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THE SERIAL TEST FOR DIGITAL k-STEP
PSEUDORANDOM NUMBERS

HaraLp NIEDERREITER*

1. Introduction

A widely used method for the generation of uniform pseudorandom numbers
is the multiplicative congruential method of Lehmer [8], which is based on
the one-step recursion

Yne1 = ayamodM forn =10,1,...,

where the modulus M is a large integer, a is a suitably chosen integral
multiplier, and the y, are integers with 0 < y, < M. A sequence x,, x;,...
of uniform pseudorandom numbers in the-interval [0, 1] is obtained by the
normalization x, = yo/M. The statistical properties of these pseudorandom
numbers have been studied extensively both from the theoretical and the
empirical point of view (see Knuth [6, Ch. 3] and Niederreiter [13] for
surveys). The use of general k-step recursions for pseudorandom number
generation was proposed shortly after the appearance of Lehmer's paper
(see e.g. van Wijngaarden [24]). and this idea received wider dissemination
through an article of Tausworthe [23]. There is now a sizable literature
on k-step pseudorandom number generators; see e.g. Arvillias and Maritsas
[1]. Fushimi [2]. Fushimi and Tezuka [3], Kirkpatrick and Stoll [5], Peskun
[22], and the references in Niederreiter [16].

The generation of uniform pseudorandom numbers by k-step recursions
proceeds as follows. Let p be a prime number and generate a sequence
Yo, ¥i.... of integers with 0 < y,, < p by the recursion

(1) Yn+k = ak—lyn+k-1+"'+auyn mOdp fOI' n = 0, 1,...,

where the a; are constant integral coefficients with a, #F O modp. We assume
that not all initial values yo, ¥1....,¥x-1 are O, for otherwise we would get
the distinetly nonrandom situation where all y, = 0. The sequence y,, y,,...
is then transformed into a sequence x,.x,.... of uniform pseudorandom
numbers in [0, 1] by one of the following two methods. In the normalization
method we choose p to be a large prime and set x, = y,/pforn =0,1,....
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In the digital method we let p be a small prime (usually p = 2), choose an
integer m with 2 < m < k, and set

m s
(2) Xn = j;lymiwj—lp_l for n :0,1,....

In other words, we obtain the numbers x, by splitting up the sequence yq, 31, ...
into consecutive blocks of length m and then interpreting each block as the
digit expansion in the base p of a number in [0,1]. The numbers x, will
be called digital k-step pseudorandom numbers. The digital method has the
advantage that we can work with a small modulus in the recursion (1), in
contrast to the normalization method and also to Lehmer’s method where one
has to use large moduli.

For many numerical applications of uniform pseudorandom numbers,
the most important properties are equidistribution in [0, 1] and statistical
independence of successive pseudorandom numbers. Equidistribution is tested
by the uniformity test. The performance under the uniformity test was inves-
tigated in Niederreiter [11] for pseudorandom numbers generated by the
normalization method and in Niederreiter [16] for digital k-step pseudorandom
numbers. Statistical independence properties of pseudorandom numbers gen-
erated by the normalization method were studied in Niederreiter [14]. In
the present paper we discuss statistical independence properties of digital
k-step pseudorandom numbers. We note that some of the results of this paper
were announced in [15].

A reliable test for the statistical independence of s successive pseudo-
random numbers is the s-dimensional serial test (see Knuth [6, Ch.3]). If
Xo, X1,... is a sequence of uniform pseudorandom numbers in [0, 1] and s = 2
is given, then we introduce the s-tuples

(3) Xn = (Xn, Tns1s.oes Xnrsr) € [0,1]5for n =0,1,....

The s-dimensional serial test amounts to considering the maximum deviation
between the empirical distribution of the s-tuples xo, Xi,...,xyv-1 and the
uniform distribution on [0, 1]°, the latter distribution corresponding to the
ideal case of statistical independence among s successors. In detail, we
define the quantity

(4) DY = swp | Ey(J) = V()| for N2 1,

where Ey(J) is N7! times the number of terms among X,, X:....,x~_; falling
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into the interval J, V(J) denotes the volume of J, and the supremum is
extended over all subintervals J of [0, 1]¢ of the form

J = [0, 1,]X---X[0, t5].

The sequence x,,x;,... of pseudorandom numbers passes the s-dimensional
serial test if DY is small for large N. In statistics the quantity in (4)
corresponds to a multivariate Kolmogorov test, and in the theory of uniform
distribution of sequences this quantity is called the discrepancy. Compare
with Kuipers and Niederreiter [7, Ch, 2] and Niederreiter [13] for basic
facts about the discrepancy. It should be noted that the discrepancy occurs
in error bounds for quasi-Monte Carlo integration over the s-dimensional
unit cube [0, 1]° (see [13,19]), so that the results of this paper haye imme-
diate applications to numerical integration, Furthermore, other statistical
quantities can be bounded in terms of an appropriate DY'. For instance, for

the serial correlation coefficient

1\1[(1:,1—" .M(xn))(xnn —AM(xnﬂ))]
M[(xn_M(xn))z] ]Izlw[(xnﬂ - Iw(-rn—l ))2] e

on =

with M(u,) denoting the mean value of the numbers u,. u,,...,uyx_,, we have
| 0’.~'| < 73Dt3'

by a result in [17].
In [16] we also considered digital k-step pseudorandom numbers obtained
from overlapping blocks of y,. so that instead of (2) we have

m Py
Xn — § :ynu—lP_J fOI‘ n = 0, 1,....
Jj=1

With respect to the uniformity test, these numbers show the same behavior
as those defined by (2) (see [16]). However, the serial test is failed badly by
these numbers. In fact, if we consider the corresponding s-tuples x, defined
as in (3), then it is seen immediately that none of these s-tuples falls into
the interval

oL

It follows easily (compare with the proof of Theorem 6.2) that DY’ = %(p—

1)p~® for all s =2 and N =1, and so the discrepancy is unacceptably large.
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For this reason, we restrict the attention to the digital k-step pseudorandom
numbers defined by (2).

We recall some elementary properties of the sequences ¥, y,... and
Lo, X1.... defined by (1) and (2), respectively (see Lidl and Niederreiter
[10, Ch. 7] and Niederreiter [16]). First of all, both sequences are peri-
odic, and if 7 denotes the least period of the sequence of y,, then the least
period of the sequence of x, is given by z/ged(m, 7). In order to achieve a
large value of 7, we assume that the characteristic polynomial of (1), i.e.
the polynomial

(5) flx) = xF—ap ' = —ay,

considered as a polynomial over the finite field F, = Z/pZ, is irreducible
over F,. Then 7 can be described as the order of any root of f(x) in the
group F¥, the multiplicative group of nonzero elements of the finite field F,
with ¢ = p* elements. Therefore, the maximal value of 7 is 7= p*—1,
and this can be achieved if we choose for f(x) a primitive polynomial over
F, (compare with [9, Ch. 3]). We will always assume that ged(m, 7) = 1.
thus guaranteeing that the least period of the sequence of x, is equal to z.
Because of the periodic nature of the x,, it is only of interest to study DY’
forl < NZ 1.

An important fact regarding the performance of digital k-step pseudo-
random numbers under the s-dimensional serial test is the following. If the
dimension s is small, concretely if s < k/m with m denoting the block length,
then the bounds for Dy depend only on the least period r and not on the spe-
cific nature of the polynomial f(x) in (5). On the other hand, for s > k/m
the bounds for DY’ depend strongly on the concrete form of f(x), so that this
polynomial has to be chosen judiciously in order to guarantee good performance
under the s-dimensional serial test. We shall distinguish these two cases as
the low-dimensional case (i.e. s < k/m) and the high-dimensional case (i.e.
s > k/m). The fact that good behavior can be expected in the low-dimensional
case was already noted by Tausworthe [23] who showed a kind of equidistri-
bution property of the points x, in (3) provided that f(x) is a primitive poly-
nomial over F, (see also [10, Ch. 7]).

The paper is organized as follows. In Section 2 we collect some pre-
paratory results. Then we establish upper bounds for DY', in Section 3 for
the low-dimensional case and in Section 4 for the high-dimensional case. In
both cases we consider the behavior for the full period, i.e. for N = z,
as well as for parts of the period, i.e. for N < r. Although most of the
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research so far has been devoted to the performance over the full period,
the performance for parts of the period is of great practical importance since
in a typical Monte Carlo application one will only work with a segment of the
period. The bounds in Section 4 depend in a rather complicated way on the
characteristic polynomial f(x). and so we elucidate this dependence by intro-
ducing a convenient integer (called the “figure of merit”) that measures the
suitability of f(x). This is done in Section 5. where one can also find basic
results on figures of merit. Section 6 contains lower bounds for D%’ In
particular, for the high-dimensional case we show that DY’ can be bounded
from below in terms of the figure of merit. This demonstrates that the upper
bounds in Section 4 are in a sense best possible. In Section 7 we discuss
the results from the viewpoint of practical pseudorandom number generation.

On the surface, there is a certain similarity between the results of this
paper and the author’'s earlier results on the serial test for Lehmer’'s con-
gruential pseudorandom numbers: compare with {12, 13, 18]). There is,
however, a fundamental difference inasmuch as for Lehmer’s method the way
the bounds depend on the modulus M is essential, whereas for the digital
method this is rather insignificant since one usually works with the fixed
prime modulus p = 2. For digital k-step pseudorandom numbers, a more
important entity besides k and the characteristic polynomial f(x) turns out
to be the block length m.

For the convenience of the reader we state again all the standing hypoih-
eses of this paper: (i) the polynomial f{x) in (5) is irreducible over F,;
(ii) the initial values yy. ¥:...., yr_; are not all 0: (iii) 2 < m < k and
ged(m, 7) = 1.

2. Preparatory results

We first recall an inequality for the discrepancy in terms of exponen-
tial sums. This inequality refers to the situation where the given points
Wo, W.....wxy_, in [0,1]° are such that all their coordinates have digit
expansions of fixed finite length m. Let b = 2 be an integer that serves as
the base for the digit expansions and let wy, = (Wn,.... wns) with

m i y T .
Wpy = Jz wab P for0 <n <N 1< <5,
=1

where the digits w3, are integers in the interval [0, b—1]. Let C(b) be
the set of all integers h with —b/2 < h < b/2. For H = (h,,....hn) with
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h; € C(b) for 1 < j < m we define

0 if H=(0,....0),

(6) d(H) = dhi,....hn) = largest index d with kg % 0 if H % (0,...,0).

For b = 2 we set

(7) Qu(H) = Qulhsevhm) = 2797

and for & > 2 we set

if H=1(0,...,0),

1
(8) Qu(H) = Qolhs, o hm) = ’b“‘( F—p T+ 0a) i H # (0....,0)

sin 7| ha/b |
where d = d(H) and where 8s = 1 if d < m. but &, = 0. Now let Cns(b)

be the set of ms-dimensional lattice points of the form
h =(hu) = (hu ----- hlm”'-'hsls---yhsm)

with h;; € C(b) for 1 < i < s, 1 < j < m. For each such h we define the
weight

(9) Pb(h) =1I Qb(hu ----- him)-
We note that in the case b = 2 this reduces to the expression

S
(10) P,(h) = 27"" with D(h) = gd(hi,,....h,,,,).
For integers A we use the complex exponential function e,(h) = e -1nse
The following result is a special case of [20, Satz 2] and can also be con-

sidered as a refinement of [15, Lemma 1] and a multidimensional version of
(16, Lemma 1].

Lemma 2.1. For the discrepancy DY of the points wn,, 0 < n < N, we
have

N—

1 s m )
Z: eb(_ ; Z hijwtr'z';)
iz

h
n=0 i=1

D <1—(1—b6"")+> Py(h)
k=0

1
N
where the outer sum is extended over all nonzero lattice points h = (h;;) €

Cus(b).
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Lemma 2.2, For the weights P,(h) defined by (9) we have

(11) 3 Pylh) < (lm 1ogb+1m—ﬂ)s—1
A%0 T 5 b

Jor b > 2, where the sum is extended over all nonzero lattice points h €
Cns(b). In the case b = 2 we have

h+0

(12) > Py(h) = (%H)S—l.

Proof. For any b = 2 we have

Z Pb(h) = : Qb(hn----,hlm) ---Qb(hsl,---’hsm)_l
R

(13)

Qb(hl,...,hm))s—l.

( hiyhm€Ch)

To evaluate the last sum, we split it up according to the value of d = d(&,, ...,
ha) for nonzero lattice points (h,....hn). There are %' such lattice points
with a fixed nonzero value of hs. Writing C*(b) for the set of nonzero

elements of C(b), we get for b > 2 by using (8),

. &y d-17-a 1 )
Qulhs, o) = 1 + 3 5467 5 (—Sin TR 0

hiy hm€ECb)

m

_1+br§nsinn|h/b|T p & 0

m—1

—_m 1 TV,
) %x sin 7| h/b | T b

By [11. p. 574] we have
1

hECD: sin 2’(| h/b |

2 2
< “blogh+¢b,

and combining these results with (13) we obtain (11). In the case b = 2 we
use (7) to get

: Qz(h1.-..,hm) =1+ i 211—12—(1 — ﬂ"‘l_
d=1 2

hiyshmeCi2)

and so (12) follows from (13).

We now collect some auxiliary results from the theory of finite fields.
We refer to the books of Lidl and Niederreiter [9], [10] for the necessary
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background on finite fields. The integers yo, y1,... as well as the coeflicients
a, in (1) may be interpreted as elements of the finite field F,. The recursion
(1) becomes then the linear recurrence relation

(14) Yn+k = Qg Ynek1+ o+ Qo Yn for n=20,1,...

over F,. Set ¢ = p" and let F, be the finite field with ¢ elements. Let Tr
denote the trace function from F, onto F,, which is an F,-linear mapping.
Let a € F, be a fixed root of the characteristic polynomial f(x) in (5). The
following result is identical with Lemma 2 in [16].

Lemma 2.3. Let the sequence yo, Y1,... of elements of F, satisfy (14),
and suppose that not all initial values yy, y1.....¥x_, are 0. Then there exists

B € F¥ such that
yp= Tr(Ba"™) forn =0,1,....
Next we consider character sums over the finite field F;. We note that

(15) x(8) = e,(Tr(B)) for all B € F,

defines a character of the additive group of F,. The following bounds are
obtained from Lemma 4 and Lemma 5 in [16], respectively.

Lemma 2.4. If A is an element of F¥ of order d, then for any 6 € F}
we have

d—1

2, X(6A™)

n=0

< ql/z_

_d
1+4-¢'7%°

Lemma 2.5. If A is an element of F¥ of order d, then for any 6 € F?
we have

RS 1/2 2 2 ) Nq,”z N v
n 12 & o _ ' ,
',E},X(W)Kq, (”logd+5 S for all N2 1.

3. The low-dimensional case

We consider the s-dimensional serial test for digital k-step pseudorandom
numbers in the case s < k/m. We establish upper bounds for the discrepancy
(St

' of the points x, in (3), and we distinguish the case N = r of the full
period and the case N < 7.
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Theorem 3.1. Ifs < k/m, then for digital k-step pseudorandom numbers
we have for p > 2
D!}g,' < 1 _( 1 _p—m)s

k/2 s
e Eovere 25
+( " 1-|—p'°’2( ”mlogp+5m » 1]

In the case p = 2 we have

) 2k/2 1 m S
S ] — -m -+ mn -1
De=1-(1- )+( . 1+2"’2)((2+1) 1)

Proof. In the notation of Section 2 we have w, = x,. hence
Wni = Xyt for 1 < i< sand n >0,
From (2) we get the digits of wy; to the base b = p. namely
W = Yommeicga for 1 <i<s, 1 <j<m andn=>0.

We consider the exponential sums appearing in Lemma 2.1. Take a nonzero
lattice point A = (h;;) € Cns(p). Since the h;; and wi; only matter mod p,
we can view them as elements of F,. Put

s m

= Z Z U”m == ZZ hu)m(nﬂ, D+Jj=1 for n = 0.

i=1Jj=1 i=1J=

Then by Lemma 2.3 we get with a suitable 8 € F¥.

Zn = iil: il' hij Tr(ﬂamnﬁ_h”_l)

=Tr (ﬂii h m‘"+i—lb+j_,)
i=1j=1

= Tr (ﬁ/\"i"' i‘: hij O’mii—]""j-l)

for all n = 0, where A = @™ The double sum in the last expression is a
linear combination of the powers o’ a',..., @™ " with coefficients in F, that
are not all 0. Now f(x) is irreducible over F,, so the powers o°. o', ..., a
are linearly independent over F',, and since ms < k by hypothesis, it follows
that

i‘: i hijamti—l$+j—1 #: O.

i=1Jj=1
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Consequently, for some § € F§ we have
zn = Tr(8A™) for all n = 0.

From (15) we obtain then

S e heni) = 5 eslen) = 5 200,

K i=1j=1

1l

0

Since A= o™ and ged(m, 7) = 1, the order of A in the group F§ is z. Thus
by Lemma 2.4,

1 T-1 S m

=3 o 52 huwi)

i=1 j=1

qlfz 1

Recalling that ¢ = p*, we obtain from Lemma 2.1 with b = p

k2
DE < 1=(1—p)*+(Em | 3 Palh).

The desired result follows now from Lemma 2.2,
In the special case where s < k/m and the characteristic polynomial
f(x) is a primitive polynomial over F,, we have the exact formula

(16) Df=1—(1—-p™°
for all primes p according to [20, Satz 7].
Theorem 3.2. If s < k/m, then for digital k- step pseudorandom numbers
we have for p >2
S) -m\s / pk/z 1
DV<1-(1—p™) +( \ > —log +5)+ ———)'

T 1+pk/2
'((%mlogp+%m—- m—1 )

—l)forl < N< =
In the case p = 2 we have

. _ 2K (2 2') 2% 1 )
(S _ __9-m\s “ = = .
DN <1 (]. 2 ) +( N ”log T+5 + T 1+2k/2

-((-g—l—i—l)s—l)for 1<N<r

Proof. We proceed as in the proof of Theorem 3.1, but we use Lemma
2.5 instead of Lemma 2.4.
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4. The high-dimensional case

We consider the s-dimensional serial test for digital k-step pseudorandom
numbers in the case s > k/m. We establish upper bounds for the discrepancy
DY’ of the points x, in (3) for the cases N = r and N < 7. These bounds
depend now also on the characteristic polynomial f(x) in (5). We introduce
the crucial quantity R''(f, p, m) which depends on the dimension s, the poly-
nomial f = f(x), the prime p, and the block length m. As in Section 2, let
Cas(p) be the set of lattice points h = (h,;) with h;; € C(p) for1 < i < s,
1 < j<m. Toeach h we attach the weight P,(h) defined in (9). Further-
more, we associate with i the polynomial

m

(17) g(h) = 3335 hya™ 7,

Jj=1
viewed as a polynomial in x over the finite field F,. Now we define

(18) R®(f,p.m) = 2;, P(h).

S&th)

where the sum is extended over all nonzero lattice points A € Cps(p) such
that g(h) is divisible by f in the polynomial ring F,[x]. Note that the sum
is nonempty since g(h) runs through all polynomials over F, of degree < ms
as h runs through Cns(p), and since f has degree k < ms.

Theorem 4.1. If s > k/m, then for digital k-step pseudorandom numbers
we have for p > 2

s kfz 1 2 7
DE<1—(1—p™ +(p—T—Tpm)((;mlogp+§m

___771;'—1) _1 )+R‘S)(fs P, m)'

In the case p = 2 we have

‘ 1 (3 )
(S _ __o-m\s _ an _
Dr <]- (1 2 ) +( r 1+2k/2 2+1 1
+R(f, 2, m).
Proof. We apply Lemma 2.1. As in the proof of Theorem 3.1, we have

W= Ymmetoesa for 1 <i<s, 1 <j<m andn =0,
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and for a nonzero lattice point b = (hy;) € Cns(p) we get
Zn = i"ﬁ hywh = Tr (5/\ i} i} g™ i1+ - l)
foralln = 0. If

Zs: Zm: huamli-—lH-J-l =|E 0’

then we proceed as in the proof of Theorem 3.1 and obtain

k/2
1
< r l +pk/2 .

If

(19) i i huam(i—lHJ—l — 0,
then z, = 0 for all = 0, and so

%E (if‘,huu )=1.

n=0 i=1Jj=1

Since e is a root of the irreducible polynomial f over F,, the identity (19)
holds if and only if f divides the polynomial g(h) in (17). Combining these
results, we obtain from Lemma 2.1,

k/2

) 3 Palh)+ 5, Polh)

D < 1-(1—p™)*+( By m

Sre(h) .flglh)
ki2 1

<1—(1 p‘)+(f 1A

)2 Py(k) +R(f, p. m).

The desired result follows now from Lemma 2.2.

Theorem 4.2. If s > k/m. then for digital k- step pseudorandom numbers
we have for p > 2
k/2 k/2
(S) - P 2 p 1
D <10y (B Foe vt £ )+ 2w

2 7 m—1
((nmlogp+5m ’ )

1 )—I—R‘S‘(f. p. m)

Jor 1 < N< 7. Inthe case p = 2 we have
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Dy <1—(1-27")°

9k [ 9 2y 2 ‘S
+( N (nl"g’+5)+ . 1+2k’2)((?+1) _1)

+R(f.2,m) for 1 < N< =

Proof. We proceed as in the proof of Theorem 4.1, but we use the
bound in Lemma 2.5 instead of that in Lemma 2.4,

The usefulness of the bounds in Theorems 4.1 and 4.2 is clearly linked
with the problem of how small we can make the quantity R''(f, p, m). We
will prove that R(f, p, m) does indeed attain small values with a suitable
choice of /. We consider irreducible polynomials f over F, of fixed degree
deg(f) = k and yielding a fixed value r for the least period of the sequence
You Yiveeen We write 7 = ord(f), i.e. ord(f) is the order of any root of f in
the group F§ with ¢ = p*. Since r divides p*—1, we must have ged (p, 7) =
1. Furthermore, k is determined by the value of r, namely k is the multipli-
cative order of p modulo r according to [9, Theorem 3.5].

Theorem 4.3. Let p be prime, let v be a positive integer with ged(p, )
=1, let k be the multiplicative order of p modulo v, and let m and s be
positive integers such that ms > k. Then there exists a monic irreducible
polynomial f, over F, with deg(f,) = k., ord(f,) = z. and

ms—1 m—1

¢(7) ((%mlogp+%m _T)s—l) ifp>2,

R9(fo, p. m) <

R®(fy, 2, m) < "’f;(;)l (:(%+1)s—1) ifp=2,

where ¢ is Euler’s totient function.

Proof. We consider the mean value R of R(f, p, m) with s, p, m fixed
and f running through the set I of all monic irreducible polynomials over F,
with deg(f) = k and ord(f) = 7, where k and t are fixed. Since I has
#(7)/k elements according to [9. Theorem 3.5], we get from (18).

ks RS ) = ko
B = gy 3 RO = Sy B3 P
=k
A7) %P,,(h)?;l.

S1&h

In the inner sum, g(h) is a nonzero polynomial with deg(g(h)) < ms—1
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by (17). Therefore g(h) can be divisible by at most (ms—1)/k distinct
elements of I. Consequently,

ms—1
R< 6 h;'a P,(h).
We apply Lemma 2.2 to obtain the final bound for R, and then we note that
there must exist an f; € I for which R®(f,, p, m) does not exceed the mean
value R.

We note that ¢(z) is almost of the order of magnitude 7, since according
to [4, Theorem 328] we have
Cr
(20) #(z) > loglog 7

with an absolute constant C > 0. Therefore, if f, is chosen as in Theorem
4.3, then R¥(f,, p, m) is usually smaller (and in the worst case only margin-
ally larger) than the other terms in the bounds of Theorems 4.1 and 4.2.

5. Figures of merit

The important quantity R*(f, p, m) defined in (18) is rather inconvenient
numerically since it is a sum of many and mostly very small numbers. There-
fore we introduce a related positive integer, the figure of merit p'(f, p, m),
which is easier to handle. Let f, as usual, be a monic irreducible polynomial
over F, of degree k, and let ms > k, so that we are in the high-dimensional
case. For h = (h;;) € Cns(p) we define

(21) D(h) = t—; d(hih--'yhtm)n

where we use the notation introduced in (6). The figure of merit is now
given by

(22) p*(f. p, m) = min D(h),

NEik

where the minimum is extended over all nonzero lattice points & € Cns(p)
such that the polynomial g(h) in (17) is divisible by f in the polynomial ring
F,lx]. It is clear that the figure of merit is a positive integer. We note
the following upper bounds.

Lemma 5.1. For s > k/m we have p'*(f,p,m) < k+1 and 0°'(f,p.m)
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< D(h,), where ho € Cuns(p) is the lattice point for which g(h,) = f.
Proof. Since s > k/m implies k+1 < ms. there exist integers d,,...,ds
S
with0 <d,<mforl <i<s and tg.di=k+1. Let a be a root of fin

the finite field F, with ¢ = p”* elements. Note that F, can be considered as
a vector space over F, of dimension k, and so the k+1 elements o™ """*/7!,

1<j<d; 1<i<s, are linearly dependent over F,. Thus there exist
coefficients h,; € C(p), not all 0, such that

d;

M

. h“ am{t—l)ﬂ’—l — O.

Ji=1

-~
[
-

Since f is irreducible over F,, it follows that f divides the polynomial
S, & h mi—1)+J—1
=1 uX

Ji=1

in F,[x]. By the definition (22) we get
0 (f, p,m) < ;Zé d: = k+1,
and so the first bound is shown. The second bound is trivial since h, is one

of the lattice points appearing in the minimum in (22).

From the argument in the proof of Lemma 5.1 it follows that o' (f, p, m)
= k+1 if and only if every system }a™ "' 1 <j<d,;, 1 <i<s/|

with0 <4, <mforl1 <i<sand ZE d, = k is linearly independent over Fl,.

We show now that R''(f, p, m) can be bounded in terms of o**'(f, p, m).
For an integer r = 0 let K(r) be the number of (d,,...,ds) € 10,1,...,m|*

with i:, d, <.
Theorem 5.2. If s > k/m and if R = R“(f, p, m) is defined by (18)
and p = p(f, p, m) by (22), then we have

R< (p—l)(m‘i‘l)s((erl)s—K(p—l))p"’for p>2,

R < ((m+1)*—K(p—1))27° for p=2.
Proof. For p > 2 the definition of Q, in (8) shows that
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1 —dihiemhm)
Quolhro hn) < (——Sin(n/p) +1)p .

Thus for all A = (h;;) € Cns(p) we have by (9),

Py(h) s( g )+1)st ~hivhin) — (———Sin (ln/p) +1)sp"""’

with D(h) as in (21). In the case p = 2 we have P,(h) = 27" by (10).
Hence if we put

(23) Rl = R(IS)(fy pv m) = Zl p-—D(h)
h0

N&h)
with the range of summation being the same as in (18), then we get

1 s
R < (_sin(ﬂ/p) +1) R, for p > 2,

R =R, for p = 2.

(24)

It suffices therefore to find an upper bound for R,. Splitting up the sum in
(23) according to the value of D(h), we can write

(25) R = '}":, M(r)p~,

=0

where M(r) is the number of A € Crs(p) (or equivalently h € F7¥) with
D(h) = r such that f divides g(h).
We determine now an upper bound for M(7), where p < r < ms. Let

L(r) be the number of d = (d,,...,d;)E10,1,...,m|® with i_Zsl] d, = r. Fix
such a d, and let e,,...,es be fixed integers with 0 < e; < d;for1 < i< s
and tZ: e, = p—1. We consider the number N(d) of h = (h;;) € F?° with

dhy,...;hin) = d;, for 1 < i < s and f dividing g(h). By an argument in
the proof of Lemma 5.1, the condition that f divides g(h) is equivalent to

(26) $188 4 qmerint 2o,

i=1

rm.e

mii—-1)+j -1

Furthermore, by the definition of p in (22) the po—1 elements e« ,
1<j<e, 1<i<s, are linearly independent over F,. It follows that
for those { with e, < d; we can assign coefficients h;; € Fp, e, < j<d,,
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with h;q, + 0 arbitrarily in (26), whereas for the remaining coefficients in
(26) there is at most one choice. Therefore

Nd) < IT (p—1)p* " =p"*" Il 221 < (p—1)p™,
ei;di etl<—di p
Since there are L(r) possibilities for d, we get
M(r) < L(r)(p—1)p"™.

We go back to (25), use the fact that {0,1,...,m|° has (m+1)° elements,
and get

R < (p—l)p‘”:é L(r) = (p—l)p"’(g L(")_g L(r))
= (p—1)p™((m+1)°*—K(p—1)).

Together with (24) this implies the result of the theorem.
In most cases it will suffice to work with an obvious consequence of
Theorem 5.2, namely

) 1 s .
RE(f,p,m) < (P—l)(m+l) (m+1)p~ for p > 2,
Ro(f,2.m) < (m+1)%27° for p = 2,

where p = 0'(f,p,m). An explicit formula for K(r) can be given as follows.
We use [v] to denote the greatest integer < v.

Lemma 5.3. For 0 < r < ms we have

K(r) = [Ei(—l)'( s )(s+r—-t(m+l))'

=0 t s

Proof. From the definition of K(r) it follows that K(7) is equal to the
coefficient of x” in the real power series

(l_xm+l)s
(1—1)3“ .

e o G

and so K(r) is equal to the coefficient of x” in

(1+x+--+xm(1 +x+x*+---) =

Now
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(2N B 1)

This coefficient is easily seen to be given by the formula in the lemma.

In Theorem 4.3 we have shown that there always exists a polynomial f,
with a small value of R(f,. p, m). In view of Theorem 5.2, an analogous
result for figures of merit should demonstrate the existence of an f;, with a
large value of p'(f,. p. m). We prove such a theorem under the same con-
ditions as in Theorem 4. 3.

Theorem 5.4. Let p be prime, let t be a positive integer with ged(p, 1)
= 1. let k be the multiplicative order of p modulo z, and let m and s be
positive integers such that ms > k. Then there exists a monic irreducible

polynomial fo, over F, with deg(f,) = k. ord(f,) = r. and

- (m+1)(p—1) §(z)
0 fo. p. m) = [logp (ms_l)(m+1—mp")s]'

where log, denotes the logarithm to the base p.

Proof. Put

_ (m+1)(p—1) #(z)
(28) b= [IOg" (ms—l)(m-l-l—mp")s]—l'

If 1 <0, then there is nothing to prove, so we can assume { = 1. For an
integer r = 1 let B(r) be the number of h € Cps(p) with D(h) = r, where

D(h) is given in (21). If (di.....ds) €10.1,....m|° with i:,d,- — r. then

the number of h = (h;;) € Cns(p) with d(hy,....him) =d, for 1 < i< s
is equal to

s s 51
I (p_l)pdl—l — pr];[l P )
asa P

—

& .
v

L>0

Therefore B(r)p~" is equal to the coefficient of x” in the real polynomial
—_ — — s d — s
(1+P 1x+p_1x2+...+_ux'n) :(L+___p 1(1+x+x2+---+xm))
p P P P P
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For j = 0 the coefficient of x" in ((x™'—1)/x—1))" is 0 and for j > 1 it
R . J
is equal to the number of (d,,...,d;) € {0,1,....m}’ with Z} d; = r. Since

this number is obviously at most (m+1)’~", we obtain

B(r)p™" < p‘sg (j )(p—l)’(m+1)“ < (m+1—%)8.

If E(#) is the number of nonzero b € Cpus(p) with D(h) < t, then

1
m+1
1 ( _ﬂ)st T
m+1 m+1 p Z_,’lp

< ——(m+1)1(p—1)(,m+1 —%)spzﬂ'

E(t)ng(r)<

Now let Ax{#) be the number of monic irreducible polynomials f over F, with
deg(f) = k and with the property that f divides g(h) for some nonzero h €
Cas(p) with D(h) < t. Since each such g(h) in (17) has degree < ms —1,
it is divisible by at most (ms—1)/k polynomials f, hence

ms—1

Ay < r

E(t) <

ms—1 / _m s' t+1
mtr Dip—1k\" 1 p)" '

From the definition of ¢t in (28) it follows that
(29) A < %.

By [9. Theorem 3.5]. #(z)/k is the total number of monic irreducible poly-
nomials f over F, with deg(f) =k and ord(f) = 7. Thus (29) implies that
there exists a monic irreducible polynomial f, over F, with deg(f,) = k and
ord (f,) = = which is not counted by the counting function Ax(#). In other
words, f, divides no polynomial g(h) with a nonzero h € Cns(p) and D(h)
< t. From the definition of the figure of merit in (22) we obtain then

05(fo.p.m) = t+1,

and this is the result of the theorem.

6. Lower bounds

We first establish a universal lower bound for DY that can be viewed
as the discretization error of digital k-step pseudorandom numbers. An anal-
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ogous lower bound was already noted in [16, Sec. 5] for the uniformity test.

Theorem 6.1. For digital k-step pseudorandom numbers we have
D =>1—(1—p™)Sforall s=2 and N> 1.

Proof. We note that all the digital k-step pseudorandom numbers x,
given by (2) are rational numbers in [0, 1) with denominator p™. It follows
that all the points x, in (3) belong to the interval

J=1[0.1—p ™"

In the notation of (4) we have then EM{J) =1 for all N> 1 and V(J) =
(1—p™)°, and so the desired lower bound follows immediately from (4).

Since this lower bound results from the fact that all x, are rationals with
a fixed denominator, we may interpret it as the discretization error. It is of
interest to note that 1 —(1 —p™™)¢ occurs also as a term in all the upper
bounds for D3 in Sections 3 and 4.

For the high-dimensional case, the results in Sections 4 and 5 show that
DY can be bounded from above in terms of the figure of merit. We prove now

that D%’ can also be bounded from below in a similar manner.

Theorem 6.2. If s > k/m, then for digital k-step pseudorandom numbers

we have

Do > %p-” for al N>1,

where p = 0"'(f, p, m).

Proof. By the definition of p in (22) there exists a nonzero h = (h;)
€ Cns(p) such that D(h) = p and f divides

g(h) — zgj; huxmc’i—l:-i-.i—l = Fp[x].
Let r with 1 < r < s be the largest integer for which (hs,....hrn) F
(O,..-,O). Put di = d(hn,....hlm) fOI‘ 1 < i < r, then

and
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h) — ii‘l h xm(z D+J - l

Now ¥o, %,..., considered as a sequence of elements of F,, has the irreduc-
ible polynomial f over F, as a characteristic polynomial, and not all initial
values of the sequence are 0. Hence [9, Theorem 8.50] implies that f is
the minimal polynomial of the sequence. Since f divides g(h), it follows
from [9, Theorem 8.42] that g(h) is also a characteristic polynomial of the
sequence. Therefore

di

30 5% b ymemioness = 0 for all n = 0,

i=1 J=1

and replacing n by mn we get

di

(30) Z hu)‘mmu—m;’—l =0 for alln = 0,

i=1Jj=1

where this identity holds in F,. Choose a small ¢ > 0 and define the
intervals

L=[0.p%—¢e]forl <i<r,
I, = (p~9r, p2r*1—¢].

The subinterval I of [0, 1]% is then defined by
I=1X.-XI.X[0,1]°".

We claim that no point x, in (3) belongs to I. Suppose that for some n = 0
we had

Xn = (Xn, Tnsty s Tnesor) € L

Then from (2),
m R . .
Lnsi-1 = ,; Yminsi-nesap T € Iifor 1 < i< r.

For 1 < i < 7 it follows from the definition of I, that
Ymn+i-n+i-1 — O fOI‘ 1 < j < di-
For i = r it follows from the definition of I, that

Ymin+r-11~j-1 — 0forl < i< d~r.
YNmn+r—n+i-1 * 0 for ] =d,.
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These facts yield a contradiction to (30) since h,q, + 0. Thus, indeed, no
point x, belongs to I. Therefore we have Ey(I) = 0 for all N> 1 in the
notation of (4). Now we define subintervals J, and J, of [0, 1]° by

L= Il><"'><lr—1><[0~ p—drﬂ_ 5] X[O, l]S‘T'
Jr = L, X X1, X [0, por] X[0, 1]57.

Then J, is the disjoint union of I and J,, thus

V(J,) = V(1) + V(J,).
EJ)) = EXI)+Ex(J,) for al N>1.

Hence

V(D) = |E(D = V()| = (EWJ)—V(J)) —(Ex(J:) — V(J,)) |
< |Ey(J))= V(L) [+ |EWJ) = V()| < 2D¥

by (4), and so

r-1
D> %V(I) = %(p_d"”—p_d’— )T (p—c).

Letting ¢ = 04, we get

p—1 1 p— ‘
D> p 5 1 1_-[1 p ¥ = p 21 o,

and since D(h) = p. the proof is complete.

7. Discussion

In the context of studying the performance of digital k-step pseudorandom
numbers x, under the uniformity test, it was noted in [16] that the statistical
quality of the x, improves as the value r of the least period of the sequence of
xn increases. This is also borne out by our Theorem 3.1 in which the upper
bound for DY’ is a decreasing function of z. As we have mentioned in Section
1, the maximal value of 7 for given p and k is v = p*—1. This corresponds
to choosing for the characteristic polynomial f a primitive polynomial over
F,. In the following discussion of our results we will concentrate on this
case. and we will also take N = t, i.e. we consider the full period.

We remark that if r = p*—1, then for an expression which appears in
the upper bounds in Theorems 3.1 and 4.1 we have
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We use the symbol € to denote an inequality in which constant factors
depending only on s and p are suppressed.
For s < g/mand r = p*—1 we have the exact formula

DZZ\?‘\ =1 _(1 _p—m)s

according to (16). The discrepancy in the low-dimensional case is thus given
by the discretization error and its order of magnitude is p™™.

We turn now to the high-dimensional case s > k/m. We take again 7 =
p*—1. If p = p'(, p. m) is the figure of merit. then using m < k we obtain

p"+p? K DY K pT"+ 7' (log 7)"+p~(log 7)°,

where the lower bound stems from Theorems 6.1 and 6.2 and the upper
bound results from combining Theorem 4.1 with (27). Since p < k+1 by
Lemma 5.1, we can further simplify to get

(31) p "4+ p KDY p™+p?(log 7)°.

This demonstrates that if f is restricted to be a primitive polynomial over
F, of degree k, then the dependence of the order of magnitude of D on f is
controlled by the figure of merit p. The performance of digital k-step pseudo-
random numbers under the s-dimensional serial test will improve as p in-
creases. An interesting special case occurs if we choose m = k. for then
(31) reduces to

p L DF <K pP(log 7)°,

so that the order of magnitude of D% is, up to a logarithmic factor, given by
p~?. The exponent s of the logarithmic factor can be improved to s—1 by
a different method ; see [21, Theorem 9.4].

To show that digital k-step pseudorandom numbers can yield very small
values of D¢ even for s > k/m, we choose again m = k and combine Theo-
rems 4.1 and 4.3. We arrive then at the statement that with a suitable
primitive polynomial f; over F, of degree k we can obtain

D¥ < ™ (log )5+ () '(log )5+,
Since ¢(7) < 7, this reduces to
(32) DY < ¢(7) (log 7)5*.

In order to get a bound not involving Euler's totient function, one may use
(20) to obtain
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(33) D9 < v '(log )% log log .

Therefore, digital k-step pseudorandom numbers pass the s-dimensional serial
test for arbitrarily large s provided thai the parameters in the generation
process are chosen suitably.

Note that if v = p*—1, then the choice m = k is not always possible
since in view of our standing hypothesis ged(m, ) = 1 we must have ged (%,
p®—1) = 1. An easy way of satisfying the latter condition is to let k be a
prime not dividing p—1, for then p*—1 = p—1 == 0 mod k. More generally,
we can take any k with prime factor decomposition & = ¢7'---¢7" such that for
every prime factor q; # p the multiplicative order of p modulo ¢, does not
divide k/g,”.For if this condition is satisfied and we have nevertheless
ged (k, p¥—1) > 1, then some prime factor q; = p divides p*—1. But then

k q € ) kiqi€i k/qi€i

1 =p E(p Ep modq,l,

hence the multiplicative order of p modulo q; divides k/q§‘. a contradiction.
In the case p = 2, an interesting possibility of satisfying ged (k. 2*—1) =1
is to choose k in such a way that 2*—1 is a Mersenne prime. This has some
additional advantages. First of all. we have then ¢(7) = 7—1 since r =
2%—1 is prime, and so (32) reduces to

D& < 7 '(log T)**.

Thus the factor loglog 7 in (33) can be dropped in this case. Furthermore,
if 2¥—1 is prime, then any irreducible polynomial f over F, of degree k is
automatically primitive, since the facts that ord(f) > 1 and ord(f) divides
2%—1 imply ord(f) = 2*—1. In the range of interest for pseudorandom
number generation, values of &k with 2*—1 prime are given by & = 19, 31,
61. and 89.

We have seen that in the case s > k/m it is important that we choose
a characteristic polynomial f which is not only primitive, but also yields a
large value of p"'(f, p, m). We emphasize that the figure of merit depends
strongly on the dimension s. This means, in particular. that if we consider
“optimal” polynomials, i.e. primitive polynomials f for which 0'*(f, p, m) is
maximal for given s, p, m, and k, then these optimal polynomials will depend
on s. There is, however, a simple principle which guarantees that if fis
optimal for some dimension s. then its figure of merit is large (though not
necessarily maximal) for all smaller dimensions. In fact, for dimensions
s, t > k/m it follows easily from the definition of the figure of merit that
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(34) 0'(f, p, m) = p'*(f. p, m) whenever t < s.

This principle can be used as follows in the numerical practice : if a digital
k-step pseudorandom number generator is needed for several purposes, it
suffices to choose it in such a way that it satisfies the most stringent statis-
tical independence condition desired in these applications (or equivalently,
that it passes the s-dimensional serial test for the largest value of s that is
needed). Viewed from a different angle, the inequality (34) says that if a
sequence of digital k-step pseudorandom numbers fails the serial test for a
certain dimension ¢ > k/m(i.e.. if p(f, p, m) is small), then it will fail the
serial test for all higher dimensions s. In this form the statement is of
course intuitively obvious.

In the important special case m = k the condition s > k/m reduces to
s = 2. In view of the discussion above. it is clear that if we want digital
k-step pseudorandom numbers with good statistical independence properties,
then the pseudorandom numbers must first of all pass the 2-dimensional serial
test. In the case where s = 2 and m = k, there is an explicit formula for
the figure of merit which facilitates its calculation considerably. This formula
was shown in [20, Satz 12] and it says that

(35) oS, p. k) = k+2—L(f),

where L(f) is the maximum degree of the partial quotients in the continued
fraction expansion of the rational function f(x)/x* over F,. As is well
known, the partial quotients in the continued fraction expansion can be calcu-
lated by the Euclidean algorithm.

We further illustrate the importance of figures of merit by considering
an example of Knuth [6, Sec. 3.2.2] from the viewpoint of our theory. As a
warning signal against an unreflected use of the digital method, Knuth con-
structs the example p = 2, m = k = 35, and f(x) = £*+x*+1 € F,[x].
Then f is primitive over F,, hence r = 2**—1, and the condition ged(m, 1)
= ged(35, 2°*—1) =1 is satisfied. It is pointed out by Knuth that this
particular generator fails the 2-dimensional serial test badly. This can also
be seen immediately from our results, since the second part of Lemma 5.1
shows that p?(f, 2, 35) < D(h,) = 4. In fact, it is easy to see that no poly-
nomial g(h) with 1 < D(h) < 3 is a multiple of f, and so p"*(f, 2. 35) = 4.
This value is of course much too small. On the other hand, if we apply
Theorem 5.4 with the parameters p=2, 1=2%—1, m=k = 35, and s =
2, then we can guarantee the existence of a primitive polynomial f, over F,
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of degree 35 with

484(2%°—1) }
{2)
0%(fs,2,35) = [logz——31487 .

Since
#(2%—1) = ¢(31-71-127-122921) = 30-70-126-122920,

this yields 0®(fo.2,35) = 25. An explicit choice for f, is given by the
primitive polynomial

fn(x) — Ias_i_x:u+x32+x25+x27+113+1 c Fz[x],

for which we have o™(f,,2,35) = 35 by (35) since L(f;) = 2. Thus there
is a choice of f, such that the corresponding digital k-step pseudorandom
numbers show an excellent behavior under the 2-dimensional serial test.
The situation is thus quite similar to the one for the multiplicative congruential
method where one has to choose the multiplier “correctly” in order to get
good statistical properties ; compare with the discussions in Knuth [6, Ch. 3]
and Niederreiter [13].

Finally, we remark that if the parameters are well chosen in the digital
method, then it is definitely superior to the normalization method mentioned
in Section 1. Indeed, we have seen in (33) that for any s, p, and k a suitable
choice of parameters yields digital k-step pseudorandom numbers with r = p*
—1 and a discrepancy DY of order of magnitude at most z™'(log 7)%*'log log z.
On the other hand, it was shown in Niederreiter [14] that for the normali-
¥ of the order of magni-
tude p~', which is 7% in terms of 7 and thus much larger than the upper
bound attainable for the digital method.

zation method we have a universal lower bound for D'
1/k
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