BORDISM THEORY WITH REALITY AND DUALITY THEOREM OF POINCARÉ TYPE

MICHIKAZU FUJII

Introduction. In the paper [10] we introduced the cobordism theory with reality. The purpose of this paper is to form a bordism theory of closed differentiable manifolds with a given real structure on the stable tangent bundle.

In this paper, by a τ -space (X, t) we mean a Hausdorff space X together with an involution $t: X \to X$, and by a τ -map we mean an equivariant map between τ -spaces (which we called a real space and a real map in the previous papers [10], [11]). By a τ -manifold (M, t) we mean a compact C^{∞} -manifold M together with a C^{∞} -involution $t: M \to M$.

In § 1 we consider weakly real structures on equivariant vector bundles over τ -spaces. In § 2 we introduce an R-structure on the τ -manifold, which is an equivalence class of the real structures on the stable tangent bundle. The τ -manifold with an R-structure is called an R-manifold. In § 3 we form the bordism groups of R-manifolds and in § 4 we show that there is a duality of Poincaré type between the bordism groups and the cobordism groups with reality.

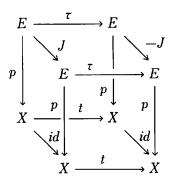
1. Weakly real structures of equivariant vector bundles. By a τ -space (X, t) we mean a Hausdorff space X together with an involution $t = t_X : X \to X$, and by a τ -map we mean an equivariant map between τ -spaces.

By an equivariant vector bundle $\xi = (E, p, X, \tau)$ over a τ -space (X, t) we mean a vector bundle (E, p, X) such that

- i) the total space (E, τ) is a τ -space, and
- ii) the projection $p: E \to X$ is a τ -map.

Furthermore, by a real vector bundle $\xi = (E, p, X, J, \tau)$ over a τ -space (X, t) we mean an equivariant vector bundle (E, p, X, τ) such that

iii) $J:E\to E$ is a bundle automorphism such that $J^2=-id$, $\tau J=(-J)\tau$ and p(-J)=p. That is, the diagram



commutes, (E, p, X, J) is a complex vector bundle and the bundle map $\tau: E \to E$ is an isomorphism from the complex vector bundle (E, J) to the conjugate bundle (E, -J). (J, τ) will be called a *real structure* of the vector bundle $\xi = (E, p, X)$.

Let $\xi_i = (E_i, p_i, X_i, J_i, \tau_i)$ be a real vector bundle over a τ -space (X_i, t_i) (i = 1 or 2). Then a real vector bundle map $f: \xi_1 \to \xi_2$ is a bundle map f such that $f\tau_1 = \tau_2 f$ and $fJ_1 = J_2 f$. If $(X_1, t_1) = (X_2, t_2)$ and f is a bundle isomorphism, then the real bundle map $f: \xi_1 \to \xi_2$ is said to be an isomorphism of real vector bundles. When $(X_1, t_1) = (X_2, t_2)$, we can form a Whitney sum of the real vector bundles ξ_1 and ξ_2 by defining

$$\xi_1 \oplus \xi_2 = (E_1 \oplus E_2, p, X_1, J_1 \oplus J_2, \tau_1 \oplus \tau_2).$$

Let R^n be the *n*-dimensional Euclidean space and let $R^{r,s} = R^r \times R^s$. Consider the *standard involution* $c_{r,s}$ on $R^{r,s}$ defined by

$$c_{r,s}(x_1,...,x_r, y_1,...,y_s) = (-x_1,...,-x_r, y_1,...,y_s)$$

for $(x_1,...,x_r,y_1,...,y_s) \in R^{r,s}$. Furthermore, consider the standard map $I_n: R^{n,n} \to R^{n,n}$ defined by

$$I_n(x_1,...,x_n, y_1,...,y_n) = (y_1,...,y_n, -x_1,...,-x_n)$$

for $(x_1,...,x_n, y_1,...,y_n) \in \mathbb{R}^{n,n}$. Then it holds a relation

$$c_n I_n = -I_n c_n$$

where $c_n = c_{n,n}$. That is, I_n is the standard complex structure on $R^{n,n}$ ($\equiv R^{2n} \equiv C^n$), c_n is the standard conjugation on $R^{n,n}$ and (I_n, c_n) is the standard real structure on $R^{n,n}$ in the sense of Atiyah [5].

Real vector bundles $\xi = (E, p, X, J, \tau)$ and $\eta = (E', p', X, J', \tau')$ over a τ -space (X, t) are said to be *stably equivalent* if and only if there exist

positive integers m, n and an isomorphism

$$\xi \oplus (X \times R^{m,m}, p_1, X, id \times I_m, t \times c_m)$$

$$\cong \eta \oplus (X \times R^{n,n}, p_1, X, id \times I_n, t \times c_n)$$

of real vector bundles.

Let $\xi = (E, p, X, \tau)$ be an equivariant vector bundle over a τ -space (X, t). When there exist positive integers r, s and a real structure $(J, \tau \oplus c_{r,s})$ of the vector bundle $\xi \oplus (X \times R^{r,s}, p_1, X, t \times c_{r,s})$, the real structure $(J, \tau \oplus c_{r,s})$ will be called a weakly real structure of the equivariant vector bundle ξ . Two weakly real structures $(J_1, \tau \oplus c_{p,q})$ and $(J_2, \tau \oplus c_{r,s})$ of the equivariant vector bundle ξ are said to be equivalent if the real vector bundles $(E \oplus X \times R^{p,q}, p, X, J_1, \tau \oplus c_{p,q})$ and $(E \oplus X \times R^{r,s}, p, X, J_2, \tau \oplus c_{r,s})$ are stably equivalent.

Let $\xi=(E,\ p,\ X,\ au)$ and $\eta=(E',\ p',\ X,\ au')$ be equivariant vector bundles over a au-space $(X,\ t)$ and let $h:\xi\to\eta$ an isomorphism of equivariant vector bundles. Let $(J,\ au'\oplus c_{r,s})$ be a weakly real structure of η . Then a weakly real structure $(h^*J,\ au\oplus c_{r,s})$ of ξ is induced by the isomorphism

$$h \oplus id : \xi \oplus (X \times R^{r,s}, p_1, X, t \times c_{r,s})$$

 $\cong \eta \oplus (X \times R^{r,s}, p_1, X, t \times c_{r,s})$

of equivariant vector bundles, where $h^*J = (h \oplus id)^{-1}J(h \oplus id)$.

Often we denote the equivariant vector bundle $(X \times R^{r,s}, p_1, X, t \times c_{r,s})$ simply by $(\underline{R}^{r,s}, c_{r,s})$ or $\underline{R}^{r,s}$, and denote the real vector bundle $(X \times R^{m,m}, p_1, X, id \times I_m, t \times c_m)$ simply by $(\underline{R}^{m,m}, I_m, c_m)$ or $\underline{R}^{m,m}$.

2. R-manifolds. By an m-dimensional τ -manifold (M, t) we mean an m-dimensional compact C^{∞} -manifold M together with a C^{∞} -involution $t: M \to M$. As for τ -manifolds we have the following imbedding theorem.

Proposition 2.1. Any m-dimensional τ -manifold (M, t) without boundary can be equivariantly imbedded as a closed subset of $R^{n,n}$ for some positive integer n.

This is deduced from a more general situation [6], Theorem 4.1, in the category of C^{∞} -manifolds with G-action and equivariant C^{∞} -maps.

Furthermore, in virtue of the imbedding theorem, we have the collaring theorem, approximation theorems and the straightening angles in our cate-

gory.

Let (M, t) be a τ -manifold of dimension m and let $\tau(M)$ be its tangent bundle. When there exists a weakly real structure $(J, dt \oplus c_{\tau,s})$ of the equivariant vector bundle $\tau(M)$, an equivalence class $\Phi = \{(J, dt \oplus c_{\tau,s})\}$ of the weakly real structure $(J, dt \oplus c_{\tau,s})$ is called an R-structure of the τ -manifold (M, t). An R-manifold (M, Φ) is a pair consisting of a τ -manifold (M, t) and an R-structure Φ of (M, t). Often we denote an R-manifold (M, Φ) simply by M.

Let (M, Φ) be an R-manifold and $(J, dt \oplus c_{r,s})$ a representative of its R-structure Φ . Then $(J \oplus (-I_1), dt \oplus c_{r,s} \oplus c_{1,1})$ is also a weakly real structure of the tangent bundle $\tau(M)$. Now, define $-(M, \Phi)$ by $-\Phi = |(J \oplus (-I_1), dt \oplus c_{r,s} \oplus c_{1,1})|$ and $-(M, \Phi) = (M, -\Phi)$.

Let (M, Φ) be an R-manifold with boundary ∂M and $(J, dt \oplus c_{r,s})$ a representative of its R-structure Φ . In virtue of the equivariant collaring theorem, there exists an isomorphism of equivariant vector bundles

$$h: \tau(\partial M) \oplus \underline{R}^{0,1} \to \tau(M) | \partial M,$$

where the positive unit vector of $\underline{R}^{0,1}$ corresponds to an inward unit normal vector in $\tau(M) \mid \partial M$ by h. Hence $(h^*(J \mid \partial M), d(t \mid \partial M) \oplus c_{r,s+1})$ is a weakly real structure of $\tau(\partial M)$. Let us define $\partial(M, \Phi)$ by $\partial \Phi = |(h^*(J \mid \partial M), d(t \mid \partial M) \oplus c_{r,s+1})|$ and $\partial(M, \Phi) = (\partial M, \partial \Phi)$.

Proposition 2.2. If a τ -manifold (M, t) of dimension m has an R-structure Φ , then the fixed point set F of M by the involution t has a uniform dimension.

Proof. Let $(J, dt \oplus c_{r,s})$ be a representative of Φ . For any $x \in F$, $((\tau(M) \oplus \underline{R}^{r,s})|x, J)$ is a complex vector space and $dt \oplus c_{r,s}$ is a conjugate linear involution on it. Therefore the dimension of the fixed point set of it is equal to m+r+s/2. Hence dim $F\tau(M)|x=m+r-s/2$, where $F\tau(M)|x$ means the fixed point set of $\tau(M)|x$. This depends only on the class Φ .

3. Bordism groups of *R*-manifolds. Let $\mathfrak{D}_{p,q}$ denote the family of all p+q dimensional *R*-manifolds with a weakly real structure of the type $(J, dt \oplus c_{q+r,p+r})$ for some integer r as a representative of the *R*-structure.

Fix a pair (X, A) consisting of a τ -space X and a τ -subspace A. A (p, q)-singular R-manifold in (X, A) is a triple (M, Φ, f) consisting of

a p+q dimensional R-manifold (M, Φ) in $\mathfrak{D}_{p,q}$ and a τ -map $f:(M, \partial M) \to (X, A)$. If $A = \phi$, then of course $\partial M = \phi$ also.

A (p,q)-singular R-manifold (M,Φ,f) in (X,A) is said to bord if and only if there is a p+q+1 dimensional R-manifold (W,Ψ) in $\mathfrak{D}_{p,q+1}$ and a τ -map $F:W\to X$ for which

- i) M is contained in ∂W as a regular τ -submanifold, and
- ii) $\partial \Psi | M = \Phi$, F | M = f and $F(\partial W M) \subset A$.

From two (p, q)-singular R-manifolds (M_1, Φ_1, f_1) and (M_2, Φ_2, f_2) a disjoint union $(M_1 \cup M_2, \Phi_1 \cup \Phi_2, f_1 \cup f_2)$ is defined, where $M_1 \cap M_2 = \phi$, $\Phi_1 \cup \Phi_2 | M_i = \Phi_i$ and $f_1 \cup f_2 | M_i = f_i$. Define $-(M, \Phi, f) = (M, -\Phi, f)$. A pair (M_1, Φ_1, f_1) and (M_2, Φ_2, f_2) of (p, q)-singular R-manifolds in (X, A) are bordant if and only if the disjoint union $(M_1 \cup M_2, \Phi_1 \cup -\Phi_2, f_1 \cup f_2)$ bords in (X, A).

Lemma 3.1. Let (M, Φ) be an R-manifold in $\mathfrak{D}_{\rho,q}$. If two τ -maps f, $g:(M, \partial M) \to (X, A)$ are homotopic as τ -maps, then (p, q)-singular R-manifolds (M, Φ, f) and (M, Φ, g) in (X, A) are bordant.

Proof. There is a τ -homotopy $F:(M\times I,\ \partial M\times I)\to (X,\ A)$ such that $F(x,\ 0)=f(x)$ and $F(x,\ 1)=g(x)$ for $x\in M$, where the involution acts trivially on $I=[0,\ 1]$. Let $p:M\times I\to M$ be the projection. Then there exists an isomorphism

$$\lambda: \ \tau(M \times I) \to p^* \tau(M) \oplus \underline{R}^{0,1}$$

of equivariant vector bundles. Let $(J, dt \oplus c_{\tau,s})$ be a representative of the R-structure Φ . Then a weakly real structure $(J', d(t \times 1) \oplus c_{\tau+1,s})$ of $\tau(M \times I)$ is induced by isomorphisms

$$\tau(M \times I) \oplus \underline{R}^{\tau+1,s} \xrightarrow{\lambda \oplus 1} p^* \tau(M) \oplus \underline{R}^{0,1} \oplus \underline{R}^{\tau+1,s}$$
$$\xrightarrow{\alpha} p^* \tau(M) \oplus \underline{R}^{\tau,s} \oplus \underline{R}^{1,1}$$

where $J' = (\lambda \oplus 1)^{-1} \alpha^{-1} (p^*J \oplus I_1) \alpha(\lambda \oplus 1)$. Now, let us define $\Psi = \{(J', d(t \times 1) \oplus c_{r+1,s})\}$. Then we may show that

- 1) $M \cup M$ is a regular τ -submanifold of $\partial (M \times I)$,
- 2) $F(\partial(M\times I) M\times 0 \cup M\times 1) \subset A$,
- 3) $F|M\times 0 \cup M\times 1 = f \cup g$, and
- 4) $\partial \Psi | M \times 0 = \Phi$ and $\partial \Psi | M \times 1 = -\Phi$.

This shows that (M, Φ, f) and (M, Φ, g) are bordant.

q. e. d.

By a parallel argument to the complex bordism theory we may show that the bordism relation is an equivalence relation. Denote the *bordism* class of (M, Φ, f) by $[M, \Phi, f]$, and the collection of all such bordism classes by $\mathfrak{M}\mathfrak{R}_{p,q}(X, A)$. Then $\mathfrak{M}\mathfrak{R}_{p,q}(X, A)$ is also an abelian group by the disjoint union. Given a τ -map $\psi\colon (X, A)\to (Y, B)$, there is associated a natural homomorphism $\psi_*:\mathfrak{M}\mathfrak{R}_{p,q}(X, A)\to\mathfrak{M}\mathfrak{R}_{p,q}(Y, B)$ given by $\psi_*([M, \Phi, f])=[M, \Phi, \psi f]$. There is also a homomorphism $\partial:\mathfrak{M}\mathfrak{R}_{p,q}(X, A)\to\mathfrak{M}\mathfrak{R}_{p,q-1}(A)$ given by $\partial([M, \Phi, f])=[\partial M, \partial \Phi, f|\partial M]$. Hence we have

Theorem 1. For any integer p, $\mathfrak{MR}_{p,*}(\ ,\)$ is a generalized homology theory on the category of pairs of τ -spaces and τ -maps of pairs.

4. Poincaré duality. Let (M, Φ) , (N, Ψ) be R-manifolds and $(J_M, dt_M \oplus c_{P,Q})$, $(J_N, dt_N \oplus c_{T,S})$ representatives of Φ , Ψ respectively. Let

$$f: M \to N$$

be a τ -imbedding. A real structure (J, e) of the normal bundle $\nu(f)$ is called a *proper real structure* if and only if two real vector bundles $(\nu(f), J, e) \oplus (\tau(M) \oplus \underline{R}^{p,q}, J_M, dt_M \oplus c_{p,q})$ and $(f^*\tau(N) \oplus \underline{R}^{r,s}, J_N, dt_N \oplus c_{r,s})$ are stably equivalent.

Proposition 4.1. Let (M, Φ) , (N, Ψ) be R-manifolds and $f: M \to N$ a τ -imbedding. If there is a proper real structure of $\nu(f)$, then the real structure is unique up to stable equivalence.

Proof. Let (J_1, e_1) and (J_2, e_2) be two proper real structures of $\nu(f)$. Then there exist representatives $(J_M, dt_M \oplus c_{\rho,q})$ and $(J_N, dt_N \oplus c_{r,s})$ of Φ and Ψ respectively, such that

$$(\nu(f), J_{1}, e_{1}) \oplus (\tau(M) \oplus \underline{R}^{\rho,q}, J_{M}, dt_{M} \oplus c_{\rho,q})$$

$$\cong (f^{*}\tau(N) \oplus \underline{R}^{r,s}, J_{N}, dt_{N} \oplus c_{r,s})$$

$$(\nu(f), J_{2}, e_{2}) \oplus (\tau(M) \oplus \underline{R}^{\rho,q}, J_{M}, dt_{M} \oplus c_{\rho,q})$$

$$\cong (f^{*}\tau(N) \oplus R^{r,s}, J_{N}, dt_{N} \oplus c_{r,s})$$

as real vector bundles. Since M is compact, there exist a real vector bundle ξ over M and a positive integer k satisfying

$$(\tau(M) \oplus \underline{R}^{p,q}, J_M, dt_M \oplus c_{p,q}) \oplus \xi \cong (\underline{R}^{k,k}, I_k, c_k)$$

as real vector bundles (cf. [10], Prop. 1.4, 1.7). Hence we have

$$(\nu(f) \oplus \underline{R}^{k,k}, J_1 \oplus I_k, e_1 \oplus c_k) \cong (\nu(f) \oplus \underline{R}^{k,k}, J_2 \oplus I_k, e_2 \oplus c_k)$$
 as real vector bundles. q. e. d.

Proposition 4.2. Let (M, Φ) and (N, Ψ) be R-manifolds in $\mathfrak{D}_{\rho,q}$ and $\mathfrak{D}_{m,n}$ respectively, and let $f: M \to N$ be a τ -imbedding. If m-n = p-q, then there is a positive integer k such that, for a τ -imbedding

$$f': M \to R^{k,k} \times N$$

defined by f'(x) = (0, f(x)) for $x \in M$, the normal bundle $\nu(f')$ has a proper real structure.

Proof. Since m-n=p-q by the assumption, we may choose $(J_M, dt_M \oplus c_{q+s,p+s})$ and $(J_N, dt_N \oplus c_{n+r,m+r})$ satisfying m+r=p+s and n+r=q+s as representatives of Φ and Ψ respectively. In virtue of [10], Propositions 1.4 and 1.7, there exist a real vector bundle $\xi = (E(\xi), J_{\xi}, e_{\xi})$ over M and a positive integer k such that

$$(E(\xi), J_{\xi}, e_{\xi}) \oplus (\tau(M) \oplus \underline{R}^{q+s,\rho+s}, J_{M}, dt_{M} \oplus c_{q+s,\rho+s})$$

$$\cong (\underline{R}^{k,k}, I_{k}, c_{k})$$

as real vector bundles. Then we have isomorphisms

$$\nu(f') \cong \underline{R}^{k,k} \oplus \nu(f)$$

$$\cong E(\xi) \oplus \tau(M) \oplus \underline{R}^{q+s,\rho+s} \oplus \nu(f)$$

$$\cong E(\xi) \oplus \nu(f) \oplus \tau(M) \oplus \underline{R}^{q+s,\rho+s}$$

$$\cong E(\xi) \oplus f^*\tau(N) \oplus \underline{R}^{n+\tau,m+\tau}$$

of equivariant vector bundles. Hence a real structure of $\nu(f')$ is induced by the above isomorphisms from the real structure $(J_{\xi} \oplus J_N, e_{\xi} \oplus dt_N \oplus c_{n+r,m+r})$ of $E(\xi) \oplus f^*\tau(N) \oplus \underline{R}^{n-r,m+r}$. This real structure of $\nu(f')$ is a proper real structure and the proposition follows.

q. e. d.

Let (X, Ψ) be an R-manifold without boundary and belong to $\mathfrak{D}_{m,n}$. Let $MR^{\tau,s}(X)$ be the real cobordism group introduced in [10]. A natural duality homomorphism

$$D_R: \mathfrak{MR}_{\rho,q}(X) \to MR^{m-\rho,n-q}(X)$$

is defined by the Pontrjagin-Thom construction as follows: Let $[M, \Phi, f]$ be any element in $\mathfrak{M}\mathfrak{R}_{\rho,q}(X)$. We may assume that $f: M \to X$ is a C^{∞} - τ -

map. In virtue of Proposition 2.1, there exists a τ-imbedding

$$h: M \to R^{i,i}$$

Then, defining a \(\tau\)-map

$$f': M \to R^{i,l} \times X$$

by f'(x) = (h(x), f(x)) for $x \in M$, f' is also a τ -imbedding.

Let us assume m-n=p-q (m-p=n-q). Then, by Proposition 4.2, there exists a positive integer k such that, for a τ -imbedding

$$f'': M \to R^{k,k} \times R^{l,l} \times X$$

defined by f''(x) = (0, h(x), f(x)) for $x \in M$, the normal bundle $\nu(f'')$ has a proper real structure. Since the dimension of the real vector bundle $\nu(f'')$ is k+l+n-q, there are a real bundle map

$$g: \nu(f'') \rightarrow \gamma^{k+l+n-q}$$

and an induced map $T(\nu(f'')) \to MU(k+l+n-q)$ of real Thom spaces (cf. [10], Proposition 1.5). There is then the composite map d(f) given by

$$\sum_{k=1}^{k+l,k+l} \wedge X^{+} \rightarrow R^{k,k} \times R^{l,l} \times X/R^{k,k} \times R^{l,l} \times X - Int \ D(\nu(f''))$$
$$\rightarrow T(\nu(f'')) \rightarrow MU(k+l+n-q),$$

and d(f) represents an element of $MR^{m-\rho,n-q}(X)$, where $D(\nu(f''))$ is the total space of the associated unit disk bundle of $\nu(f'')$. The correspondence $[M, \Phi, f] \to |d(f)|$ is well defined and a homomorphism as usual.

In the case of $m-n \neq p-q$, we may choose two positive integers a and b such that p-q = (m+a)-(n+b). Therefore, considering a τ -map

$$\tilde{f}: M \to R^{a,b} \times X$$

defined by $\tilde{f}(x) = (0, f(x))$ for $x \in M$ instead of f, we can obtain a duality homomorphism

$$D_R: \mathfrak{M}\mathfrak{R}_{\rho,q}(X) \to \widetilde{M}R^{m+a-\rho,n+b-q}(\sum_{a,b} \wedge X^+) = MR^{m-\rho,n-q}(X).$$

Generally the above homomorphism D_R is not isomorphic, however we have the following theorem deduced from a general situation [13], lemma 3.2, on the equivariant transversal regularity.

Theorem 2. For any R-manifold (X, Ψ) in $\mathfrak{D}_{m,n}$ without boundary, the duality homomorphism

$$D_R: \mathfrak{MR}_{\rho,q}(X) \to MR^{m-\rho,n-q}(X)$$

is an isomorphism whenever p > q and is an epimorphism whenever p = q.

Let $MU_*(\)$ and $MU^*(\)$ be the complex bordism theory and cobordism theory, respectively. In these theories there exists the duality isomorphism of Atiyah-Poincaré type

$$D: MU_r(X) \to MU^{s-r}(X)$$

for any compact weakly complex s-manifold X without boundary.

Let

$$\rho_*: \mathfrak{M}\mathfrak{R}_{\rho,q}(X) \to MU_{\rho+q}(X)$$
$$\rho^*: MR^{m,n}(X) \to MU^{m+n}(X)$$

be the natural homomorphisms obtained by ignoring the involutions. Then, for any R-manifold (X, Ψ) in $\mathfrak{D}_{m,n}$ without boundary, we have the following commutative diagram

Therefore, ker D_R is contained in ker ρ_* . Especially, in the case of X = pt and $p = q \gg 0$, we have

$$ker D_R = ker \rho_*$$
.

because $\rho^*: MR^{-\rho,-\rho}(\mathrm{pt}) \to MU^{-2\rho}(\mathrm{pt})$ is isomorphic (cf. [2], Theorem 4.6). Hence we have

Proposition 4.4. For any integer $p \gg 0$, isomorphisms

$$\overline{D}_R: \mathfrak{M}\mathfrak{R}_{\rho,\rho}(\mathrm{pt})/ker \ \rho_* \to MR^{-\rho,-\rho}(\mathrm{pt})$$
$$\overline{\rho}_*: \mathfrak{M}\mathfrak{R}_{\rho,\rho}(\mathrm{pt})/ker \ \rho_* \to MU_{2\rho}(\mathrm{pt})$$

are induced by D_R and ρ_* , respectively.

REFERENCES

- [1] S. ARAKI: Orientations in τ-cohomology theories, Japan. J. Math. 5(1979), 403-430.
- [2] S. ARAKI: Coefficients of MR-theory (to appear).

- [3] S. ARAKI and M. MURAYAMA: τ-cohomology theories, Japan. J. Math. 4 (1978), 363-416.
- [4] M. F. ATIYAH: Bordism and cobordism, Proc. Camb. Philos. Soc. 57 (1961), 200-208.
- [5] M. F. ATIYAH: K-theory and reality, Quart. J. Math. 17 (1966), 367-386.
- [6] G. E. Bredon: Introduction to compact transformation groups, Academic Press (1972).
- [7] P. E. CONNER and E. E. FLOYD: Differentiable periodic maps, Springer-Verlag (1964).
- [8] P. E. CONNER and E. E. FLOYD: The relation of cobordism to K-theories, Lecture notes in Math. 28, Springer-Verlag (1966).
- [9] T. tom DIECK: Bordism of G-manifolds and integrality theorems, Topology, 9 (1970), 345-358.
- [10] M. FUJII: Cobordism theory with reality, Math. J. Okayama Univ. 18 (1976), 171-188.
- [11] M. Fujii: On the relation of real cobordism to KR-theory, Math. J. Okayama Univ. 19 (1977), 147-158.
- [12] R. KULTZE: Über die komplexen Cobordismengruppen, Arch. Math. 17 (1966), 226-233.
- [13] P. S. LANDWEBER: Conjugations on complex manifolds and equivariant homotopy of MU, Bull. Amer. Math. Soc. 74 (1968), 271-274.
- [14] G. D. Mostow: Equivariant embedding in euclidean space, Ann. Math. 65 (1957), 432 446.
- [15] M. MURAYAMA: S-duality in τ-cohomology theories, Publ. RIMS Kyoto Univ. 16 (1980), 669-692.
- [16] A. WASSERMAN: Equivariant differential topology, 8 (1969), 127-150.

OKAYAMA UNIVERSITY

(Received February 5, 1988)