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SINGULAR POINT SETS OF A GENERAL
CONNECTION AND BLACK HOLES

Dedicated to Professor Hisao Tominaga on his 60th birthday
TomNosuke OTSUKI

§ 1. General connections and geodesics. In the present paper the
author will try to construct a theory of black holes as a subject in differential
geometry by means of general connections, which are now called Otsuki
connections mainly by Eastern European geometers, taking the results ob-
tained in [10], [11] and the example in § 3 into consideration.

Let M™ be an n-dimensional manifold with a smooth general connection
I, which we denote by (M™, I'). The concept of general connections was
defined by the author in [5]. Let (P}, I'jx) be the components of I" in local
coordinates u’, i.e.

I = ou; ® (Pid*W’ +Tidu’ @ du®).
The part of the first order of I' is represented as
P = XNTI') = ou; ® Pidd’.

which is a tensor field of type (1.1). A point of M" is called a regular
point of I if det (P!} # 0 and otherwise a singular one, and the set of all
regular points is denoted by reg I, which is open, and we set sing I' = M"
—reg I

Acurve y: x = ¥(t) for a <t < b in M" is called a geodesic of (M",
I'), if it satisfies the condition:

D dr _ . pf i)
dt di —‘ﬁ(t)P( dt
where D denotes the covariant differentiation of I" and ¢(1) is a suitable

function along ¥, which is represented in local coordinates as

d*u’ L d’ du® L du
Yy~ =~ P

(1-1) Jj dfz

If (1.1) is satisfied with ¢ = 0, the parameter ¢ is called an affine para-
meter of the geodesic, which is defined within an affine transformation for it,
If we take a change of parameter s = s(t), then (1.1) can be written as
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D (du'\ _[(dt\  dt)ds _,du
ds(ds ) _[(ds)"’JrW}EPJ ds
Therefore, integrating the differential equation

dt \? d’t
(d—s) vt =0

we obtain an affine parameter s of the geodesic ¥ as

s =fe”'d’dl.

On the other hand, taking a tensor field @ on M™ of type (1.1) with
local components Q;, consider the general connection QI" with local compo-
nents (QiPF, QLI'5). We see easily from (1.1) that 7 is also a geodesic
of (M™ QI").

P can be considered as an endomorphism of the tangent space T.M" at
each point x of M", Py: ToM" —» TyM". Onreg I, we denote the inverse of
P by P!, then P7'I"is a classical affine connection on reg I. Accordingly,
an affine parameter s of a geodesic of (M™, I') is also an affine parameter in
the classical sense.

Definition. We call a curve x = ¥(s), a £ 5 <b, ~0o <a<b =
+ oo, of (M", I'), a maximal semi-geodesic, ms-geodesic, if it is a geodesic
of (M", T) for a < s < b, s is an affine parameter of this geodesic, and
(a, b) is maximal on these properties with respect to 5. We call a curve
x=7%s) a<s <b —oo=a<b=< +oco, a maximal geodesic, m-
geodesic, if it is a geodesic of (M™, I') for a < s < b. with s as an affine
parameter and (a, b) is maximal on these properties with respect to a and b.

Let (TM", M", 7) be the tangent bundle over M. We consider now an
open subset E of TM” such that, for any point x € »(E), Ex = E N T.M"
is invariant under any scalar multiplication in T,M". We say such E is
a direction range of M" and geodetically invariant, g-invariant, if it satisfies
the following condition: For any maximal geodesic x = ¥(s), a < s < b,
whose lift ¥' in TM" is not disjoint with E, then ¥ C E.

In the following, we consider only such E and say E satisfies (a)-
condition, if the following conditions hold :

i) For any point p, € reg I' N #n(E) and any ms-geodesic x = ¥(s)
(@ < s < b) withp, = y(a), ¥(a) € E, it holds
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y(s) »singlass = b

or it diverges, i.e., for any compact set K C M™, there exists s, such that
a < s <band y(s) € K for s = s,.

ii) For any m-geodesic x = ¥(s), a <s < b, such that ¥ C E and
y(s) - sing I"as s — a and also as s — b, then y C sing I'.

§ 2. Black holes and sing I". Let E be a g-invariant direction range
of M. We call a geodesic y of (M", I') an E-geodesic, if its lift ¥’ in TM"
lies in E.

Definition. A C M™ is called a black hole of (M", I} with respect to
E, if it has an open neighborhood U with the following properties :

i) U is smooth and U C reg I',

ii) If an ms-E-geodesic x = ¥(s), a = s < b, enters into U through
U at y(s,), with ¥'(50) € Twse QU. then y(s) € U for s > s, and ¥(s)
tends to A as s — b.

iii) U does not contain divergent ms-E-geodesics.

U and 3U in this definition are called a causal neighborhood and a causal
boundary of A with respect to E respectively.

In the following. we assume the connection I” satisfies the condition (a)
for E. Let A be a black hole of (M", I') and U be a causal neighborhood of
A with respect to E.

If an ms-E-geodesic x = ¥(s). ¢ £ s < b. enters into U through aU at
¥(so). with ¥'(ss) € Tysw DU, then the condition i) of () and the condition
iii} of a black hole implies that y(s) »sing "N A as s = b. Therefore,
this fact tells us that under the condition (a) any black hole for E may be
considered as a subset of sing I.

Take an ms-E-geodesic x = ¥(s), 0 =< s < b. starting a point p, =
¥(0) € (U—A) N reg I and complete it to an m-geodesic x = ¥(s), a < s
< b.

1) If y(s) (0 <s < b) is contained in U, then it tends to sing I" by
the condition iii}) of a black hole and the condition i) of (a). Then, x =
n(s):=y(—s), 0 s < —a, is an ms-E-geodesic. If ¥ is contained in
U, then y,(s) also tends to sing I. The condition ii) of (a) implies that the
m-geodesic x = ¥(s), a < s < b, is contained in sing I. This contradicts
to po = ¥(0) € reg I.  Hence, 7 must not be contained in U. 7, must run
out U or tangent to QU at %(so), with n(s) € Ufor 0 < s < so. If 7 runs
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out U, with %(s,) € Tys; OU. then the ms-geodesic x = y(s). —so < s
< b. enters into U through aU at y( —s,), with ¥'( —s,) € Tycs, dU, hence
7(s) tends to A as s — b, by the condition ii) of a black hole. If 7 is
tangent to oU, then must be on OU by the following Theorem 1, which con-
tradicts to p, € U.

2) If y(s) (0 s < b) is not contained in U, then ¥ runs out U at
a point ¥(s;) € 9U, with ¥'(s,) € Tyss QU. Then, y(s) must tend to A as

s = a.

Theorem 1. For (M", I'). which satisfies the condition (a) for a g-
invariant direction range E, a causal boundary of a black hole A with respect
to E is totally geodesic with respect to E. i.e. any E-geodesic tangent to it at
some point lies on ii.

Proof. Let U be a causal neighborhood of the black hole A. For any
point p, € AU and an ms-E-geodesic x = y(s), 0 < s < b, with y(0) €
T,, OU. we obtain y(s) € U. In fact, we can take a family of ms-E-geodes-
ics 7:(s), 0 £ s < b;, such that lim;.., 7:(0) = ¥'(0) and ¥i(0) points to
the inside of U at p,, since 9U C reg I. We may suppose lim;... b; > b,
> 0. 7(b;) € Aand lim,.,, 7(s) = ¥s) for 0 < s < by, hence s < b and
so bo < b. Since 7(s) € U for 0 < s < b,. it must be ¥(s) € U for
0 <5 < bo. By repeating this arguments for ¥ and using the condition ii)
of a black hole, we see that ¥(s) € Ufor 0 < s < b.

On the other hand, taking a subsidiary Riemannian metric g on a neigh-
borhood W of p, in reg I, we can put that ¥(0) and 7:/(0) are all unit
vectors with respect to g and take b, uniformly for any ms-E-geodesic 7,
with ¥'(0) € T, aU, where p = ¥(0) € W N aU.

Now, take a geodesic x = %(s), —c < s <c, ¢ > 0, such that %(0)
= po. § is an affine parameter, ¥ is a unit vector with respect to g, 7:(0)
E T, dU 7(s) eUfor —c <5 <0 and 7(s) EU for 0 <s < c.
Taking another point p, € W N 8U sufficiently near p,. which can be joined
with p, by an E-geodesic in W, we choose a geodesic x = %(s). —c < s
< ¢, which satisfies the same conditions as 7. We consider the family of
E-geodesics x = Ts(t); 0 =i <1, such that 5(0) = 7%(s) and (1) =
7(s) and ¢ is an affine parameter for each geodesic zs. If ¢ is sufficiently
small, the construction of the family 75 is always possible as Riemannian
cases and we may assume that rs(2) is in W and differentiable with respect
to s and ¢, and 7. C M"—TU.
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Let s, = 0 be the value such that for s > s, 7s C M"—U and Tse N
aU =+ @. If s, >0, then take a point ¢ = z5,(t0) € oU. We see easily
that 0 < t, < 1 and 74,(t) € T, OU. By means of the above mentioned fact
s, C U, which contradicts to 7s,(0) = 7(s0) € U. Therefore it must be
so = 0.

If there exists to (0 < #o < 1) such that zo{to) € U, then zo(ts) € U,
because zo(t,) € U implies s; > 0. Then, we can choose s, (—c¢ < s1 <0)
such that zs,(t,) € U and ts, passes through oU transversally at two points
rs,(11) and 7s,(12) with 0 < 1, <t <t <1 and z5,(t) € Ufor t, < t < to.
Let x = 7(1). a <t < b, be the m-E-geodesic such that 7(t) = zs,(¢) for
0 <t <1. Then, by the condition i) of a black hole we obtain

(1) eUfora<t <tandt, <t <b
and
7(¢) tendsto A Nsing"ast s aort — b,

By the condition ii) of (@), it must be ¢ C sing I, which contradicts z(2,) €
reg I. Hence we see that

w(t) €oUfor0 £t £1. Q. E. D.

Theorem 2. For (M", I'). which satisfies the condition (a) for a g-
invariant direction range E. let A be a black hole with respect to E and U
a causal neighborhood of A. then one end of any m-E-geodesic through a regular
point of U tends to A N sing I' in U and the other end goes out of U through
oU transversally.

§ 3. An example. Here, we shall consider the 4-manifold with
a smooth general connection (R*, I") studied in [11].

Let x, { = 0,1, 2.3, be the canonical coordinates of R*, and ¢, 7, 8,
¢ be the coordinates such that

xo =1, xy = rsinfcos ¢, x» = rsinfsing, x3 = r cos 4.
For the space-time metric g:

4m?

/rZ

(3.1) do® = —(1 — )dt“%%dtdr +7r*(df* +sin® 0d¢*)

given for r #+ 0, we can choose a smooth general connection I" on R*
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which has the same system of geodesics as the connection determined by the .
Christoffe] symbols made by g on r # 0, the symmetric affine connection
which is metric with respect to g, denoted by I'y. (Theorem 2 in [11]).

The equations of a geodesic of Iy is

dt  Am*(dt\' doV , ., [de)
) () s 22) o,
| AnB( A 8 de A(dr)e o doy
ds? r \ds r? ds ds  r\ds "\ ds
2
(3.2) —Br’sinzﬁ(ﬂ) =0,
ds
¢ 2 dr df ) d¢5)2 _
&7 EE‘C"SGS”‘H(E =0,
d’¢ 2 dr d¢ dé d¢
ds? +7EI +2cot Hgd_s =0,

where B =1 —4m?/r* and s is the canonical parameter of the geodesic as

do® 4m2)( dt )2 2 di dr
(3.3) ds* (1 r® J\ds r ds ds
i)+ o 2]
2| 40 2 o &P
+r (ds +sin® 4 ds
-1
= = 0
1
according to the sign of the right hand side of (3.1), which is an affine
parameter.

Now, we denote the sets of X = X’ &/9x’ with r # 0 such that g,; X‘X’
is negative, zero or positive by E_,, E, and E,,, respectively. The above
fact shows that E_, and E,., are g-invariant dirtection ranges in the sense
described in § 2 and E; is also g-invariant. TR' is disjoint sum of E_,,
E,.., Esand = ' (r = 0).

For any geodesic 7, we may put § = /2 and have two constants A and
J such that

(3.4) lr(ﬂ —Brﬁ) = A,

(3.5) ri=t=1J
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which. joining with (3.3). are equivalent to (3.2) (See § 1 of [9]). In the
following. we shall discuss whether the set W (r = 0) is a black hole with
the causal neighborhood U (r < 2m) or not for (R*, I") with respect to E =
E_, in the sense stated in § 2.

Let 7 be a visible geodesic, i.e. ¢ = —1 or 0, which enters into U,
passing through OU transversally at p, = 7(0). Then we have

B=0 and%=2mA < 0 at pe.

From(3.4), (3.5) and (3.3) we obtain easily

dlogr)"’_ - (J_z_)
(3.6) ( Is =A B’T2 cl.

CaseI: 7is visible, i.e. ¢ = —1 or 0. We have

d];’fr <Aandr <2mfors >0
and
(3.7) r < 2me*®,
from which we find
(3.8) limg—,e r = 0.

Then, from (3.4) we obtain

dt 1 dlogr A _ 1 dlogr A
ds B ds B 4m® ds 4m’
=1 1——
r r
hence
_ 1 4m*—r? st
(3.9) Lt gl YA T e

by integration, where t, = t(s,), ro = r(so) and s, > 0. We obtain first
from (3.9) the inequality:

2
(3.10) liMgmse t < to+%log i 4m

2 2
m —7To
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On the other hand, we have from (3.7)

—2AS 1 <

and hence

1 4m?—
t>t+ 2]0g4m2 2+AfTAs—1

1 4m* — 1 sinh [A]s A
totg log 7 2 B b [Als 2 %)
i.e.
1 Am’—r* 1 ) 1
(3.11) 1>t ?IOg‘lz— +?log sinh ‘A|30+'2—Aso

—?!logsinh|A|s—|A|s}.

Since we have for x > 0

x -X x

log sinhx—x = log%—x < log%—x = —log 2,

we obtain the inequality

4m?—

(3.12) t>t,+ log4—2— ; log sinh | 4| sﬂ-l—; Aso+logv/2
for s > s,, which implies
(3.13) limgosmt 2 ty+log—F—— \/— log sinh | A |so+

Case II: 7 is non-visible, i.e. ¢ =1. (3.6) becomes
, dlogr)z_ R <4m )(_Ji_ )
(3.6 ( 987 ) = g2 L

If 2m < |J|, we have for 0 <r <2m

d 2
(3.14) (Klog ‘r) = A

and so we can treat ¥ as the previous case and find that (3.7), (3.8), (3.10)
and (3.13) also hold.
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In the following, we suppose
(3.15) |J] < 2m.

For r < |J|, (3.14) holds. If y passes through the hypersurface r = |J]
at p; = 7(s1), s» > 0, then we have

(3.7) r < |J|e® ™% for s > s,
from which we find

(3.8 lims..w 7 = 0.

We have also

4mt — s rids

, 1
(3.9) t = 2 log4 5 J2 +A

I

81 47712—1’2
where #; = t(s,) and which implies

4m*

(3_10') liMgnso t < b +—F L IOgTz—Jz—

On the other hand, we have from (3.7")
r? J?

< =
Am:—r? Aml el S-S _J?

and hence
1 4m? s szs
t>h+ 2 logﬁ*FA & Amiel s-su_J?
ot l 4m?—rt
=1 2 0g4 _J?
1 wisesy__d —as-sn] |7 _A
——z—[log[e“s x)_4m2e Al ,)]L‘_?(s_s])
1 4m?— 1 J?
>Hh++ log4—J—2+ log(1—4m2).
—?[]og emus—sn_lA |(s—31)],
i.e.

, 4m 1 J?
(3.12") t.>h + log———7+ im Jz 2 log(l—4m2),
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which implies

’ . 2 2
m —

Now, we investigate whether 7y can attain the hypersurface r = |J| in
this case. We obtain from (3.6)

(ﬂ) = r?A*—B(J*—r?)

ds
1

=?{(A2+1)r4—(4m2+Jz)r2+4m2le,
and

am dr
(3.16) =/ r

: T (A1) —(dmE +J?) rE +4mP)?
1 [em? dy

S 2)r Ay —(Am Iy +amt)T
where y = r®. Setting

fy) = (A 41y —(4m* +J%)y +4m*J?,

we find
AI?) = A < fldm?) =16 A’m".
If we have
2, g2
a7
i.e.
(3.17) 4m’ < JH(2A7+1).

then f(y) is monotone increasing and positive in J* < y < 4m’. Hence, s is

monotone decreasing with respect to r in |J| < r < 2m, and so 7 is mono-

tone decreasing from 2m to |J|. 7 can attain to the hypersurface r = |J|.
Next, we consider the case

(3.18) 4m? > J(2A*+1).
If the descriminant D of the quadratic function f(y) is negative

D = (4m*+J*) —16m*(A*+1)J* = (4m* —J*)* —16m’A’J* <0
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i.e.
(3.19) Am?*—J? <4m|A||J],

then we have fly) > 0 for J* <y <4m’. We can also claim the same fact
for y as above. When D = 0, we have the same.
Finally we consider the case

(3.20) 4m*—J* > 4m|A||J]
under (3.18). Then, there exist two roots v,, y, of f{y) = 0 such that
JE <y <y < 4ml.

For o =+vy <7 <1 =4+y,, (3.6) is impossible. Therefore, this
argument is stopped. We have only the formula (3.16) for r, < r < 2m.

Therefore, we find that the exceptional geodesic ¥ is the one which
satisfies the conditions:

c =1, (dr/ds)s-e <0, |J| <2m,
(3.21) 4m® > JH2A4°+1),
4m*—J* > 4m|Al|J].

Setting
u = |dr/ds|s—0, v = |d¢/ds|s=0.
we have from (3.4) and (3.5)

1
—_— 2- T e—
|J]| =4miv, |A| = om &

(3.21) can be represented as

u>0.0<v <1/2m
(3.21) dAm*vi42uit < 1,
Am*vi+2uv < 1.

From the last inequality of (3.21"), we find 2uv < 1, and hence
4mPvi 4242 < dmPi 4 2uv < 1.
Therefore, (3.21') is equivalent to

1

0<u<2v

—2miv, 0 <w <L
2m
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or

0 <wu, v=0.

1/2m -\
WEm ‘/ r=1/V/2(’ +2m")
T

0 m/V6 m \ u = (1/2v)—2m’v u

Theorem 3. Let (R', I') be the space with a smooth general connection
I with the same system of geodesics determined by the metric g :
4m?

do? = —(1 —-—Tz—-)dtz +%dtd-r +7*(d@* +sin’ §d¢’)

on r %+ 0. Any geodesic y which enters into U(r < 2m) through oU trans-
versally at ¥(0) can not tend to A (r =0) if and only if

AL ATEN W A
1= (l r? )(ds) +r ds ds tr ds tsin®f ds

and
1 . 1
0<u<2——2mv,0<v<—0r0 <u, v =0,
v 2m
where
___dL o ﬁz ., (Q)ZI]/Z
w={g), = (5] reme( )]
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