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ON THE KO-COHOMOLOGIES OF THE
STUNTED LENS SPACES

Dedicated to Professor Hirosi Toda on his 60th birthday

Axie TAMAMURA and Susumu KONO

1. Introduction. In this note, we consider the KO-cohomologies of the
stunted lens spaces. In order to state our theorem we recall some notation
in [4].

For the (2n+1)-dimensional standard lens space L*(¢) = S§***'/Z, mod q,
we set

(1.1) Ly = 17a),
: 2" = |[{29.++,2n] € L™q) |2z, is real = 0},
We denote by ord G the order of a finite group G.

The following theorem is immediately obtained (cf. [9]).

Theorem 1. Let q = 3 be an odd integer, then
(1) KO™7(L¥"/Le) =0,

(2) i) KO™™(L{/LY = KL/ L) (1= )R (LT LY
where t: K — K is the complex conjugation.

i) ord KOM(LY"/LE") = g\,
(3) KO™(LI/L¥) = KO(S*™**),
(4) KO-™(Li"/Li') = KO(L"/LY™*) © KO(S™¥™),
(5) KO™~(Lg™"/L{") = KO(S™**).
(6) KO™(L{™"/Li) = KO™(L{"/LY") & KO(S*™™).
(7) KO- (LE/Ly™) = KO(S™ ) @ RO(S™4+),
(8) KO™™(Lg"*'/LT™")

= KO~¥(Li/L%*) @ KO(S*™%**) @ KO(S*™+/+),

As defined in [1], we denote by ¢(n,, n,) the number of integers s with
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ny<s=mn and s =0,1,2 or 4 (mod8), so that ¢(n,, n,) = ¢(n;, 0) —
¢(n,, 0) with

[n/2] (n=10,6 or 7 {mod 8))

#m 0) = 10/2]+1 (otherwise).

Let h: Z — Z be the function defined by

2 (s=1(mod8))
(1.2) h(s) = ll (s =0 or 2 (mod 8))
0 (otherwise).

Main result is the following theorem.
Theorem 2. (1) Ifj = 0 (mod 4) and n = 3 (mod 4), then we have

ord @-i(L;ﬂq/L?q) =9 ¢fm+j.n-‘-j\q[m/4]—[n/4].

(2) Ifj=0(mod4) and n = 3 (mod 4), then we have
KO~(Ly./L3,) = KO~(LL, /L") & Z.

(3) If j=1 (mod4) and m = n+2, then the groups KO- (L% /L%,
are tabled as follows.

m~+ j{mod 4) ]
0 1 2 3
n+j(mod 8)

0 'zez,®2,| Z.® 2 Z,® Z, Z,® Z,

1 . Z®Z Z, Z, Z,

2 1 z 0 0 0

3 A 0 0 0

4 z 0 0 0

5 Z 0 0 0

6 Z 0 0 0

7 Z® Z, Z, Z Z,

(4) Ifj=2(mod4), n=x1 (mod4) and m = n+3. then we have
ord KD"(L;’L/L?‘,) — 2h(m+jl+hin+.i)qllm+2X/4]—{{71+2!/4].

(5) Ifj=2(mod4), n =1 (mod4) and m = n+3, then we have
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KO(LM/LEY @ Z (n+j = 3 (mod 8))

KO~ (Lp/Li) =1 —
(KO™(L3,/L¥"Y)/G)® Z (n+j =7 (mod8)) .

where G denotes the kernel of the homomorphism

(pmn)': KO(L3 /L3S - KO (L3a/Lz,)

induced by the projection pmn: qu/L L7, /L3, and ord G is equal to 2.
(6) Ifj=3(mod4) and m = n+2 then we have
Z (m=1(mod4))
_ Z,® Z, (m+j =2 (mOd 8))
Ly /LY) =
KO~ a/Lza) Z, (m+j =1 or 3 (mod8))
0 (otherwise).

Remark 1. If m = n+1, then we have a homeomorphism

S (L"H/L;zq) ~ Sl+n+1 .
and the group KO(S’*"**') is well known.

Remark 2. If m = n+2, then we have homotopy equivalences

St/ 9+t (n: odd)

SHL7/L3,) = ST™(L2,) (n: even),

and parts (4) and (5) are true except the following cases:
i) Ifj=2(mod4) and m+j = n+j+2 = 3 (mod 8), then we have

KO (L2 /L3 = Z, .
ii) Ifj=2(mod4) and m+j = n+j+2 =1 (mod 8), then we have

KO(L% /L) = Z& Z,,

Remark 3. The partial results for the case n = 0 of Theorem 2 have
been obtained in [11] (see also (2.3)).

Remark 4. The corresponding results for the case ¢ = 1 of Theorem
2 are included in [6]. Our results imply

KO-\ (L% /L%,) = KO~*~'(RP(m)/RP(n))

for any q.
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Consider the homomorphism
(an)!Z @—j(Lg‘q/L?q) - @—j(Lg’q
induced by the projection
pn: Lig— L;nq/L?q-

Then, we have following result.

Corollary 3. If j =0 (mod4) and n = 3 (mod 4), then the homomor-
phism (p,")' is a monomorphism.

We prove Theorem 2 in section 3 after recalling some known facts in
section 2.

The authors would like to thank for the referee for pointing out the
Additional Remark in the end of section 3.

2. Preliminaries. In this section we fix integers m and n with 0 =<
n<m Set e =Li—L:" for 0 = k < m. Then the space L" has the
cell decomposition

7 =e Ue U.--U e™,
a(ezml) =0, 9e®™) = ge**.
Thus we have
(2.1) The cohomology groups of the pair (L3,, L},) are given by
H(LY, Liy: Z)
Z (j=m =1(mod2)or j=mn+1 =0 (mod?2))
Zyg (j=0(mod2) andn+1 < j=m)
0  (otherwise),

Jfym n ., =
H(LZg, Liat Z,) = [ 0 (otherwise).

We recall some known facts which are useful for the proof of Theorem 2.

(2.2) [11,(1.2) and (1.3)].

Sq*H(L3./Lie; Z.)
_[Ze (=20r3(mod4)andn<j= m—2)

= 10 (otherwise).
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(2.3) [11, Theorems (0.1) and (0.2)].
(1) If j = 0(mod4), then

ord @—j( ;nq) — 2¢(_m+j.j)q[m/4].

(2) Ifj=1(mod4), then the groups KO(L,) are tabled as follows.

m+j(mod4)
0 1 2 3
j (mod 8)
! 1 Z® 7, Z, Z, Z,
! 5 Z 0 0 0

(3) If j=2(mod4) and m 2 2, then we have
ord KO(LD) = 2Rm+ind lmsnp:
where h: Z = Z is the function defined by (1.2).
(4) Ifj =3 (mod4), then

VA (m =1 (mod4))
- Z,® Z, (m+j=2{(mod8))
J m -~
KO™(Li) = | 4, (m+j = 1or3 (mod8))
0 (otherwise).

Consider the homomorphism
(ia")': KO™(LE) > KO/(Li
induced by the inclusion
in": Liqg = Liq.
Then we have the following.

Lemma 2.4. (1) Ifj = 0(mod4), then the homomorphism(i,™)' is an
epimorphism.

(2) Ifj=3(mod4) and m = n+3, then the homomorphism (i,™)' is a
zero-map.

Proof. (1) is obtained immediately from [7, Lemma 2.9]. From (4)
of (2.3), (2) is clear except the case m = n+3 and n+j =1 (mod 8).

Assume n+j =1 (mod 8), then KO~(L3*) = Z, and KO(LZ*/LY) =
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KO (S™L3%,)) = Z,. In the exact sequence

S g0y Sl g ey S Ro-Lmy/Le,
(pnn+2) (lnn+2)

~H—SKO(L3g?) ———>KO(L},) -

associated to the cofibration

« N+2 +2
ln pn
ta — L3g® = Li3*/Li,,

the homomorphism (i,"*?)': KO~~(L%*) - KO~~'(L7Z,) is an epimorphism
by (1). Hence, (p,"**)' is an isomorphism. So the homomorphism (i,"*%)*:
KO~(L%?) » KO(L},) is a zero-map and the homomorphism (i,***)':

KO™(LE?) = KO/(L3,) is a zeromap. q-e.d.

Remark. By the above proof, we see that (2) of (2.4) is also true for
the cases j = 3(mod4), m = n+2 and n+j = 2 (mod 8).

Now consider the Atiyah-Hirzebruch spectral sequences for KO*(L¥, /L,

Ep* = HML7. /L3, KO*(pt))=> KO*(L%,/L%).
Then, as mentioned in [11], we have (cf. [5] and [10])
(2.5) The differentials

Bk {8k 2,8k~-1
dL E N E;+ ,

d;Bk 1. E;sk 15 E; ~2,8k-2

and

dg,sk—Z: E;‘,Bk—z_)E:i’-H!,Bk—-t

are induced by Sq’p,, Sq’ and B,Sq’ respectively, where p, is the reduction
mod 2, Sq® is the Steenrod operation and B, is the Bockstein operation associ-
ated to the exact sequence

0->Z->2Z- Z,-0.

Using (2.1), (2.2) and (2.5), we obtain the following results, where
a{m, n) and 8(m, n) denote non-negative integers with

1 (m=0,1o0r2(mod4))

a(m, n) = 2 (m=3(mod4)),
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1 (n=0or2(mod4))
B(m, n) = 2 (n= 3(mod4)).

(2.6) Assume m = n+3, then we have
(1) Ifj =0 (mod4). then we have

ord KO~(L% /L%,

@im+~in+s) _(m/4]—[nf4)
2 q

(m+j=0.1.6 or 7 (mod8) and n+j =1.2.4 or 5 (mod 8))

2 @(m+Jj,n+d)—am,n; q[mlA]—[ﬂ/ﬂ

(m+j=2,3,40r 5(mod8)and n+j=1,2,40r 5(mod8))

goim +j.n+j>—mm.n:qimm—lnﬂl

(m+j=0,1,60r 7 (mod8) and n+j =0 or 6 (mod 8))

2 zp(m+j.n+j)—a~:m.m—ﬂ(m.n;q[m/ﬂ—[nﬂ]

(m+j=2,3.40r5(mod8) and n+j = 0 or 6 (mod 8)).

(2) Ifj =1 (mod4), then we have

KO~(L? /L%,
_ [Z (m =3 (mod4) and n+j =

3,4 or 5 (mod 8))
0 (m=*3(mod4) andn+j =2

4
,3,4.5 0r 6 (mod 8)),

and

ord KO~ (L7, /L%,)
_ [22“5""‘"’ (m % 3 (mod 4) and n+j = 0 (mod 8))
21-Amm (1 % 3 (mod 4) and n+j =1 or 7 (mod 8)).

(3) Ifj=2(mod4) andn = 1 (mod 4), then we have
ord K:()—j(L;nq/L;lq) — 2h(m+i)+h{n+1;qlr:m+22'/4]—[m+2}/4|’

where h: Z — Z is the function defined by (1.2).
(4) Ifj = 3(mod4), then we have

Z (m+j =0 (mod8) andn * 3 (mod 4))

KO (L7, /L%) = lo (m+j=5,6 or 7 (mod 8)),

and

_ 9z-amm (m+] =2 (mod 8))
d KO~(L%/L2,) = : :
or ( ol 20) [zl—a«m.ﬂ. (m+j =1 or 3 (mod 4)).
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3. Proof of Theorem 2. In this section we complete the proof of
Theorem 2. Consider the exact sequence

(3.1) - Ro(Ln/Lr) 2 g 7 go-urm) -

associated to the cofibration

il P pm

where i," and p,™ are maps given in sections 2 and 1 respectively. It follows
from the exactness of (3.1) by making use of (2.3), (2.6) and Lemma 2.4
that

(3.2) a (m, n) = B(m, n) =0 for m 2 n+3.

(3.3) The homomorphism (p,™)' is an isomorphism for j = 3 (mod 4) and
m = n+3.

Thus, using Remarks 1 and 2, we see

(3.4) (1) Ifj=0(mod4) and n % 3 (mod4), then we have

ord IEVO_"(L;"Q/L?Q) — 2¢m+j.n+j)q[m/4]—[n/4].
(2) Ifj=1(mod4) andm = n+2, then we have

KO"(qu/L ) = Z2
(m % 3 (mod4) andn+j =1 o0r 7 (mod 8))

and

ord IEVO_J(L%/LQQ) =4
(m 2% 3 (mod4) and n+j = 0 (mod 8)).

(3) Ifj=3(mod4) andm = n+2, then we have

Z (m =1 (mod 4))
_ _ | Z.® Z (m—l-] = 2 (mod 8))
KO™(LEa/Lia) = Z, (m+j =1 or 3(mod8))
0 (otherwise).

Remark. (1) (3.4) implies Corollary 3.
(2) (3.3) is also true for the cases j =3 (mod4), m = n+2 and

n+j % 2 (mod 8).
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Now, consider the exact sequence

KO~(LE"/L3,) — KO™(L3./L3,) —» KO+ (S™*)
associated to the cofibration
ta/L3q = L33 /Lig > S™\.
Then from (3.4), we obtain
(3.5) Ifj=1(mod4). m = 3 (mod4) and m 2 n+2, then we have

(n+j=1o0r 7 (mod8))

, _|ze 2z
KO (L7, /qu) IZ (nt+tj=2o0r6 {mod 8)).

Consider the commutative diagram

I{:()—j?l(smirl) — K’v‘(‘)—jﬂ(smﬂ)

5 | ]a f

KO~ (L2 /LY —&5 RO~(LE, /L) —1— RO~ (LM*/LY,)

[k

KO—J(LM+1/LH+2 _g‘_, @—J(L;nqﬂ/L;z ) fl KO—:(LMZ/L q)

of the exact sequences, where the upper row is associated to the cofibration
L33*/L3e = L3 /Ly, = L3 /L33 .

If j=1(mod4), m =3 (mod4) and n+j = 0 (mod 8), then L3}3*/L}, =
S™\/ S™ KO~(LEH'/LE?) = 0 and ord KO~ (LZY/LE,) is equal to 4.

This implies that f; is an isomorphism and the short exact sequence

f ]ff)"'(S"” Y/ Sn+1) -0

0 —» KO~ (Lr,/L3*) = KO~(L7, /LY,
splits. Thus we obtain
(3.6) Ifj=1(mod4), n+j = 0(mod8) and m = n+2, then we have

Z® Z, ® Z, (m=3(mod4))

KO_J(L o/L7s) = Z,® Z (m 2= 3 (mod 4)).

Now we turn to the case j = 0 (mod 2) and n+j = 3 (mod 4). Consider
the exact sequence
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(3.7)  KO~~(Lm,/Lz) ~Bmol, ()| s pm /L3, 2mnly Gmn)| s gnon)
9, go-i(rz, /L) Prad, go-upm jray Umal gy guny

_)KO—J+1(L /LY (Pmn)’ Ko—J+1(L /LT, (lmn), O””"l(Sn“)

associated to the cofibration

Sn+l 1'7’”1 /Ln Pmn /Ln+1.
In this case KO~'*'(S™') = 0, and

rk KO_”I(L WL = rk KO’”I(L /L%,
by (2.6), (3.4), (3.5) and (3.6). Hence we have
(3.8) Ifj=0(mod2) and n+j = 3 (mod 4), then the image of the homo-

morphism
&: KO~(S™') » KO~*(L%, /L3
has a finite order.
If n+j = 3 (mod 8), then we have
KO~(S™) = 0.
It follows from (3.8) that we obtain a short exact sequence
0 » KO~(Ly, /L") - KO(L%/L3) = Z - 0.

Thus we have
(3.9) Ifj=0(mod2) andn+j = 3 (mod 8), then we have

KO(L%,/L3) = KOV(LE /L") & Z.

Assume j =0(mod 4), n+j=7(mod 8), m= 3 (mod4) and m = n+2,
Then we have

KO—J I(L n+1 ~ Zz,

KO (L1 /L) = Z, & Z,,
KO J— I(Sn+l) -~ 22



ON THE KO-COHOMOLOGIES OF THE STUNTED LENS SPACES 243

by (3.4) and (3.6). This implies that, in the exact sequence (3.7), the
homomorphism

(imn)': KO (LE/L3) - KO7'(S™)
is an epimorphism, and the homomorphism

&: KO~1(S™) » KO~ (L%, /L")

is ‘a zero-map. Note that the homomorphism & is also a zero-map for the
cases m = n+1 or m = 3 (mod 4). It follows from (3.8) that we obtain a
short exact sequence

0 - KO(L® /L") » KO (LY /L) = Z - 0.
Thus we obtain
(3.10) Ifj=0(mod4) andn+j =7 (mod 8), then we have
KO™(L%, /L) = KO™(L% /L") & Z.

Finally, assume j = 2 (mod 4), n+j =7 (mod 8) and m = n+3. Then,
in the exact sequence (3.7), the homomorphism

(pmn) KO_J 1(L /Ln“) - KO_J 1(L /L )

is an isomorphism by (3.3). Hence we obtain an exact sequence

0 > 7, » RO-(Lm/L) Peoll go-yLm /12 — 7 5 0
by (3.8). Thus we have
(3.11) Ifj=2(mod4), n+j =7 (mod8) and m 2 n+3, then we have
KO~(L3,/L3,) =(KO~(LE /L) /G Z,
where G denotes the kernel of the homomorphism (pm.na)'
Now, summarizing (2.6), (3.4),(3.5),(3.6),(3.9),(3.10) and (3.11),

we obtain Theorem 2. The proof is thus completed.

Additional Remark. In view of the fact that the stunted lens spaces
are Thom complexes, one may think of using the KO-theory Thom isomor-

phism in the computation of KO~ (L™ /L3 . It turns out that there is an
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isomorphism

KO~(L2, /L) = KO~ (LA™ for n = 3 (mod 4),

which is a generalized form of Proposition (2.1) of [6]. Combining this
isomorphism with the results in Theorem 2, one can now get further infor-

mation about Kb"( ra/L%q).
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