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StanLEY S. PAGE

Introduction

In this paper we will introduce a new class of rings which seem to
deserve study. In the early 1940’'s Nakayama introduced and began the
study of Frobenius and Quasi-Frobenius algebras. or as it turns out self-
injective Noetherian rings. In 1948 Thrall introduced various generalizations
of Quasi-Frobenius algebras which he called QF-1, QF-2, and QF-3 algebras.
Left QF-3 rings are those rings which have a unique minimal faithful left
module: unique and minimal in the following sense: If M is any left module
over the ring which is faithful, then M has a direct summand isomorphic
to this minimal faithful module. These rings have been studied rather
extensively [C&R,, C&R,, T\, T,, T;] with the principal reference being
that of Tachikawa [T.]. If R is a left QF-3 ring, it is known that the
minimal faithful left module is isomorphic to the direct sum of the injective
hulls of a finite number of simple left R-modules and is also projective,

Another class of rings related to the QF rings is the class of left
PF (right PF) rings. These rings have the property that every faithful
left (right) module is a generator of the category of left (right) modules.
All the PF rings are QF-3 on the appropriate side as follows by the
theorems of Osofsky and Utumi [O,, U,] which show that a left PF ring is
a left self-injective ring with a finitely generated essential socle. However,
not all QF-3 rings are PF. There is a natural generalization of PF called
FPEF. A ring R is called left (right) FPF if every finitely generated
faithful left (right) module is a generator. These have been studied in
[F&P. P, P,, P;]. Now, as it turns out for a left FPF semiperfect ring,
there is minimal faithful left module P in the following sense, see [F & P].
If M is finitely generated and faithful. M has a direct summand isomorphic
to P. The module P is necessarily projective but need not be injective nor
is P a summand of every faithful left module. The connection with QF-3
rings is even stronger. If the ring R is Noetherian, FPF on both sides
and semiperfect, then R is a product of Quasi-Frobenius rings and valuation
rings. Faticoni [Fa] showed that all Noetherian FPF rings are products
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of Quasi-Frobenius rings and bounded Dedekind prime rings. We will give
another proof of this here which suggests there is a radical-like property
in the background. We also introduce left (right) FQF-3 rings defined as
follows: A ring R is left FQF-3 if it has a left (right) minimal faithful
module P in the following sense: Every finitely generated faithful left
(right) module over R has a direct summand isomorphic to P. It is worth
noting that the integers are FQF-3 and FPF but not QF-3. Also left
FQF-3 does not imply FPF nor does FPF imply FQF-3. To see this one
only need note that not all QF-3 rings are FPF and not all Dedekind com-
mutative rings are principal ideal rings. We will show that all domains
that are left FQF-3 are semi-principal left ideal domains. Since the class
of semiprime FQF-3 rings is larger than the class of semiprime QF-3
rings and has many of the properties of semiprime FPF rings, we will
concentrate on this class in this paper.

Notations and conventions

Throughout R will denote an associative ring with identity and all
modules will be unitary. Any unordained adjective will mean two sided
where appropriate (i.e. FPF ring means two sided FPF ring etc.). For a
left or right R-module M and subset N we will let N* =|{r € R: nr =0
for all n € N| and *N will be the corresponding left annihilator of the
subset N. Let Z(M) denote the singular submodule of M and E(M) the
injective hull of M. We will denote the maximal left ring of quotients of
R by Q(R) and Z,(R) denotes the left singular ideal of R where as Z,(R)
denotes the right singular ideal of R. For an R-module M, M" stands for
the n-fold direct sum of copies of M.

Definition 1. A ring R is called left FPF if for every finitely gen-
erated left R-module M such that *M = 0. there exists an integer n > 0
such that R® Y = M". That is to say, M is a generator of the category
of left R-modules. There is the obvious notion of a right FPI ring.

Definition 2. A ring is left bounded if every essential left ideal
contains a non-zero two sided ideal.

Definition 3. A ring R is called left QF-3 if there exists a left R-
module M such that *M = 0 and M is isomorphic to a direct summand of
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every faithful R-module. (A module is faithful if its annihilator is zero, )

Definition 4. A ring R is called left FQF-3 if there exists a left
R-module M which is faithful and is isomorphic to a direct summand of
every finitely generated faithful left R-module.

Remark. We will refer to the module M in definitions 2 and 3 as a
minimal faithful module. Notice that the minimal faithful module referred
to in the last two definitions apriori need not be unique up to isomorphism.
It is known that the M in Definition 2 is unique and is the injective hull
of a finite sum of simple R-modules. In Definition 3 the minimal faithful
module is unique in the case when R is semiprime.

Lemma 5. A left FQF-3 ring is left bounded.

Proof. If E is an essential left ideal of a left FQF-3 ring, then R/E
can not be faithful for it is singular. '

Lemma 6. Let R be a left FQF-3 ring. Then there is an idempotenti
e such that Re is a minimal faithful left R-module. Also, all minimal faithful
R-modules are projective and cyclic.

Proof. Suffice it to say that R is obviously faithful,

Corollary 6.1. If R is a lefi FQF-3 ring which is semiperfect, then
the minimal faithful modules are all isomorphic.

Proof. Since each minimal faithful is a cyclic projective and each is
a direct summand of the other, one applies the Krull-Schmidt theorem on
direct sums of indecomposables to obtain the desired conclusion.

In the next section we will see that Corollary 6.1 also holds for
semiprime FQF-3 rings.

Semiprime FQF-3 rings

In [F&P] it is shown that for left FPF rings all semiprime left
FPF rings have Z,(R) = Z{(R) = 0 and conversely. This does not hold
in FQF-3 rings. We do have the following:

Proposition 7. If R is a semiprime left FQF-3 ring, then Z,(R) = 0.
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Proof. Let Re be a minimal faithful left ideal. Let x € Z,(R). Now
for a semiprime ring the ideal A maximal with respect to A N Rx =0 is
*Rx = RxR~ = xR*. Also, the ideal B = A* = 4 is an essential ex-
tension of RxR as a left ideal. Since R is semiprime 4 N B =0, and it
follows that Rx @ R/B is faithful. We must have a map f: (Rx)+R/B
— Re —» 0 which splits. This gives Im(Rx)+Im(R/B) = Re. Now
the trace of R/B in R is A, since A = “B, so (Im(Rx)+A) N Re = Re.
If Im(Rx) N A N Re = 0, Im(Rx) contains a submodule isomorphic to Re
which would be projective, cyclic and singular which is impossible. So
Im(Rx) N A == 0. This yields a non-zero square zero left ideal, another
contradiction. Finally, Im{(Rx) = 0 implies A D Re and B = 0, which
leaves only the possibility that Rx is zero.

At this point we know that for a semiprime left FQF-3 ring that the
maximal ring of quotients is a left self-injective von-Neumann regular ring.
Is the maximal left quotient ring left FQF-3. too? The answer is provided
in the following.

Proposition 7.1. Let R be a semiprime left FQF-3 ring with maximal
left quotient ring Q(R). Then Q(R) is left FQF-3.

In order to prove this theorem we need some lemmas.

Lemma 7.2. Let R be a semiprime left FQF-3 ring with minimal
faithful left ideal Re. Then eRe = End(Re) is a left FPF ring.

Proof. The trace of Re in R is ReR and ReR* = 0 since *Re = 0.
So Re is a distinguished finitely generated projective. Since Re is iso-
morphic to a direct summard of any module which finitely cogenerates Re,

Re is an FPF module and we can apply [Thm 4, P,].

Lemma 7.3. Lei R be as above in 7.2. Then for @ = Q(R), eQe
is a left self-injective regular ring FPF ring.

Proof. Since @ is a left self-injective ring and Qe is injective and
non-singular over @, eQe is a left self-injective regular ring by Osofsky
[0,]. We claim eQe is an eRe essential extension of eRe and is therefore
the left maximal ring of quotients of eRe. We can apply [Thm 3.5, F & P]
to conclude that eQe is FPF. To see that eQe is an essential extension
of eRe, if eqe € eQe, there is a essential left ideal E in R such that
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Eeqe C R. Now, if eEeqge = 0 we have (ReR )Eeqe = 0, so that Eege =0
since ReR is right faithful. Also, since eRe is FPF and semiprime, as
is easily seen, Z,(eRe) = 0 by [Thm 2.3, F & P], and eQe is the maximal
left quotient ring of eRe. Next we have that the width, as defined in [F & P]
as the supremum of the n such that there exists an M + 0 and a direct
sum M™ contained in eQe, is finite, again by the results of [Chapt. 5,
F & P]. This implies that the width of Re is finite for the width of eRe
is the same as the width of eQe by the results of [Chapt. 5, F & P].

Corollary 7.4. If R is a semiprime left FQF-3 ring, the minimal
faithful modules are all isomorphic and of finite width.

Proof. Let Re be a minimal faithful left ideal with e* = e. Let M be
any other minimal faithful. Now Re = M @& Y for some Y and M = Re @
W for some W. We have then Re Z= M @ Y=Z Red YO W =M Y®
Y ® W =... which contradicts the fact that width of Re is finite, unless
Y or W is zero.

Using the types of self-injective regular ring as in Goodearl and Boyle
[G & B] we next show that the purely infinite part of Q is zero.

Lemma 7.5. If Q is type I or type HI and the maximal quotient ring
of a semiprime lefi FQF-3 ring, then Q is zero.

Proof. Type II or I regular left self-injective rings have all direct
summands of unbounded width, We are left with Q is a type I, ring.

Theorem 8. A regular left self-injective ring Q is left FQF-3 iff Q
is of type I,.

Proof. The previous results imply that if Q is FQF-3, Q is type I,.
To obtain the implication in the other direction we can first write @ = IIQ,
where each @, is FPF. We claim each Q, is left FQF-3. Now each Q,
is isomorphic to the nXn matrix ring over a self-injective ring R of width
one, i.e. all idempotents in R are in the center of R. Also, all one sided
ideals of R are two sided. We first show R is left FQF-3. To see this
suppose M is a finitely generated faithful left R-module. Then we
have, since R is FPF, M'—> R — (0 exact. This yields 0 » R - M*
exact. We wish to find an element m in M so that *m = 0. This will
give an embedding of R into M which will split since R is injective, and
hence that R is the minimal faithful. To find the element in question we
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first reduce to the case where Z(M) = 0. This can be done since in an
FPF ring M/Z(M) is faithful iff M is by [F & P]. Since M is finitely
generated, we induce on the number of generators of M. Since left ideals
are two sided, if M is cyclic any generator of M will do. If M is gener-
ated by m,,...,m,, then since *m, is a closed ideal of R it is a direct sum-
mand and generated by a central idempotent f by [Thm. 2.1A, F&P]. We
now take the ring Rf and the module fM which is generated by k-1 or
fewer elements and apply the induction hypothesis to obtain an element b
of the desired type for the ring Rf. Then m,+b gives the desired element
of M for the ring R. Next we show that with R as above each Q, is
FQF-3. To establish this note that any f.g. faithful @, module is a finitely
generated faithful R module. Now let ¢ be the nXn matrix over R with one
in the upper left corner. Then we have Q.qQ, = Q., as well as Rg = R.
So any faithful Q,-module contains a copy of R hence a copy of Rg hence
a copy Qnqg. Since Q.q is injective this copy must be a direct summand
and we have our minimal faithful module.

Finally we need that the product of the Q,s is left FQF-3. The
natural candidate for the minimal faithful module is the product of the
minimal faithful modules constructed above, but it is not finitely generated.
Instead we use Q(II(g,)) where the ¢, are the corner elements used in
the previous paragraph. Let M be a finitely generated faithful Q module.
For each n there is in M an element m, so that Qg.m, = Qq,. Then
IIg,Qq,= T is a self-injective ring of width one, so is FPF. Let
Q'> M > 0 and m,,...,m, be the generators of M which are the images
of the identity of @ given by the 1 canonical embeddings of Q into Q'. Now
take N to be the T module generated by {m,,...m,!. We claim N is faithful.
If not, there is an ideal A in T which annihilates N. But A generates an
ideal in @ which annihilates QN = M. To see this we note that the ideal
A generates in Q is the product of matrices with entries in A. It must be
that N is a faithful R-module. Now, as we have seen we can embed T in
N and this embedding extends to an embedding of Q(IHg,) into M. But

Q(IIg,) is injective so the embedding splits and we have our minimal
faithful.

Corollary 8.1. If R is left FQF-3, semiprime and has no infinite
sets of orthoganal idempotenis, or has acc on annhilators, then R is an
order in a semi-simple ring.

Proof. In this case we have that Q(R) is semi-simple.
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Corollary 8.2. If R is left FQF-3 and simple, R is simple Artinian.

Proof. All semiprime left FQF-3 are left bounded hence simple ones
have no non-essential left ideals and are therefore as stated.

Proposition 8.3. If R is a semiprime left FQF-3 ring, then the max-
imal left and right quotient rings of R are the same and R is also right
non- singular.

Proof. Let ¢ be any element of ¢). We wish to show that ¢R N @
+ 0. Let f be an idempotent so that Qf = Qq. Then Rq is essential in
B=Rf+Rq. We want a non-zero map of B into R. Let A = *Rq, a
closed two sided ideal of R. Also, A = *B, since Rq is essential in B,
Now we also have BN A=0,since RN BNA=0. Take C=B®
R/R N B. The module C is faithful. So C = Re @ Y. Under the canon-
ical map A embeds in R/R N B as an essential submodule. Since 4 is
closed the trace of R/R N B is A. As we have seen before Re = Re N
A+(Tr(R/A)), where Tr(R/A) is the trace of R/A in Re. We have
BA = 0 since A is two sided, so it follows that the trace of R/4 in Re
is not zero. Since B embeds under the canonical map as an essential
submodule of R/A, the trace of B in R is not zero. A map g: B > R
is given by g(f) = fz and g(q) = qx, where z and x are in Q. There is
an essential ideal E such that E(gfz—qx) = 0 since Rq is essential in
B. This says that gfz = qx is in R. Finally, fz is in R completing the
proof.

Focusing on prime rings we have:

Proposition 9. A ring R is a prime lefti FQF-3 ring iff R is Morita
equivalent to a bounded semi-principal left ideal domain.

Proof. The property of being FQF-3 is clearly a Morita invariant
and if R is a prime FQF-3 ring then it is a standard part of the Goldie
theorems that the endomorphism of the minimal faithful Re is a domain.
Now Re is a generator, for R = Re @ R(1—e) but since R(1—e) is faithful
R(l1—e)= X, ® W, with X, = Re. Now if W, =0, W, is f.g. and faithful
so W, =X, ® W, with X, = Re. The ring R is left Goldie, so has finite
Goldie dimension, hence and for some n, W, = 0, and Re is a generator.
Moreover, a domain that is a left FQF-3 clearly has all finitely generated
left ideals principal and is left bounded. To see the converse, if R is a
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bounded domain and M is a faithful finitely generated module, then M/Z(M)
is also faithful. Next, all semi-principal left ideal domians are Goldie. It
follows that Q(R) is a flat epimorphism and we can apply Goodearl [5.18,
G] to conclude that all finitely generated non-singular modules are projec-
tive. Since the image of a finitely generated module is finitely generated,
the image of any map of M/Z(M) to R is cyclic and the result follows.

The next theorem shows that certain factor rings of FQF-3 rings of
interest are FQF-3.

Theorem 10. Let R be a left FQF-3 ring and A the largest left
essential extension of Z,(R). Then R/A is a left FQF-3 ring.

Proof. With A as in the hypothesis A is a closed two sided ideal
since A contains Z,. Infact A=|x e R: Ex C Z,(A) for some essential
left ideal E of R|. If A is essential, then A is R and there is nothing to
prove. If A is not essential, there is a non-zero left ideal B maximal
‘with .respect to BN A = 0. Let M be a faithful finitely generated R/A
module. Take M @ R/B = N. Then N is faithful and so N has a direct
summand isomorphic to Re, where Re is a minimal faithful left ideal of R.
The ideal A is invariant in R and canonicaly embeds in R/B as an essen-
tial submodule. As in the proof of 8.3 the trace of R/B in Re is Re N
A. Now, Re/Re N A is a projective R/A module and N=Re N A &
Im(M). It follows that Im(M) = (Re/Re N A) & Y for some R/A-module
Y and therefore Re/Re M A is a minimal faithful module for R/A.

Noetherian FPF rings

In this section we prove that all Noetherian FPF rings are products
of bounded Dedekind prime rings and Quasi-Frobinius rings. We use this
result to correct an error on the last page of “FPF Ring Theory”
concerning which group rings are FPF.

Lemma 11. Let R be a Noetherian ring and L a left ideal maximal
with respect to L. #+ 0. Then L is a prime two sided ideal.

Pooof. Clearly *L = {LR) so L = LR. Also, if A and B are ideals
with A D L and B D L such that AB C L, then *L{AB) = 0. So either
*B=+0or ‘LA =0 i.e. A= 0 which is not possible by the choice of L.

Proposition 12. Let R be a ring. Then ring R is said io be right
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essentially bounded if every right ideal which is essential contains a two
sided ideal which is right esseniial.

Proposition 13. Let R be a right FPF ring with right singular ideal
small in R. Then R is right essentially bounded.

Proof. Let A be an essential right ideal and B the ideal of R con-
tained in A which is as large as possible. Suppose B is not right essen-
tial and choose H contained in A so that BN H=0 and B ® H is right
essential. Now E(R) = E(B) ® E(H), so 1 = b+#h for some b € E(B)
and A € E(H). Next consider b R+AR = M D R. We have 6B = B and
hB = 0. Moreover, M/H D R/H which is faithful since H contains no
non-zero ideals. But the trace in R of M/H is the trace of bR plus the
trace of AR/H, and the trace of AR/H is in the right singular ideal since
H is essential in E(H). We have supposed the right singular ideal is
small, so we have R = trace(bR). Now any map f: bR — hR has B in
the kernel since B is two sided. This implies AR is singular and in
particular that » is singular. Finally, take E an essential right ideal which
contains B and AE = 0. Then E = 1E = bE. so E C E(B) and B is right
essential in E which is right essential in R, giving us that B was right
essential.

The next result is generalization of a result of T.G. Faticoni [Fa].

Proposition 14. Let R be a ring with small right singular ideal and
P a right annihilator two sided ideal. If P is finitely generated as a left
ideal and R is right essentially bounded then R/P is right bounded.

Proof. let A = *P. Since A is finitely generated by a,,...a;, say,
as a left ideal we have that R/P embeds in A’ as a right R module. Let
H be an essential right ideal of R/P and H, the image of H in A’ under
the imbedding. Let I be the image of R/P in A' and M a submodule of
A such that H & M is essential in A‘. The intersection of H,+M with
each A in the direct sum A’ is nonzero and essential in A. A is a two
sided ideal so each intersection contains a two sided ideal which is essen-
tial. We have that A* D V where V is an R bimodule and is an essential
submodule of A* and H, ® M. Now there is a right essential right ideal
H, of R such that A'H, C V and H, & P since AP = 0 and V is essential
and nonzero. It follows that (R/H)* # 0 in R/P so H contains a nonzero
two sided nonzero ideal of R/P.
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Lemma 15. Let R be a left FPF left Noetherian ring. If L,,....L,
is a set of maximal right annhilator ideals with L, # L, for i =+ j, then
R =L+, L, and the sum >}, *L, is direct.

Proof. For any i we have L; € (\7.; L, so that L,+(f, L, is a
generator. But since each L; is an annihilator each L, is invariant so
that the trace of L;+ (7., L, is itself, that is, R = L,+ (%, L,. The
fact that 27, *L, is direct follows easily.

Next we need a result from the past. Namely, that every FPF ring
splits into a product of a semiprime ring and a ring with essential left(right)
singular ideal, see [P;]. For Noetherian rings their singular ideals are
nilpotent. This gives us the following reduction.

Theorem 16. A Noectherian FPF ring R is a product R, X R, where
R, is a finite product of bounded Dedekind primes rings and R, is a
Noetherian FPF ring with esseniial (on both sides) prime radical,

We now assume that the prime radical is essential on both sides.
This means that for any prime P of R that P is essential and *P is con-
tained in the right singular ideal hence in the prime radical.

Let '=1{P: P is a maximal right annihilator ideall. Let K = ()
{P: P € I'l. Then K contains the prime radical and each *P is contained
in the prime radical so that >, P C K.

Theorem 17. Let R be a Noetherian FPF ring with esseniial prime
radical B(R). Then B(R) = K = Z(R) = ZAR) and R/B(R) is a finite
product of fully bounded Dedekind prime rings. Moreover, R is fully bounded.

Proof. Let W = 3 ,er*P. Then W+ C K. Now if W is essential,
then certainly W+ C Z,(R). If not we must consider left ideals L C
Z,R) for which W N L # 0. But as we have observed above W is con-
tained in B(R). We first show there are no nontrivial two sided ideals
V such that VN W =0 and 0 #= V N K. Assume some such V exists.
We can assume V C Z,(R) because Z,(R) is essential. Since R is right
Noetherian, V is nilpotent and so V* %= 0. Pick such a V so that V* =
B is maximal. Now BC P for some P€ I. So *BD *P. Now *PC W
so VN *P=0. Then P/*P @ R/V is a generator (on either side actually).
The trace of x(R/*P) = (*P)* and the trace of x{(R/ V) = B. Hence B
+(*P)* = B+P = R, a contradiction. We now have that if W is not
essential and L is maximal with respect to L N W = 0, then L contains
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no two sided ideals. since Z,(R) is left essential. It follows that R/L
is faithful and a generator. Now under the canonical map R - R/L, W
embeds in R/L as an essential submodule. Let kK € K. Then any map of
R/L to Rk must contain W in its kernel. This means K is contained in
the left singular ideal. Therefore K is the left singular ideal. The fact
that K D B(R) gives us that K = B(R). That K is the right singular
submodule follows by symmetry. That R/B(R) is fully bounded follows
since using Lemma 15 and Proposition 14 and their symmetrical statements
R/B(R) is a product of prime rings which are both left and right bounded
such that each left (right) ideal is a generator. hence each is FPF by
4.7 and 4.10 of [F&P].

Theorem 18. If R is a Noetherian FPF ring R is a finite product of
bounded Dedekind prime rings and Quasi-Frobenius rings.

Proof. By using Theorem 18 and a modified version of the proof of
Theorem 5.7 of [F & P] (just take the A there to be N = the nilradical)
we can use Robson’s decomposition theorem [Ro] and we are done.

We can apply the last theorem to group rings over Noetherian FPF
rings. The example on the last page of the text of F & P is not valid. In
fact almost the opposite seems to be true, at least for Noetherian rings.

Theorem 19. Let R be a Noetherian FPF ring and G a finite group.
If the order of G is a unit in R, then the group ring RG is FPF.

Proof. By Theorem 7 we can write R as R, X R, where R, is Quasi-
Frobenius. Now R,G is FPF by Theorem 5.26 of [F & P]. By W. Dicks
[D] R,G is hereditary and semiprime by I. Connell [Co]. By Chatters
[Ch] RG is a product of prime Noetherian rings and by the results of
Lorenz and Passman [L & P] since R is bounded, so is RG, hence FPF.

Note that if the order of G is only regular in R and R is prime FPF
Dick’s results show RG is not hereditary but it still is semiprime noetherian
so can't be FPF.

Remark. During the preparation of this paper the author received
the preprint of Faticoni’s [Fa] in which Faticoni proves Theorem 6. The
two proofs are quite different.

The author would also like to thank Professor Robert Warfield for
pointing out an error in the original version of this paper.
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