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THE TAYLOR COEFFICIENTS OF
£(s), (s—1)¢(s) AND (z/(1—2))¢(1/(1—2z))

Masumi NAKAJIMA

1. Introduction. The coefficients I, in the Laurent expansion of the
Riemann zeta-function at s = 1

&(s) Zﬁ-i-éfk(s—l)k (1)

have been considered by many mathematicians. (Stieltjes [4]. Briggs and
Chowla [1], Berndt [2], Israilov [3], recently Matsuoka [5] and other
authors. See references in [2, 3] and Ivié [4], p.49.) Among them Briggs
and Chowla, Berndt, Israilov and Matsuoka have made the interesting contri-
butions to the estimation of | I'x|. In this paper, we consider the coefficients
D:, D, and ¢, in the Taylor expansions of £(s), (s—1)¢&(s) and (2/(1—
2))&(1 /(1 —z)) at any point s, #+ 1 and at z = 0 respectively:

£s) = 5 Dils—sa)" (50 + 1) (2)
(s—1)¢(s) = 3 Dils—so)% (50 % 1) (3)
(2/(1=2)§(1A1=2)) = T cx2®, (l2] <1) (4)

(4) is the transformation of (s—1)¢(s) from the complex s-plane to the
complex z-plane by the Mobius transformation s = 1/(1 —z) which trans-
forms the right half s-plane |s: Re s > 1/2} into the z-disk |z: |z|<1}.
Note that the Riemann hypothesis is true if and only if (4) has no zero in the
unit disk |z |< 1. ([9])

In § 2, we shall give the explicit expressions of D, D, and ¢, which
are our generalizations of the Stieltjes formula [4]. The Stieltjes formula
has seemed to be thought as the special case that such a formula exists
because the point s = 1 is the only pole of ¢(s). In [2]., Berndt states the
estimate :

| Tel {3+ (—1)*|/kn* <4 /k 2* (5)

but it can be easily seen that his argument leads to the following result:
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| Tl < 42 0N 1T (N+)) (6)
J=1

for any integer N such that 1 = N < k. In particular, if we take N =
[k/2] where [ ] is the Gauss symbol in (6). then

| Tul = 4271 k/20 0 1 1(Tk/20 4+ )2 k/2D) 7 (7)

< 4[k/2]7Y mlk/2]) ke (8)

In § 3, we shall also give the estimation for the value |D’;|, |D| and
|cx| by the argument similar to that of Berndt [2]. As for the estimation of
Taylor’s coefficients of £(s), Mitrovié [6, 7] showed the following result:

|D%| = (—1)""", (k 2 0) (9)

where g, = Re s, and o, > 1. Our result in case ¢, > 1 is sharper than
that of Mitrovié.

We use hereafter the following notations:

The letter a always takes the value 1 or 0.
(7:) denotes the binomial coefficient, fi{u) = (k1) 'ufe* = i} (;c )('r!)“u',

=k
fm)k('u) = (dn/dﬂn)fk(u)y so=1+s,, g:a).k(u) = u_lf‘:mk( —51108 u), g{m«a".k(u)
= (d"/du™ g.ax), o ) denotes Landau's small o symbol, O( ) denotes
Landau’s large O symbol, ¢,(j) denotes the Stirling number of the first kind
which is defined by the relation:

(z=1)z=2)-(z—v) = el
co(0) =1, c(—=1) = ¢ ({v+1) = 0.

Our c,(j) is equal to a;,,"**" in Berndt [2] and to (—1)**’v! b, in Israilov
[3]. Ba{u) denotes the Bernoulli polynomial which is defined by

o0

ze?(e*—1) = > (n!1)'Balu)z™ (|2 | < 2n)
n=0
B denotes the Bernoulli number which is equal to B,(0). P,(u) = (n!)7*-
Ballul) where }u| = w—[u], [«] is the Gauss symbol which denotes the
greatest integer not exceeding u. h.(u) = u log u)", A"™ (u) = (d™/du™)-
ho{u),
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minn.k}
Biln) = X (:)fk_r(—sl log u)
L,(u) denotes the Laguerre polynomial which is defined by
, LI A
L) = 35 (5 J—1rtrnn
T=0\7

a= Res—1. s, =1+s,. N, Z, C and R denote the set of natural
numbers, integers, complex numbers and real numbers respectively.

2. The explicit expressions of D}, D, and ¢,. ¢(s) can be expanded
at any point s = s,, (s, = 1) through (1) as follows:
2s) = H1—(1=s) '+ 5 (1) Rl 14 s =% (10)
(|s—s0|< |1 —s0])
so that D', in (2) is

D'y = —(1=s)"*"+ D% (11)
where i‘. n)rnsln—ks (k=21)
Dv = n=k\k

i Is," = {(30)~ (k=0)

=0

3

And similarly we have

i (Z)]“n_]slﬂ—k‘ (k = 1)
n=k

Dy = D" = i (12)
1 +1§0 Is,™ = (s0—1) L(se), (K =0)
and
S ea=g( ) nazy
Cyp — | n=0 n n=0 n (13)
1, (k=0)

Next we consider the following sum:

z; g, (n). (h=1) (14)
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Before the calculation of (14), we need the following two lemmas. As for
the Stieltjes formula [4]:

Y. =(—1)"r!T, = lim Z_', nlog n)"— fxu“(log w)dui (15-a)

X o0

or
i n"'(log n)r—'[xu"(log uw)'du = v+ E(r, x), (15-b)
E(r,x) = o(1)
we have
Lemma 1. For the above E(r, x), we have
E(r.x) = (1/2)x (log )™+ 35 (—1)™Ba/m DA™ (x)
+<—1)~f’° PR (u)du, (r 20, N21)  (16)
where
minim,7)
™ (u) = u™™! jg) enlj)r(r—1)
clr—j+1)logu)™, (m =0, r 20) (17)

Proof. An easy calculation gives (17) (see Israirov [3]). And the
Euler-Maclaurin summation formula yields

X

h,(n)—[’h,(wdu - (1/2)h,(x)+§2<—1>’"(3m/m1)h"""“.r(x>

n=1

— 3 (~1)Ba/m DA"(L)

+(=1™ [T P () du (18)
which shows
o= — 5 (=1)"Ba/mDA™"(1)
m=r+1

+(—1)¥" _[m Py(u)h™(u)du (19)
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We substitute (19) and (18) for ¥, in(15-b) and the left-hand side of (15-b)

respectively, then we have the lemma.
Lemma 2.
g:m(a:.k(u) =u"! éﬂ Cm(‘r)B(k;(‘r+a)(_51)r- (m =20,k=21) (20)

Proof. This lemma is proved by induction on m by using the properties
that (d/du)fe(u) = filu) +fis(u). (k 2 1), (d/du)Byxin) = —s,u™'Bi(n
+1). (k2 1) and cnii(j) = en(f—1)+(—=m—1)ca(j).

By an easy calculation and applying (15) to (14). we have

£ seatn) = S| B {1010 =00 1 tog m) e

- i‘, (;)S,T—G(_l)f—a{(r_a)”—l i n_l(logn)r‘“

n=1

JCgm,_k(u)du+sl"_"D“"k-{- S(a, k) (21)

S~ 3

where S(a, k) = ik(;m )s,r"“(—l)r_"{(r—a) "WE(r—a, x).
As for the above S(a.k). we have

Lemma 3.
o(1), (Re s¢ > 0)
(ZI)_lé(i)f"‘”(_s‘ log x)+0(1),
Sla k) = (=1 < Resg=0)

(2x)7 i (Z:)fk-v( —s,log x)

v=0
M . ’
+ 3 (= 1)™(Bu/m 1)g™ Vaulx) +o(1),
(—M < Resp = —(M—1)) where M € N

Proof. From Lemma 1 and Lemma 2.

S(a. k) = (2x)7'f" % —s,log x)
+mi=2 (=1)™(Bn/m!)g™ " gulx)
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+(—=1)" P,v u) g™ anlu)du

= 22)" 2 {4 Yool —silog )+ 35, (=1)"(Ba/m)

minik,r+a I’ r+ a\

x""rZ;'acm_l(«r) PIEE N }fk_v(—s.logx)(—sl)’
+(=1)" [T Pilu)d"/du) () du

Noting that fi(—s, log x) = O(x™"*%), (e is an arbitrary small positive
number, ¢, = Re s,) and

l f] ) Puou)g™aunlu)du| = [ ) | g™auilu) |du < + 00,

we have
Sla. k) = O(x™ ") + i}z O(x~ ™ 1%y +o(1), (g0 = Re s0)

and have the desired result.
From (21) and Lemma 3, we obtain the following

Theorem 1.(A generalization of the Stieltjes formula). If Re s, > 0,
then
D= —(—s8)*"+D,

= —(—s) " "+57%lim i} 27 fil —s, log n)
—fxu_]fk( — s, log u)du], (22-a)
1

and
Dh — Dlllk
= 5,7 "' lim {i} n 1 (—s, log )

Xx-ec [N2=1

_j:x“"’f“‘k( — s, log u)duj, (22-b)

If —1 < Re s, = 0. then
D‘k = —(—51)_k—‘+Dimk
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= _(_51)-k_1+31—k lim é n—)fk(_sl log n)

n=1

—j:x'u_]f;c( — s, log u)du—(2x)7f( — s, log x) (23-a)

and
D,= D"

= 5,7%" lim [ i} n-1f%(—s,log n)
n=

X+

—-j:xu"f“’k(—s1 log u)du—(2x)7'f"{(—s,log x)} (23-h)

And if — M < Re s, < —(M—1), MEN, M =22, then
D, = _(_31)—k_]+Dm'k
= —(—s8) " "+s *lim ii’, n ' f( — s, log n)
X n=1

—j:x u k(= s, log u)du—(2x)7'fi( — s, log x)

M
= 35 (~1)"(Ba/m g™ "wsla) | (24-2)
and
D, = D%,
= 5,7 %" lim ‘Zﬁ_‘, a0 (—s, log n)

—_[xu_‘f”:k( — s log u)du—(2x) ' fV(—s, log x)

52 (—1)™(Ba/m g™ "yuulx) (24-b)

_m 2
Note the following

Remark 1. When Re s, > 0,

Dw:k — (_l)klk ! |—l lim lnia n—so(log n)k

X~ 00

—flxu"s"(log u)”dul. (25-a)

and
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D(l‘rk — SlD(O}'E_’_Dtuik_l.
When —1 < Re 5, =0,

DO, = (—=1)k k1| lim [i‘. n~*(log n)*

n=1

—f S'(log u)*du—(2x) "(log x)*|, (25-b)

and
Dm:: — leiu’k_’_D-:mk_l

We have the similar result for Re s, = —1, but in this case, the
expression of D', is more complicated.
A similar calculation gives the following

Theorem 2.(Another generalization of the Stieltjes formula). For cj.,
in (4),

Crsy = lim g n ' L(log n)—[]xu"Lk(log u)du (26)

e
where Ly( ) denotes the Laguerre polynomial.

Proof. Instead of (14), we start from the following sum:
,%‘_. n~'L(log n)
n=1

and we omit the calculation which is the same as that of Theorem 1. (In fact
the calculation is simpler than that of Theorem 1, for L, is the finite sum.)
The expressions (22), (23), (24), (26) are the generalizations of the
Stieltjes formula (15).

3. The estimation of |D™,| and | ¢,|. To estimate |D'®c|. we need
the following
Remark 2.

g‘"“.a Hx) = O0(x™™ %), go,=Re sy, (m=20, k=1)
Maxll) =0, (0 =Em=k—1—a)

which can be seen from Lemma 2.
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Theorem 3. For so+1, —M<Res,, 1 SEMEN<k—a k=21,
MeN

D, = (=15, [ Pu)ganu)du (27)

Proof. We apply the Euler-Maclaurin summation formula to the sum
(14) and use Remark 2 and Theorem 1 to obtain (27). Say, for Re s, > 0.

D®y = 57" lim [é gm,.k(n)—j:x g.a‘.k(u)du)
= 5% Lim {(1/2)(gtaus(1) + gian(x)
3 ()™ (Ba/m Vg™ Manl) | 157
F(=1™ [Py g Nl
For —M < Res, = —(M—1), (M=1)
D= 5" lim [g ga(n)
~ [ gl du=(1/2)g aunl)
= 3 (=1)"(Ba/m g™ " aulx)
= 5 lim {(1/2)g0u(1)
+ 33 (= 1)™(Ba/m g™ anlu) | 157
= 33 (= 1)™Ba/m g™ aulz)
+(—1)* [r P,\-(u)g‘""a«.x(u)du]

Hence. when x tends to infinity, the desired result follows.
From Theorem 3. we can estimate |D'?;| as follows.

Theorem 4. For every fixed s ¥+ 1. —M < Res,. 1= M=N=
k—a. M €N,
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N
D] = s |+ N+al®4(2) M N+e)*" T (|s,|+N+atr), (28)

where @ = Re s,—1. In particular, if we choose N = [k/2], then

) o lk/2
| D] < 4 77" ([k/2] + @) *-1+ /] 1_12 sl + [k/2]+ at7)

/2[k/2] +20)
= 4(a/b) ® (k2] + ) W T (s, |+ (/2] + atr)
A2b[k/2]+2ab)l, (29-a)
IDul S 4 XK [k/2)+ @) T (5, + k2] + ot )
/2[k/2]+2 )]
= 4(w/b )W Tk/2) + @) T (|5, 4+ k2] + atr)
A(2b[k/2]+2ab)l, (29-b)

where b is an arbitrary positive number. And if k = |5, |/(b—1)+2, 1 <
b < n, then

|D(°’k| < 4(”/b)—lk/21{ [k/2] + al—k—l-i-lkx'zl, (30—&)
[Del = D] < 4(a/b)" 2 [k/2] +af 5 %2, (30-b)

Proof. From (27) and Remark 2,

D= (=10, 5 3 (O s

T

fl‘” [{(E—7) 17 Pu(u)(— s, log u)*u=" % du

The above equality leads to the following estimation:

a

le)kl < Islla_ké 2 (a+7)| |- J’CN(T)|4(27I)_N'

/:m {k—7) 1w Ylog u)*du,

because | Pi(z)| = 4(2 7)™". Since the integral in the right-hand side of the
above inequallity is equal to (N+ o)~ %771,

N
D] < [ ]24(2 )™ 33 ex(r)| 1,17
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5 (“j ’) 5| (N+ a) (N+ a) %"
N
= |s %42 )" Tgﬂ lea(r) | s |7
I 1 +(‘TV+ O’)/IS} I |a+r(]V+ a)_k—l

=(|s, |+ N+ a)®4(2 1) (N+a) *! 1"_1‘ |1s:] +N+a+7]
by using the definition of cx(r). This completes the proof.

Remark 3. If we use the expression in Remark 1, we can have the
better estimation of |D'®;| applying the Euler-Maclaurin summation formula

to i n~%(log n)*, say
n=1
D] < 427N+ a) " T N+al + sl (NS k) (3D)

We also have some expressions of ¢, (Theorem 5). For the proof of the
theorem, we use the following two lemmas.

Lemma 4.

(d™/du™}u™" Li(log u)}

= " E ) by (’: )i(r—j) 1™ (log u)™(=1)", (m 2 1)

Proof. This lemma is also proved by induction on m.

Lemma 5.
(d™/dx™)| x7' Li(log x)| = o(1), (m = 0)

Proof. Obvious.
From Lemma 5, the following theorem is to be proved.

Theorem 5.
h-1
Cr+1 — nle n_'Lk(log ‘n)

—fo]oghL,:(t)dt+(l/2)h“Lk(log h)
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minim-—1.k!

+ 3 (=) Bu/m ) S ena(G) -

J=0

5 (E i) 11 (tog iy ~1)"

=J

-

+=0* [P "B ()
TKZJ(f)l(r—j)!}“(logu)"’(—l)rdu. (N21.h21) (32)
Especially, for h =1,

minm-1.k

o = (1/2)+ 35 (=1 (Ba/m) "8 0 ) (4 -1y

=0 [T puu "B )
ij (f){(r—j)!l"(log W) (—=1)"du. (N=1) (33)

In particular, .
erer = (1/2)+ [ Julu* Ly, (log w)du
= (1/2)+ [ letle tLa()at. (34)
where |ul = u—[u], [ ]is Gauss’s symbol and L’,(x) = (d/dx)L(x).

Proof. The proof is the same as that of Theorem 3. (Note that (d/dx) -
{Ln(I)_Lnol(x)} = Ln(x))

As for the estimation of |c,|. the result is not so good as that of
|D®,|, (From (13), the trivial result that |cx| < 2% is derived.) so we
conclude with the following two

Conjecture 1.

¢ = 0(1)

Conjecture 2.
cxri—Cx > 0 for all integers k =1
in other words,

/:w fulu™*Ly(log u)du < 0 for all integers k = 1.



THE TAYL.OR COEFFICIENTS OF ¢{s), (s—1)¢(s) AND (2/(1—2))¢{1/£1—2)) 219

The similar results for some other Dirichlet series and sharper results
depending on s,, as for the upper estimates of the Taylor coefficients of {(s)
by using the complex integral and the saddle point method can be obtained.
These results will be treated in the next paper [8].

The author would like to express his deep gratitude to Mr. Nobuhiko
Fujii, Mr. Jun-ichi Tamura, Dr. Kohji Matsumoto, and Mr. Isao Kiuchi for
valuable advices and discussions. He is also indebted to Dr. Matsumoto for
careful reading of the original manuscript.
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