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AN ELEMENTARY PROOF OF A THEOREM
OF MARGULIS FOR KLEINIAN GROUPS

Tomio INADA

1. The purpose of the present paper is to give an elementary proof
of a theorem of Margulis [6] for Kleinian groups, which is fundamental
in the modern theory of Kleinian groups and 3-dimensional hyperbolic
orbifolds ([7]).

An elementary proof of 2-dimensional version of the Margulis theorem
was given by Marden [5].

Our proof consists of a series of lemmas concerning elliptic trans-
formations and an application of Jdrgensen's result [4]. If we consider
only groups without torsion, then our proof would be very easy and quick.
But, as in the case of Marden, we do not require groups to be finitely
generated, geometrically finite, nor exclude torsions.

2. A Moébius transformation z = (az+b)/(cz+d) ad—bc =1, is
lifted from the extended complex plane é = CU ]|} to a conformal
homeomorphism of upper half 3-space H* = {h = z+tj|z € C, t > 0} (where
j is one of quaternion units) onto itself. The extention is then h— h' =
(ah+4b)(ch+d)~".

A discrete subgroup G of the group of the Mobius transformations
which preserve H® is called a Kleinian group. The set A(G) of limit
points lies in 8H® = C. The Kleinian groups for which card A(G) <2
are called elementary.

We will use the notation D(p; r) for the (non-Euclidean) ball with
radius 7 and center at p, and set

KG;p;r) =g €G: g(Dlp; ) N D(p; r) + ¢|
G(p; r) = subgroup of G generated by I(G: p; r).

What we are going to prove is the following :
Theorem (Margulis). There exists a constant r > 0 with the property

that, for any point p € H® and for any Kleinian group G, the subgroup
G(p; ) is elementary.

If G leaves a disc A € 8H® invariant, then we call G a Fuchsian
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group.

Corollary (Marden [5]). There exists a constant r > 0 with the prop-
erty that, for any point p € H® and for any Fuchsian group G, either
G(p; r) is cyclic, or

Glp; r) = Chogsh? =g* = id.)

Jfor some h, g € G(p; 7).

3. As is well known, elementary Kleinian groups are classified into
the following three types (see [2][3]).

Type 1: A(G) = ¢.
In this case, G is a finite group.

Lemma 1 ([1]. Theorem 5.1). For a Kleinian group G, the following
conditions are equivalent:

(i) G is finite;

(ii) apart from id. G contains only elliptic element;

(iii) the elements of G have a common fixed point t in H°.

Type 2: A(G) = {p| (» € C).

In this case, G contains a parabolic transfomation g with a fixed point
pE é

Type 3: A(G) =1ip.ql, p.q € C and p + q.

In this case, G contains a loxodromic transformation g with the fixed
points p, q € C. Every element of G leaves {p, q| invariant.

If g € G—{id.|is a non-parabolic element, the geodesic A, in H® joining
the fixed points of g is called the axis of g.

Lemma 2. Let g and h be elliptic. If G = {g, h) is of Type 3. then
gt =h?=id.

Proof. By conjugation, we may assume that every element of G leaves
{0, oo} invariant and is therefore of the form

zH k2, x+=0,s = +1.
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glz) = mz and h(z) = x2, |u|=1({=1,2),

then G is a finite cyelic group.
Suppose that

g(z) = nz (|xn|=1), and k(z) = nz™' = /2. u F0.
Then the axis A, of g is the j-axis and the axis A, of h is the geodesic
with end points v/x; and —y/x;. Since Az and A, intersect at v |x.|j, g

and h have a common fixed point v | % |j in H'. By Lemma 1, G is of Type
1. Also, we obtain that

g(z) = 7‘12'-1 = XI/Z and h(z) = 7(22_‘ = xz/z
for some x., x» € C—|0]. Thus g* = h* = id.

The following condition for a finitely generated Kleinian group to be
elementary is a direct consequence of the definition of the elementary
groups in [2] p. 83, but will be useful in the sequel.

Lemma 3. Let G = {gi,....gx) be a finitely generated Kleinian group.

(a) If there exists a point p € H'UC such that g{p) = p for all
1 £i=<n, then G is elementary.

(b) If there exist the two distinct points p, q € C such that g: leaves
Ip.ql invariant for all 1 < i < n, then G is elementary.

4. In this section, we shall study groups generated by two elliptic
transformations.

Lemma 4. Let g and h be elliptic and suppose that o Kleinian group
G = {g.h) is non-elementary. Then

(a) either gh or ghg™'h™"' is laxodromic;

(b) if ghg™'h™" is loxodromic and if g* ¥ id., then

(g.ghg™'h™")

is non-elementary.

Proof. Suppose that neither gh nor ghg™'h™' are loxodromic. We
may assume without loss of generality that

glz) = az/a lal=1, o #+ 1.

and
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h(z) = (az+b)/(cz+d), ad—bec = 1.
The elements g, gh and ghg'h~" have real trace (up to signature)

A=a+d 1= aa+ad
y=2—belo—a)’ = 2+2bc|a—al?

respectively. On solving this simultaneous equation with respect to a and
d (as Aand yare real) we find @ = d. Next. as ghg™'h™' is not loxodrom-
ic, we have y=2 and so bc = 0. If 6 =0, then g(0) = A(0) = 0. By
Lemma 3(a), G is elementary, being a contradiction. In case ¢ = 0, we
have g(©0) = h{(0) = oo, and a similar contradiction.

If h is such that be < 0, we may select a positive ¢ with t* = |b/c|
so that & = —t*c. Therefore

h(z) = (az—t%c)/(cz+a).
As

h(tj) = (atj—t2c)(ctj+a)™"
= tlaj—tc)(ctj+a)/(|ct]*+ |al®)
= t}],

we have g(tj) = h(tj) = tj. By Lemma 1, G is of Type 1, and we have
a contradiction.

Suppose that H ={g, ghg™'h™") is elementary. As ghg~'h~' is loxo-
dromic, H is of Type 3, so {g,hg™'h™')(= (g, ghg™'h™")) is of Type 3.
Because g and hg~'h~' are elliptic, Lemma 2 is applicable for (g, hg™'h~").
Therefore g is of order 2, and we arrive at a contradiction, too.

1

Lemma 5. Let g and h be of order 2. If g = (g, h) is a Kleinian
group, then G is elemeniary.

Proof. Suppose that G is a non-elementary Kleinian group. By Lemma
4, gh or ghg™'h™' = (gh)? is loxodromic. Therefore gh is loxodromic.

Let p.q € C be the fixed points of gh. As gh{p) = p, we have h(p)
=g '(p) = g(p). Hence gh(g(p)) = ghh(p) = g(p). Similarly we have
gh(g(q)) = g(q). Therefore an element g leaves {p,q} invariant. By
Lemma 3, {g,gh) = (g, h) = G is elementary.

5. In this section, we investigate subgroups of finitely generated
groups with some properties.



AN ELEMENTARY PROOF OF A THEOREM OF MARGULIS FOR KLEINIAN GROUPS 181

Lemma 6. Let G = {g......gn) be a Kleinian group such that all
subgroups G, = {gi. g;) (1 =i, j=n) are elementary. If G is non-
elementary, then g.,....8x are all elliptic.

Proof. 1f g, is parabolic, then all G,; = {(g,,8;) (1 =j=n) are
of Type 2. Let p be a parabolic fixed point of g,. Since g/{p) = p for
all j (1 =j=n), by Lemma 3(a), G is elementary.

If g, is loxodromic, then all G,; = {g..g,> (1 =j =n) are of Type
3. Let p and ¢ be the fixed points of g,. Since all g (1 = j =< n) leave
{p, ¢! invariant, by Lemma 3(b), G is elementary.

Lemma 7. Let G = {gi,...,8n) be a non-elementary Kleinian group.
Suppose that all subgroups G, 1 < i,j = n) are elementary and that one
of them is of Type 2. Then there exist g;,g; and gr (1 = i,j.k=n)
such that the subgroup (g, g:8;8; 'g;"') is non-elementary where g,g,g:'g;"
is parabolic.

Proof. We may assume that G,, = (g, g,) is of Type 2. By Lemma
6, g, and g, are elliptic. We may assume that g, and g, have a common
fixed point o0 and are therefore of the forms

g(z) = az/a la|=1, o® *+1,
g:z) = (az+b)/d ad = 1.

Then we have
8:8:87'8:'(z) = z+ab(’—1).

If b =0, then G, is elliptic cyclic. Hence ab(o®—1) #+ 0, so gig87'g;"
is parabolic.

Suppose that {(gx. g18.8:'gs ') is elementary for every k (1 < k < n).
Then {gx, &18:87'g:"') is of Type 2. and g, fixes . By Lemma 3(a), G
is elementary.

Lemma 8. Let G = {g,....,gx) be a non-elementary Kleinian group.
Suppose that all subgroups G,; = {g:, g;) (1 =i.j=<n) are elementary
and that one of them is of Type 3. Then there exist g;, g; and gx (1 < i,
J, k = n) such that the subgroup {gx. g:&;87'g;") is non-elementary where
g:8;87 '’ is loxodromic.

Proof. We may assume that G,, is of Type 3, and every element of
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G, leaves {0, co| invariant. By Lemma 6, g, and g, are elliptic. On
applying Lemma 2, we have

glz) =wn/2  xw+0(G(=1,2)
(see the proof of Lemma 2). Therefore
818:87'82'(2) = xlz/ %

If g.8.87"'g7" is not loxodromic, then |x |= |x|. The axes Ag and A,
intersect at v/ | x| j, and so g:(v/ |x: |J) = gz(mj) =+ |x|j. By Lemma
1, G,, is of Type 1; therefore, we arrive at a contradiction.

Suppose that {(gx, g18:87'g2') is elementary for every ¥ (1 <k < n).
Then {gx, g:8.87'g2"') is of Type 3, and g, leaves |0, | invariant. By
Lemma 3(b), G is elementary.

Lemma 9. Let G = {g,,....&n) be a non-elementary Kleinian group
and suppose that all G,; (1 =i, j < n) are of Type 1. Then there exist
8,85 and gy such that either (g, gx8:8;) or {g:, 8x&:&;) is non-elementary
where grg:g; is loxodromic,

Proof. First we shall show that for each g, there exist g and
&, such that g.g.xg8;m is loxodromic. Assume that £ = 1. If every G,
(1 =i =n) is cyclic, then G is cyclic. Therefore, we may assume that
G.. is not cyclic. By Lemma 1,g, and g, have a unique common fixed
point t, in H®. If every G,; (3 = j <n) is cyclic, then G is elementary.
Hence there exists g; such that g, and g; have a unique common fixed
point t; (t; += t,) in H. We put j = 3.

We may assume that

gz) =az/a o +1, |a|]=1.
Set
giz) = (aiz+b,)/(ciz+d;) ad,;—bic, =1 (i=2,3)
and
8:8:(z) = (Az+B)/(Cz+D).
As |h € H*: g,(h) = h} = |tj: t> 0}, we have t; = #;j and #, ¥+ t;. And

the equation g;(#;j) = #;,j implies that b, = —#}c;. Hence a simple com-
putation shows that



AN ELEMENTARY PROOF OF A THEOREM OF MARGULIS FOR KLEINIAN GROUPS 183

A = aya;—1ti¢,c; and D = —tic,C3+ @, 0.

Now let us show that g,g.g; is loxodromic. If g,g,8; is not loxodrom-

ic, then g.g: and g:(g.gs) have real traces. We have A = D, so that
C.cy{2—1%) = 0.

Since t, = t,, this implies ¢, =0 or ¢; = 0. In the case where ¢, =0
g:1(0) = g,(0) = oo, therefore this contradicts the fact that g, and g,
have a unique common fixed point t;. In the same way, if ¢; = 0, then we
have a contradiction. Therefore g,5,8; is loxodromic.

Next, assume the lemma is false. For each g, (I =k = n), there
exist gux and g such that gyguugum is loxodromic. Then {(gx, gx 8 ngim)
and <gi{k'n gl:gifmgj(k:-> are of Type 3. As <gk~gt(k)gj(k}>(= (gn,gkgumgm>)
is of Type 3 and as both gx and gukgsm (€ Gixw) are elliptic, by Lemma
2, every gx (1 =k =n) is of order 2.

We may assume that

gr8ungin(z) = xz |x|*+1, x=+0,
and (by the proof of Lemma 2)
gk(z) = )CK/Z xk#:O.

As gux is of order 2, and as (gux. €x&ungs) is of Type 3, we have
gim(z) = —=z Oor giik}(z) = liun/z (ch) * O)-
If gun(z) = —2, then

gkgj-fk)(z) = 8k (gt{k)(gk (gkgﬁk}gjlk})))(z)
= — xz.

As Gy ;i is of Type 1, gigm is elliptic. Hence we have |x|=1, this
contradict our assumption.

Let ganlz) = xan/z. As g8um(z) = 2/ xu is elliptic, we have
| kx| = | xur|. Because
gﬂm(z) = giik»(gk(gk.gilkzgj(k)))(z) = x,;m;.xz//xk
and is elliptic, we have |xumx/xx|= |x|=1. This contradicts our as-

sumption |x|= 1.

Remark. By Lemmas 6—9, if G = {gi,...,g,) (n =3) is a non-



184 T. INADA

elementary Kleinian group, then there exsist i,j,k (1 <i,j,k < n) such
that (g, g, gx) is non-elementary.

6. Before proving the theorem we need three more lemmas.

Lemma 10, Let |gplaey be a sequence of Mébius transformations
with the property that there exist a point p € H* and a number r > 0 such
that

gD(j; r))ND(jir) + ¢
Then there is a subsequence converging to a Mabius transformation.

Proof. We may assume that p = j. If go(z) = (anz+b,)/(cnz+dy)
(andn—bncn = 1) are such that g.(D(j; r))ND(j; r )+ &, then d(j, ga(j))
< 27, where d(.,.) is the hyperbolic distance in H®. By [1], [2], we have

”gnl!z = Ian|2+ Ibn|2+ Icn|2+ ldnl2 = 2 cosh [d(j, gn(j))]
< 2cosh (271),

a conclusion.

Lemma 11 ([4], Lemma 2). Let |gnlnen and |hnlnen be two se-
quences of Mobius transformations converging to Mabius transformations g
and h. respectively. Suppose that, for each n € N the group {gn,hns) is
discrete and non-elementary. Then the following is lrue;

(a) g is not the identity.

(b) If g is elliptic, then the orders of g, are constant for all large
indices. .

The proof of following lemma is similar to the Marden’s proof of our
result for Fuchsian groups [5].
Lemma 12. There exists an r > 0 with the following property: Given
any point p € H® and any Kleinian group G, if
KG; p; r) = lg1.....8n1
holds, then all G,, = (g, g,) (1 =i,j = m) are elementary.

Proof. We may assume that p = j. Assume that the conclusion of
the lemma is false. There is a group G, which contains elements gn, hn
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€ I(Gy; j; 1/n) such that the subgroup H, = {g,, hn) is non-elementary.

By Lemma 10, for subsequences, which are denoted by {g,! and |A,|
as well, g = limp.. g, and h = lim,... h, exist. As a consequence of
Lemma 11(a). neither g nor h is the identity. We have g(j) = j and
h(j) = j. so that g and h are elliptic. Hence by Lemma 11(b), for all
large indices, g, and h, have the constant order 4 v respectively. By
Lemma 5, if u= v= 2, then H, is elementary.

If £+ 2, by Lemma 4, H, contains a subgroup H, or H, with the
following properties :

(a) H, = {gn, nhn) is non-elementary and g,h, is loxodromic:

(b) Hi = {gn.8nhn&n'h7') is non-elementary and gnh.gx'hn' is loxo-
dromic.

If H, appears for an infinitely many =, then for a subsequence (with
the same indices, for simplicity) gh = lim,.. &nrhr exists. As a conse-
quence of Lemma 11(a), gh is not the identity. We have gh(j) = j. Hence
by Lemma 11(b), for all large indices gnh, are elliptic. This fact con-
tradicts property (a).

If H; appears for an infinite number of n, then a subsequence with
ghg 'h™' = lim,.. gnhngn'hz' exists. As a consequence of Lemma 11(a),
ghg 'h™! is elliptic. Hence by Lemma 11(b), for all large indices gnhn.gn'h7'
are elliptic. This fact contradicts property (b).

For v # 2, the argument is completely the same.

Proof of Theorem. Assume that the conclusion of Theorem is false.
We may assume that p = j and that for each n, there is a group G, such
that G,(j; 1/n) is non-elementary. We consider only such 1/n that satis-
fies Lemma 12.

Set Hy, = Gu(j: 1/n) and I(Gn: j: 1/n) = |gny.....8nn1. In accord-
ance with Lemma 12, each (H,);; = {gn: &n,) is elementary. By Lemma
6, for all 1 =1i,j = m gn,; are elliptic. As a consequence of Lemma 7,
Lemma 8. and Lemma 9. the group H, contains one of the following non-
elementary subgroup H,, H,, H,:

(a) Hy= (gnr EniBni8ni€ns) and gn:gn,&ni&ny is non-elliptic;

(b) H; = {gnx. 8nr&ni8ny) and gnx&n:gn, is loxodromic:

(c) Hi= (gni 8nr8nifns) and gnx&n:gn, is loxodromic.

Clearly one of the cases (a).(b), and (c) occurs for an infinitely many =.
In any case, we can obtain a contradiction by the same argument as in the
latter half of the proof of Lemma 12.



186

T. INADA

7. Proof of Corollary. 1If r is a positive number given in Theorem,

then G(p; r) is elementary. An elementary Fuchsian group is known to

be cyclic or (h,g: h* = g* = id.) for some h, g.

A

A
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