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SETS WHICH CONTAIN A QUADRATIC
RESIDUE MODULO p FOR ALMOST ALL p

MicHaEL. A. FILASETA and Davip R. RICHMAN

1. Introduction. M. Hall, Jr. showed ([2, p. 759] and [3, Th. 3, p.
57]) that if an integer is a quadratic residue modulo p for all but finitely many
primes p, then it is a square. Define the density of a set P of primes to be
the limit, as x tends to infinity, of (the number of primes < x in P)/(the
number of primes < x), provided the limit exists. If the density of the set of
primes with a given property is 1, then we say that the given property holds
for almost all primes. One can establish easily from the result of M. Hall, Jr.
(together with the law of quadratic reciprocity and the Prime Number Theorem
for primes in arithmetic progressions [4, p.404]) that if an integer is a
quadratic residue modulo p for almost all primes p, then it is a square.
Furthermore, if « and v are integers such that, for almost all primes p,
either u or v is a quadratic residue modulo p, then either u or v is a square.
This latter fact was proved by Funakura and Morimoto [1, p.138], and was
used to establish a Hasse principle for 2 X2 matrices. This paper describes
generalizations of these results ; in particular the following theorem is
established.

Theorem 1. Let S denote a finite set of non-zero integers. The following
conditions are equivaleni.

(i) For almost all primes p, the set S contains a quadratic residue
modulo p.

(ii) There is an odd-sized subset T of S such that the product of the
elements of T is a square.

(iii) For every prime p not dividing the product of the elements of S, S
contains a quadratic residue modulo p.
Later, in Theorem 2, we will describe necessary and sufficient conditions
for a finite set S of integers to have the following property : for every map
f:8 - |—1, 1}, there is a prime p = p(f) such that f(x) = (x/p) for every
x in S. Theorem 3 and its Corollaries will describe conditions which
guarantee that an infinite set of integers contains a quadratic residue modulo
p or a quadratic non-residue modulo p for almost all primes p. Finally,
Theorem 4 will show that Theorems 1 and 2 do not hold for infinite sets of
integers.
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2. Proofs of Theorem 1 and Related Results. Let (x/p) denote the
Jacobi symbol. Let M denote the set of completely multiplicative functions
from the non-zero integers to{ —1,1|. We now describe three different proofs
of Theorem 1, all of which use the following Lemma.

Lemma. Let S denote a finite set of non-zero integers and let f € M ;
then there is an odd prime p such that f(x) = (x/p) for every x in S.

Proof. Let s denote the product of the elements of S. For every odd
prime factor ¢ of s, let 7(g) denote an integer such that (v(g¢)/q) = f(q).
If f(2) = —1, define r(2) = f(—1)+4 ; otherwise, define #(2) = f(—1).
Let p denote a prime such that p = f{—1) r(g) (mod ¢) for every odd prime
factor ¢ of s and p = 7(2) (mod 8). Observe that p is odd and (2/p) = f(2).

Let ¢ denote an odd prime factor of s. If ¢ = 1(mod 4) or f(—1) =1,
then ¢ or p is congruent to 1{mod 4) and, by the law of quadratic reciprocity,

(%) _ (%) _ (f(—}])r(Q)) _ ( r(qQ)) — flq).
If g = —1(mod 4) and f(—1) = —1, thenp = ¢ = —1(mod 4) and
(%):_(%):_< —;(q))z(r(qq)):f(q)_

Thus, (w/p) = f(w) for every prime factor w of s. Note also that (—1/p)
= f{(—1). Therefore, (x/p) = f(x) for every x in S.

First Proof of Theorem 1. Let s denote the product of the elements of S
and let p and p’ denote primes. The law of quadratic reciprocity implies that
if p=p' (mod 4s), then (x/p) =(x/p') for every x in S. This observation
and the Prime Number Theorem for primes in arithmetic progressions (4,
p.404] imply that

(1) there is a prime p such that (x/p) = —1 for every x in S

<> the density (which necessarily exists) of the set of primes p that
satisfy (x/p) = —1 for every x in S is greater than or equal to
1/¢(4s).

It is easy to see that (ii) = (iii) = (i) in Theorem 1. Suppose now
that statement (ii) does not hold. It will be shown, by induction on the size
of S, that there is a map g € M such that g(x) = —1 for every x in S.

If S = {x/, then x is not a square because statement (ii) does not hold.
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Therefore, there is a map g € M such that g{x) = —1. Suppose now that S
has more than one element and let y € S. The induction hypothesis implies
that there is a map g, € M such that g,(x) = —1 for every x in S—|y|. If
g,(y) = —1 for some v in S, then g,{(x) = —1 for every x in S. If g,(y)
= 1 for every y in S and the size of S is even, then define g to be the
product of the maps g, as y ranges over the elements of S. Observe that in
this case g(x) = —1 for every x in S. Suppose finally that g,{(y) = 1 for
every y in S and the size of S is odd. The number s, i.e., the product of
the elements of S, is not a square because statement (ii) does not hold.
Therefore, there is a map A in M such that A{(s) = —1. Let T = A7'({—1})
N S and observe that the size of T is odd. Let g = h Il;crg: and observe
that g(x) = —1 for every x in S. Thus, in all cases there is a map g in M
such that g(x) = —1 for every x in S. Therefore, the LLemma and statement
(1) imply that statement ( i ) of the theorem does not hold.

Second Proof of Theorem 1. Since (ii) = (iii) = (i) in Theorem 1, it
suffices to show that (i ) = (ii). Let F; denote the field of size two and let A
denote the isomorphism from the multiplicative group | —1, 1| to the additive
group of F,. Let xi, x2, ---, xn be a listing of the elements of S and, for
every map g in M, define

r(g) = (h(g(x1)), h(g(x2)), ---, hlg(xa))) € (F2)".

Let R =|{r(g) : g € M | and note that 7(fg) = r(f)+r(g) for all f,g € M.
Therefore, R is a vector subspace of (F3)".

If VC (F,)" let V* denote the set of vectors w in (F;)" such that vw'
= 0 for every v in V. For every subset T of S, define v(T) = (b,, b., ---
bn), where b; = 1 if x; lies in T and ; = O otherwise. Observe that

]

(2) the product of the elements of T is a square
<2 er M{g(x)) = 0 for every g in M
<uw(T) € R*.

Therefore,

(3) statement (ii) of the theorem does not hold
<>for every odd-sized subset T of S, v(T) does not lie in R*
<>RTC (1,1, -, DY
SR D (1,1, -, DY
<>R contains (1, 1, -+, 1) (because R** = R)
<&>there is an element g in M such that g(x) = —1 for everyx in S
<>statement ( i ) of the theorem does not hold (by the Lemma and (1)).
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Third Proof of Theorem 1. As in the first proof of the theorem, it suffices
to establish the following claim :

Claim. If statement (ii) of the theorem does not hold, then there is a
map g in M such that g{x) = —1 for every x in S.

Let ¢ denote a prime which does not divide the product of the elements
of S and define S* ={x:x€ Sandx>0}U |g|lx] :x € S and x < 0}.
Note that it suffices to establish the claim for S* ; therefore, we assume for
the rest of the proof that every element of S is positive.

Let s denote the product of the elements of S and suppose that statement
(ii) of the theorem does not hold. The claim will be established by induction
on s. The induction hypothesis allows us to reduce to the case that every
element of S is square-free; assume that we are in this case. For every
prime factor p of s, define S, =jx € S:ptxlUlx/p:x € S and p|xl.

Case 1. There is a prime p dividing s such that, for every odd-sized
subset T of S;, the product of the elements of T is not a square.

The induction hypothesis implies that there is a map 2 in M such that
h(x) = —1 for every x in S,. Let g denote an element of M such that g(x)
= h(x) for every x in S, and g{p) = 1. Observe that g(x) = —1 for every
x in S, so g has the desired properties.

Case 2. For every prime factor p of s, p lies in S.

Let g denote an element of M such that g(p) = —1 for every prime
factor p of s. Since statement (ii) of the theorem does not hold and every
element of S is square-free, every element of S is a product of an odd number
of primes. Therefore, g(x) = —1 for every x in S.

Case 3. There is a prime p dividing s and an odd-sized subset T* of
S, such that p does not lie in S and the product of the elements of T* is a
square.

Let T ={px:x € T*—Stand T=T, U (T*N S). Note that T C S
(because T* C S,) and the size of T is odd (because the size of T equals the
size of T*). Therefore, since condition (ii) of Theorem 1 does not hold, the
product of the elements of T is not a square. Note also that the product of
the elements of T equals p'"" (the product of the elements of T*), which

™'m? for some integer m. Therefore |T;| must be odd and the product

?**'m® for some integers e and m. Let ¢

equals p
of the elements of T is of the form p
denote an element of T which is a multiple of p and let S’ denote the set
which is obtained from S by replacing ¢ with p. Note that ¢ > p since i is a
multiple of p and p does not lie in S. Suppose at first that there is an
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odd-sized subset T' of S’ such that the product of the elements of T' is a
square. Note that T is not a subset of S (because condition(ii)of Theorem 1
does not hold), so p € T'. Therefore the product of the elements of T'—{p|
equals (the product of the elements of T')/p, which is a number of the form
k*/p for some integer k. This observation and the fact that the product of
the elements of T is of the form p*¢*'m* imply that the product of the elements
of (T'—1ph) U T)—(T'—1p}) N T) is a square. Note also that ((T"—|p})
UT)—{T'—!ph N T) is an odd-sized subset of S (because the size of
T'—{p!| is even and the size of T is odd). This contradicts the assumption
that statement (ii) of the theorem does not hold. Therefore, for every
odd-sized subset T of S’, the product of the elements of T’ is not a square.
The induction hypothesis implies that there is a map g in M such that g(x) =
—1 for every x in S'. Let w denote the product of the elements of T, and
observe that, since T—|t}| C S’, g(w/t) =(—=1)""" =1, Since g(w/t)
=1 and the product of the elements of T is of the form p*¢*'m?, g(t) = g(w)
= g(p). Recall that p € S', so g{p) = —1. Hence, g(i) = —1, so glx)
= —1 for every x in S.
Thus, the claim holds in all cases.

Theorem 2. Let S denote a finite set of non-zero integers. The follow-
ing statemenis are equivalent.

(i) For every map f : S - |—1, 1}, there is an odd prime p = p(f)
such that (x/p) = f(x) for everyx in S.

(ii) For every map f : S - | —1, 1|, the density of the set of primes p
satisfying (x/p) = f(x) for every x in S is 27,

(iii) For every non-empty subset T of S, the product of the elements of T
is not a square.

Proof. 1t is easy to see that (ii) => (i) => (iii). Suppose that statement
(iii) holds and define R as in the second proof of Theorem 1. Statement (iii)
implies that R* = {0 ]. Since R* = |0} and R is a vector space over Fy, R
= (F;)". This observation and the Lemma imply statement ( i ).

Let s denote the product of the elements of S. If v and v’ are odd
positive integers such that v = v’ (mod 45 ), then (x/v) = (x/v') for every x
in S. Let ¢ denote an integer which is relatively prime to 4s. Define V, to
be the set of congruence classes v (mod 4s) such that, when ' lies in the
congruence class v, (x/v') = (x/t) for every x in S. Multiplication by ¢
induces a bijection from V, to V., so the size of V, equals the size of V.
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This observation and the Prime Number Theorem for primes in arithmetic
progressions imply that (i) = (ii).

One can also prove that (iii) = (i) in Theorem 2 by induction on the
size of S, as in the first proof of Theorem 1, or by induction on the product
of the elements of S, as in the third proof of Theorem 1.

Note that if S is a set of primes, then condition (iii) of Theorem 2 is
satisfied.

Theorem3. Let S denote a set of non-zero integers and let f denote a
map from S to {—1, 1|. Assume that there is an infinite subset U of S such
that the product of two distinct elements of U is never a square ; then for almost
all primes p, there is an element x = x(p) in S such that (x/p) = f(x).

Proof. The assumption about S implies that, for every positive integer
n, there is a subset S, of S such that |S,| = n and the product of the
elements in any non-empty subset of S, is not a square. Theorem 2 implies
that the density of the set of primes p satisfying (x/p) = —f(x) for every x
in S, is 27" Therefore, the set of primes p which satisfy (x/p) = f(x) for
some x in S, has density 1 —2"". The theorem follows immediately from
this by letting n —» oo,

Corollary 1. The following conditions are equivalent.

(i) For almost all primes p, S contains a quadratic non-residue modulo
.

(ii) There is an infinite subset U of S such that the product of two

distinct elements of U is never a square.

Proof. Theorem 3, with f(x) = —1 for all x, implies that (ii) <> (i).
Suppose now that condition (ii) does not hold. Let S’ denote a maximal
subset of S such that the product of two distinct elements of S’ is never a
square, and let s' denote the product of the elements of S'. If p is a prime
which is congruent to 1 (mod 4s'), then every element of S is either a
quadratic residue modulo p or divisible by p. Therefore, condition ( i ) does
not hold.

Corollary 2. The following conditions are equivalent.

(i) For almost all primes p, S contains a number x = x(p) such that
(x/p) = 1.

(ii) Either there is an odd-sized subset T of S such that the product of
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the elements of T is a square, or there is an infinite subset U of S such that
the product of two distinct elemenis in U is never a square.

This Corollary follows from Theorems 1 and 3 ; we omit the details of
the proof.

The next theorem demonstrates that the implication (iii) = (i) in Theo-
rem 2 strongly requires the hypothesis that S is finite.

Theorem 4. Let ei,e:,--- denote an infinite sequence of elements of
1—1, 1|. There is an infinite set S = {5, < s; < ...} of positive integers
such that

(i) Jfor every odd prime p, there are only finitely many elemenis s, in
S such that (s;/p) equals 0 or e;, and

(ii) for every non-empty finite subset T of S, the product of the elements
of T is not a square.

Proof. Let wn denote the product of the first n odd primes. Let r,
denote an integer such that (r,/p) = —e, for all primes p dividing w,. Note
that 7, is relatively prime to wy ; therefore, for each n there are infinitely
many primes which are congruent to r, (mod wn). Let 51,52, denote primes
such that s, = 7, (mod wy) for all 2 and 5, < s, < ---. If p denotes the k-th
odd prime, then p divides wn, for alln = k ; hence, (sn/p) = (rn/p)= —en
for all n = k. Therefore, there are less than k subscripts i for which
(si/p) = 0 or e;. This finishes the proof.

Note that in the case that e; = —1 for every I, the set S of Theorem 4
contains a quadratic residue modulo p for every odd prime p, but it does not
satisfy condition (ii) of Theorem 1. Thus Theorem 1 does not hold for infi-
nite sets S ; Corollary 2 of Theorem 3 also implies that Theorem 1 does not
hold for infinite sets.
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