SOME COMMUTATIVITY CONDITIONS

HISAO TOMINAGA

Throughout, R will represent a ring with center C. Let A be a non-empty subset of R, n > 1 an integer, and α an endomorphism of |R| + 1. We consider the following conditions:

- $(\alpha A)_n$ $x^n \alpha(x) \in A$ for every $x \in R$.
- $(II-A)_n$ If $x, y \in R$ and $x-y \in A$, then either $x^n = y^n$ or both x and y are in the centralizer of A in R.
- $(*-A)_n$ For all positive integers k, every element of R can be written in the form $x^{nk} + a$ with some $x \in R$ and $a \in A$.
 - $P_{7}(n)$ $[x, y^{n}] = [x^{n}, y]$ for all $x, y \in R$.

In this brief note, we shall prove the following theorem which includes the recent result of Laffey [2].

Theorem 1. The following statements are equivalent:

- 1) R is commutative.
- 2) There exists a commutative non-empty subset A of R, an integer n > 1, and a surjective endomorphism α of |R| + | for which $(\alpha A)_n$ and $(\Pi A)_n$ are satisfied.
- 3) There exists a commutative non-empty subset A of R and an integer n > 1 for which $(*-A)_n$, $P_7(n)$ and $(\mathbb{I}-A)_n$ are satisfied.
- 4) There exists an integer n > 1 and a surjective endomorphism α of $\{R, +\}$ for which $(\alpha C)_n$ is satisfied.
- 5) There exists an integer n > 1 for which $(*-C)_n$ and $P_r(n)$ are satisfied.
- *Proof.* Obviously, 1) implies 2) and 3). Also, one can easily see that 4) implies 5) (cf. [2, Lemmas 1 and 2]).
- $2) \Rightarrow 4$). By [3, Lemma 1 (3)], $[r^n, a] = 0$ for every $r \in R$ and $a \in A$. Hence $[\alpha(r), a] = [r^n, a] [r^n \alpha(r), a] = 0$. Since α is surjective, we see that a is central.
- $3) \Rightarrow 5$). Again by [3, Lemma 1 (3)], $[r^n, a] = 0$ for every $r \in R$ and $a \in A$. Let y be an arbitrary element of R. Then $y = x^n + b$ with some $x \in R$ and $b \in A$. Hence, for every $a \in A$, $[y, a] = [x^n, a] + [b, a] = 0$, and therefore a is central.
- 5) \Rightarrow 1). By [1, Proposition 3 (ii)], there exists a positive integer h such that $[x^{n^h}, y] = 0$ for all $x, y \in R$. This together with $(*-C)_n$ implies

that R is commutative.

REFERENCES

- [1] Y. HIRANO, Y. KOBAYASHI and H. TOMINAGA: Some polynomial identities and commutativity of s-unital rings, Math. J. Okayama Univ. 24 (1982), 7-13.
- [2] T. J. LAFFEY: On a conjecture of MacHale on the commutativity of certain rings, Proc. Roy. Irish Acad. 87A (1987), 63-65.
- [3] H. TOMINAGA and A. YAQUB: Some commutativity properties for rings, Math. J. Okayama Univ. 25 (1983), 81-86.

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY
OKAYAMA, 700 JAPAN

(Received January 24, 1987)