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ON RINGS IN WHICH EVERY ELEMENT IS
UNIQUELY EXPRESSIBLE AS A SUM OF
A NILPOTENT ELEMENT AND
A CERTAIN POTENT ELEMENT

Yasuvuki HIRANO, Hisao TOMINAGA and Api. YAQUB

Throughout, R will represent a ring. Let P, N and N* denote respec-
tively the sets of potent elements, nilpotent elements, and elements which
square to zero, of R. Given a positive integer n, we put E, = |x € R | x"
= x|; in particular, E = E,.

For any subsets A, B of R, we define R to be A-B(resp. [A-B]) repre-
sentable if each x € R can be written as x = a+b, wherea € Aand b € B
(resp. a € A, b € B, and [a, b] = ab—ba = 0). In case each x € R can
be written uniquely as x = a+b, where a € A and b € B(resp. a € A,
b € B, and [a, b] = 0), we say that R is (A-B) (resp. | A-B}) representable.
Also, we define R to be A-B(resp. [A-B]) orthogonal if ab = 0 = ba for any
a € A, b € B(resp. for any a € A, b € Bwith [a, b] = 0).

In view of [8, Theorem 3 (1)], R is a periodic ring if and only if R is
[P-N] representable. Furthermore, by [2, Theorem 1 (3)] (see, also Theo-
rem 1 below), R is (P-N) representable if and only if R = P @ N; strictly
speaking, both P and N are ideals of R and R is the direct sum of P and N.
It is an open question whether the P-N representability implies the periodicity
of R. Needless to say, if R is A-B orthogonal then R is [A-B] orthogonal,
and if R is E-N* orthogonal then R is normal, that is, E is central.

The present paper treats (P-N) representable rings, { P-N| representable
rings, (E-N) representable rings and { E-N| representable rings. We shall
begin with some examples.

Examples. (1) Obviously, the {P-N| representability implies the
[P- N] representability. But the converse need not be true. Let R be the

(5 2)

Hence R is [P-N] representable, but not | P-N| representable.

(2) Let R be the commutative ring Z/4Z. Then P = E, + Eand R
is (E-N) representable. But E is not an ideal, and R is not (P-N) repre-
sentable.

a, b € GF(3)}. Then P=E,and R= P U N.

commutative ring
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o e (5

a, b€ GF(2)]. Then R = EU N is not

(E-N) representable
(4) Let R = M,(GF(2)). Then R is not [ E-N] representable, but E-N

representable,

Now, we shall state our main theorems.

Theorem 1. The following are equivalent :

1) R is(P-N) representable.

2) R is [P-N] representable and E-N* orthogonal.
3) R=P@&N.

Theorem 2. The following are equivalent :
1) R is|{P-N| representable.
2) R is [P-N] representable and [ E-N*] orthogonal.

Theorem 3. The following are equivalent :
1) R is{E-N| representable.

2) R is [E-N] representable.

3) x—x* € N for everyx € R.

4) Nis an ideal and R/N is a Boolean ring.

Theorem 4. The following are equivalent :

1) R is (E-N) representable.

2) R is normal and E-N representable.

3) R is normal, and x—x* € N for every x € R.

4) R is normal, N is an ideal, and R/Nis a Boolean ring.

Theorem 5. The following are equivalent :

1) R is E-N* orthogonal and (E-N) representable.

2) R is E-N* orthogonal and E-N representable.

3) R is E-N* orthogonal, and x —x* € N for every x € R.

4) R is E-N* orthogonal, N is an ideal, and R/N is a Boolean ring.

5) R = E@® N; sirictly speaking, both E and N are ideals of R and R
is the direct sum of E and N.

Proof of Theorem 1. This is essentially proved in [2, Theorem 1 (3)].
However, for the sake of completeness, we shall give the proof. Obviously
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3) implies 1).

1) => 2). In view of the uniqueness of the expression, we can easily
see that R is normal. Observe that if x = u +awithu € P, a € N and
[u, a]l = 0, there exists n> 1 such that x"—ax € N. Let e be an arbitrary
(central) idempotent, and @ € N*. Applying the above observation to 2e, we
get a positive integer k such that ke = 0. Hence e+ea = (e+ea)**' is
potent, and the uniqueness of its representation implies that ea = 0, and
thus EN* = 0. Furthermore, by induction, we can easily see that PN = 0
= NP. By making use of this fact and the P-N representability, we can prove
that N is an ideal, and therefore for each x € R there exists m > 1 such
that x—x™ € N. Hence R is [P-N] representable by [8, Theorem 3 (1)].

2) = 3). Since EN* = 0 = N*E, we can easily see that R is normal,
EN = 0 and N is an ideal (see 1) = 2) above). Now, let I be the ideal of R
generated by E. and x an arbitrary element in I N N. We write x = eyx;+ -+
+ exx, with some e; € E and x; € R. As is well known, there exists a
central idempotent e such that ee; = e; (i = 1,---,k). Then x = ex € EN
=0, and hence IN N=0. Since PCS I and R is [P-N] representable,
this proves that P=Iand R = P & N.

Corollary 1 ([7, Theorem 3]). If R satisfies the identity x"y= xy"
(n>1). then R =P & N.

Proof. Obviously, R is E-N* orthogonal. Since R satisfies the identity
x™? = ™' R is [P-N] representable by [8. Theorem 3 (1)]. Hence R =
P ® N by Theorem 1.

Proof of Theorem2. 1) =>2). Let e € E. a € N*, and [e, a] = 0.
Then there exists a positive integer k such that ke = 0. Hence e+ea =
(e+ea)*!' is a potent element, and the uniqueness of the representation im-
plies that ea = 0.

2) = 1). By induction, we can easily see that if e € E, a € N and
e, @] = 0 then ea = 0. Let x be an arbitrary element of R. Then there
exists a positive integer k such that x** = x*, by a theorem of Chacron [4].
As is easily seen, ' € P and x—x""' € N. Now. let x = u+a. where
«**' = u with some positive integer n, a € N, and [u, a] = 0. Thenu" € E
implies that u"a = 0, and so ua = 0. Hence x"' = u™'+a""' = u+a™",
and therefore there exists an integer m > k such that x™*' = u. Since [x, a]
=0 and x* € E, we get "¢ = 0 and x™(x—x**') = 2" *xf(x—x""') = 0.
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Thus, # = 2™ = 2"(x*" +(x—x*")) = 2" = 2*(uta) = £

Corollary 2. If a ring R with 1 is | P-N| representable, then R is a
potent ring.

Proof of Theorem 3. Obviously, 1) = 2) = 3), and 4) = 3).

3) =>1). More generally, we shall show that if x is an element of a
ring R such that (x—x?)” = 0 then x can be written uniquely as x = e+a,
where ¢ € E, a € N, and [e, a] = 0. Actually, e = >3, 2 (1— x)*"!
is an idempotent and @ = x—e is a nilpotent. Suppose x = f+ b, where
fEE bEN, and [f, 5] = 0. Then [e. f] =0 = [a, b]. Hence e—f
=(e—f)?and e—f = b—a € N, and therefore we get f = e.

3) =>4). Since R is a strongly n-regular ring, the (Jacobson) radical
Jof Ris nil; JC N. Now, we shall show that R/J is commutative. To
see this, it suffices to show that if S is a primitive ring satisfying 3) then S
is a division ring, and hence it is GF(2). Suppose, to the contrary, that S
is not a division ring. Then, by the structure theorem of primitive rings,
there exists an integer & > 1 and a division ring D such that M(D) is a
homomorphic image of a subring of S. Needless to say. Mx(D) satisfies 3).
But (E,,+ E;+ En)*—(E,+ E\;+ Ey) = E\,+ E,; is not nilpotent. This
contradiction shows that S is a division ring. Thus we have seen that R/J
is commutative. Consequently, the commutator ideal of R is contained in J,
and so it is contained in N also. Hence N forms an ideal.

Proof of Theorem 4. In case R is normal, the (E-N) representability
and the E-N representability are equivalent to the | E-N| representability and
the [E-N] representability, respectively. Since the (E-N) representability
implies the normality of R, the assertion is clear by Theorem 3.

The next generalizes [1, Theorem 6].

Corollary 3. Let R be a commutative ring. Then the following are equir-
alent :

1) R is(E-N) representable.

2) R is E-N representable.

3) R/Nis a Boolean ring.

As is easily seen (see, e.g., [9, Lemma 1]), every factor ring of a
normal r-regular ring is normal. Hence, by Theorem 4 3), we see that if R
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is (E-N) representable then so is every factor subring of R .

Corollary 4. If R is (E-N) representable, then R is a subdirect sum of
nil rings and local rings Ry with radical N, nil and Ro./N. = GF(2).

Corollary 5. Let R be an Artinian and Noetherian ring. Then R is
(E-N) representable if and only if R is a finite direct sum of nil rings and
local rings R; with radical N; nil and R;/N; = GF(2).

Proof of Theorem 5. Obviously, by Theorem 4, 1) —4) are equivalent.
Since 5) implies 1), it remains only to show that 1) implies 5).

1) =5 5). It is easy to see that R is E-N orthogonal. Now, let u be an
arbitrary potent element: u" = u with n > 1. We write u = e+a, where
e is a central idempotent and @ is a nilpotent. Since «"”' is an idempotent,
we get u = uu"' = (e+a)u""' = eu™' € E. This proves that P = E, and
therefore R = E & N, by Theorem 1.

Remark 1. In connection with the ( E-N) representability, we consider
the following condition :
(*) Ife,f€ Eande—f € N, thene = f.
If e, f are central idempotents and e—f € N, then e—f = (e—f)°. and so
e—f=0. This proves that if R is normal then R satisfies ( *). Conversely,
suppose (*), Lete € E, andx € R. Then f = e—ex(l1—e) € Eand e—
f=ex(1—e) € N*. Hence we have ex = exe: similarly xe = exe. This
proves that R is normal.

Appendix. Given an integer n > 1, we consider the following condition :
(#), Foreachx € R, x"—x € N.
As was shown in Theorem 2, N forms an ideal whenever R satisfies ( #),.
In what follows, we shall prove the next

Theorem A.1. Let n> 1 be an integer. Then the following are equiv-
alent :

1) N forms an ideal whenever R satisfies ( #),.

2) n=*1(mod3)and n=*= 1 (mod 8).

3) For each prime p, n & 1 (mod p*—1).

4) For each prime p. M,(GF(p)) fails to satisfy ().
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In preparation for proving Theorem A.1, we state two lemmas.

Lemma A.1. Lel R be a ring in which every non-nil right ideal con-
tains a non-zero idempotent. Then the following are equivalent :

1) N forms an ideal.

2) R contains no systems of 2° matrix units.

3) R contains no subrings isomorphic to My,(Z/mZ) for a non-negative
integer m + 1.

Proof. Note that the Jacobson radical J of R is the largest nil ideal of
R. Obviously, 1) = 3) = 2).

2) =>1). Suppose, to the contrary, that N does not form an ideal,
namely N q; J. Since R = R/J is a semiprimitive ring in which every non-
zero right ideal contains a non-zero idempotent, a theorem of Levitzki [5,
Theorem X. 11. 1] shows that there exist non-zero e, f € E such that eRe =
Ma(f_éf_). Then, as is well-known (see, e.g., [5, Theorem Il. 8. 1]), eRe
= M,(/Rf). This contradicts 2),

Corollary A.1 ([6, Theorem 1]). Let R be a regular ring. Then the
Jollowing are equivalent :

1) R is a reduced ring, namely a strongly regular ring.

2) Ife, fare in E and ef = 0 then fe = 0.

3) R contains no subrings isomorphic to M,(F) for a prime field F.

Proof. It is easy to see that 1) =>2) = 3).

3) = 1). Suppose, to the contrary, that N+ 0. Then N does not form
an ideal. Hence, by Lemma A.1, there exist non-zero e, f € E such that
eRe = M,(fRf). Now. suppose that the regular ring fRf contains no subring
isomorphic to a finite prime field. We claim that fRf is torsion free. Actu-
ally, if fRf contains a non-zero element of finite order, then fRf contains an
idempotent of prime order, which is impossible. Thus, for each non-zero
n € Z, nf is invertible in fRf, and therefore fRf contains a subfield isomor-
phic to Q.

Lemma A.2. Let p be a prime, and ® = GF(p). Then M,(®) satisfies
(#), if and ondy if n = 1 (mod p*—1).

Proof. Let Qbe the algebraic closure of @, and K = GF(p*). Suppose
M,(®) satisfies (#),, and choose a generator a of the multiplicative group
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of K. Noting that K may be regarded as a subring of M,(®), we see that
a"—a =0, by (#),. Since ais of order p’—1, we get n =1 (mod p*—1).
Conversely, suppose that n—1 = (p*—1)k for an integer k. Given A €
M,(®). we can find an invertible B € M,(Q) such that B™'AB = (g ;),

where a, £ are characteristic roots of A, which belong to K. Then
(A*—A)* = B{(B"'AB)”~B'AB|’B™ = 0,
and so
(A"=A)" = (A" = A) (AP A7 1) = 0.
We are now ready to complete the proof of Theorem A.1.

Proof of Theorem A.1. By Lemma A.2, 3) and 4) are equivalent. Next,
1) implies 4), obviously. Conversely, suppose 4). If R satisfies ( £),, then
we can easily see that R contains no subrings isomorphic to M,(Z/mZ) for a
non-negative integer m # 1. Hence, by Lemma A.1, N forms an ideal. We
have thus seen that 1) and 4) are equivalent. Finally, as is easily seen, if p
is a prime different from 2, 3 then p’*—1 = (p—1)(p+1) is a multiple of
3-8. Hence 2) and 3) are equivalent, completing the proof.

Remark A.1. By Dirichlet's Theorem (see, e.g.. [3, Theorem5.3.2]),
the set of primes n such that n = 5 (mod 24) is infinite. Hence there exists
an infinite number of primes n such that n = 1 (mod 3) and » = 1 (mod 8).
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