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AN EXTENSION OF A THEOREM OF
D. GROMOLL AND J. A. WOLF

Nosuriro INNAMI

0. A complete Riemannian manifold M is said to be without focal
points if any geodesic has no focal point as a 1-dimensional submanifold in
M. Many properties and results for manifolds of nonpositive curvature
were extended to those manifolds. In case we extend a theorem of Gromoll
and Wolf (cf. [2], Theorem 9.1 and [3]) by same argument as theirs, only
one lemma corresponding to Lemma 9.6 in [2] has not been established yet.
In the present note we prove the lemma. Combined with some properties
corresponding to their lemmas, we have the following theorem by using the

terminology in the book of J. Cheeger and D. G. Ebin ([2], Theorem 9.1).

Theorem. Let M be a closed totally convex subset of a simply connect-
ed Riemannian manifold without focal points and let I be a properly dis-
continuous group of semi-simple isometries of M. Let X be a solvable
subgroup of I. Then M contains a flat totally geodesic submanifold E,
which is isometric to R* and invariant under X such thai:

(1) X acts with finite kernel ® on X,

(2) E/X is compact, in particular, X is finitely generated and %/ ® is
a crystallographic group of rank k.

In particular, (1) and (2) hold if M is the universal covering space of a
compact manifold and I the group of covering translations.

The very similar statement was given by H. B. Lawson and S. —T.
Yau ([5]) for manifolds of nonpositive curvature, and was extended to
manifolds without focal points by J. O’Sullivan ([6], [7]). Nevertheless,
we write this note to emphasize that the lemma is true and Theorem can be
proved by the same argument as in the case of nonpositive curvature.

1. We state the lemma and prove it.

Lemma 1. Let M be a totally convex subset in a simply connected
complete Riemannian manifold without focal poinis. Let @ be a semi-simple
isometry of M and let C be a nonempily closed totally convex subset in M
which is invariant under the action of . Then, C N C, + ¢, where C, is
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the minimum set of the displacement function d, of ¢.

Proof. We say that a point ¢ € C is a foot of a point p on C if d(p,
C) = d(p, q). Since C is totally convex, there exists the unique foot on
C of each point p € M. We denote by f(p) the foot of p on C. Obviously,
¢f = fo. First we treat the case where ¢ is elliptic, i.e., mind, = 0. If
p € C,, then f(p) € C N C,, since

d(P(f(p)), p) = d(®(f(p)), ¢(p)) = d(f(p), p).

and, hence, ¢(f(p)) = f(p). Next assume that ¢ is axial, i.e., mind, > O.
Let ¢: (—o0, co) > M be an axis of ¢, namely pa(t) = a(i+a) for some
constant a and for any ¢ € (—oo, o). Put 8(¢) = f(a(t)) for each t €
(—o0, ). Then, by Proposition 2.8 in [4], 8: (—o0, ©) > M be a
geodesic and biasymptotic to a. Hence, 8(¢) € C N C,, since

eB(t) = ¢(f(alt))) = flg(a(t))) = fla(t+a)) = Blt+a)

for any ¢ € (—oo, c0), namely B is an axis of @, and, therefore, S(R) C
C, because of Theorem 32.3 in [1]. Lemma 1 is proved.

2. The following fixed point theorem was known already. However,

we give an elementary proof here. The idea of the proof is due to K.
Shiohama.

Lemma 2. Let C be a totally convex subset in a complete simply
connected Riemannian manifold N without focal points. Let ¢ be an isomeiry
of C. If there is a compact subset A in C which is invariant under the
action of ¢, then @ has a fixed point in C.

Proof. Let 7 be the minimum of the radii of all geodesic balls in N
which contain A. Suppose a geodesic ball B(p, ») contains A. We want to
prove that p € C and p is a fixed point of ¢ Suppose p & C. Let ¢ be
the foot of p on C. Since C is totally convex and the distance function to
each x € C is convex in N, we see that d(x, ¢) < d(x, p) for any x € C.
From this we have a contradiction to the choice of r. Suppose p + ¢p for
indirect proof. ¢B(p, r) N C = Blgp, r) N C contains A also, since pA
= A. Let q be the midpoint of p and gp. Then,

d(x, ¢) < max |d(x, p), d(x, gp)} < r

for all x € A, since all geodesic balls are strictly convex in N. If r, =
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max |d(x, q); x € A}, then r, < r. This contradicts the choice of r,
since B(gq, r,) contains A. Lemma 2 is proved.

3. The proof of Theorem 9.1 in [2] needs Lemma 9.2, 9.3, 9.5, 9.6
in [2] and nothing else. Here, we give the list of correspondence. Since
Lemma 9.2 is free from the assumption of nonpositive curvature, it holds in
our case also. The author does not know whether Lemma 9.3 is true under
the nonfocality properties. However, the proof of Theorem 9.1 needs only
the total convexity of the minimum set C, of the displacement function d,
¢@being a semi-simple isometry. This fact is proved as follows: If min d,
= 0, then C, is the set of all fixed points of ¢, and therefore C, is totally
convex because of the existence of the unique minimizing geodesic joining
two points. If min dg > 0, then C, is the set of all axes of ¢, i.e. a
geodesic a: (—oo, o0) = M such that pa(t) = a(t+a) for any t € (—oo,
o), a = min dp, and therefore d(a(t), (1)), t € (—oo, o), is bounded
for any axes a and 8 of ¢ In this case the flat strip theorem (cf. Theorem
1.13, [4]) implies the total convexity of C,. Lemma 9.5 is proved by using
Lemma 2 and the flat strip theorem (cf. [4]). Lemma 9.6 corresponds to
Lemma 1. Now, we can prove Theorem by the parallel argument to Gromoll
and Wolf’s,
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