GPF-ring, there exists a posi-
tive integer n such that anni(a™) is pure. Now, we want to show that
anng,{a"+1I) is pure.. Let x+1I€ anng, (a"+1), then xza" €I Since I
is pure, there exists ¥y € I such that xa"y=xa", i.e. a™(xy—x)=0. So,
there exists z € annz(e") such that (xy—x)z=xy—x. Thus, xz—x € I,
Hence (x+I)(a@"+I)=1 and (x+I)(x+I)=x+1 Therefore, ann,, (a"+1)
is pure. Consequently, R/I is a GPF-ring.

2. Generalized PF-rings and generalized PP-rings. Recall that a ring
R is called a =regular ring if for every a € R, there exists a positive
integer n such that a"=a’"b for some b € R, and a ring R is called quasi
n-regular ring if the classical ring of quotient of R, Q(R), is a n-regular
ring. Hirano [4] proved that R is a quasi z-regular ring if and only if for
each a € R, there exists a positive integer n and a non- zero-divisor d such
that a"d=a’". The following theorem was proved by Hirano [4], but we give
here an alternative proof using the characterization of GPF-rings via pure
ideals.

Theorem 2.1. Aring R is a GPP-ring if and only if it is a quasi
m-regular, GPF-ring.

Proof. Assume R is a GPP-ring, then it is a GPF-ring. Now, let
a € R. Then there exists a positive integer 7 and an idempotent e such that
anng(a”) =eR. Then a"+e is a non-zero-divisor and a™(a"+e)=a""

Conversely, assume R is a quasi mregular, GPF-ring. Let a € R.
Since R is a quasi m-regular ring, there exists a positive integer n and a
non- zero-divisor d such that a"d=a’". Also, since R is a GPF-ring, there
2nm

exists a positive integer m such that anng(a™) is pure. Now, a™"d"=a
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Let t = nm and u= d™ then a'u= ¢’ and u is a non-zero-divisor. By
Lemma 1.3, anng(a’) is pure. If b= u= d’, then b € anny(a’). Since
anng(@') is pure, there exists e € anng(a’) such that be = 4. Now, consid-
er ue(l—e) = (u—a")e(l1—e) = be(1—e) = 0. Thus e(l1—e) =0. So
e is an idempotent element. Clearly, eR C anng(a’). Now, let x €
anng(a®). Then xa’ = 0.

Consider
x(l—e)u=x(l—e)(u—a") = x(1—e)b=0.

Thus (1 —e) = 0, i.e. x= xe. Therefore anng(a’) = xe. Hence R is a

GPP-ring.
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