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RINGS SATISFYING THE IDENTITY
(X—X")(Y-Y")=0

Dedicated to Professor Hisao Tominaga on his 60th birthday

Yasuvyuki HIRANO and Api. YAQUB

A well known theorem of Jacobson asserts that if R is a ring with the
property that for every x in R there exists an integer n > 1 such that x" = x,
then R is commutative. With this as motivation, we consider the structure of
a ring R which satisfies the identity
(*) (x—x™)(y—3y") =0 forallx,y € R, n > 1 fixed.

That (*) does not necessarily imply that R is commutative is seen by con-
sidering the ring

A= S} 1H 612 Shor < crer)

It is readily verified that (*) holds in R for all positive integers n but, of
course, R is not commutative. Additional conditions are thus needed in order
to imply the commutativity of R. In this paper, we prove three theorems
involving such additional conditions, namely the following:

Theorem 1. Let R be an s-unital ring with center C, and n> 1 a fixed
integer. Suppose (*) (x—x™)(y—»") =0 and (i) (xy)"—x"y" € C for all
x, yER. If, forallx € Rand a € N, (n—1)[x, a] = 0 implies [x,a] =
0. then R is commutative, where N is the set of nilpotents in R.

Theorem 2. Let R be an s-unital ring with center C, and n > 1 a fixed
integer. Suppose (*) (x—x")(y—»") =0 and (i)' (xy)™'—x™'y™! € C
for allx, y € R. Then R is commutative.

Theorem 3. Let R be a ring with center C, and n > 1 a fixed integer.
Suppose (*) (x—x™)(y—3y™") = 0 for all x, y € R. Then R is commuiative
under any of the following hypotheses: (ii) (xy)"—y™x" € C, (iii) (ay)™—
(yx)* € C, (iv) x"y*—y"x™ € C for all x, y € R.

In preparation for the proofs of these theorems, we state first the follow-
ing known results. As usual, [x, ¥] denotes the commutator xy— yx.

185



186 Y. HIRANO and A. YAQUB

Lemma 1. Let x, y be any elemenis in R such that [x, [x, y]] = 0.
Then, for all positive integers k. [x*, y] = kx*~'[x. y].

Lemma 2 [1]. Suppose that1) for every x € R, x—x" € N with some
integer n > 1, where N is the set of nilpotents in R, 2) N is commuiative,
and 3) for allx € Rand a € N, [x, [x. a]] = 0. Then R is commutaiive.

Lemma 3 [3]. Let R be a ring with identity, and suppose that [x*, y*]
=0 and [z*. y*] =0 for all x, y € R. where h and k are fixed relatively

prime positive integers. Then R is commutative.

Next, we prove

Lemma 4. Suppose that R satisfies (*). Then N forms an ideal of R
with N* =0 and [a, x**"] = [a, 2**' | for alla € N, xE Rand k= 0. In
particular, if R has 1 and x is invertible then [a, x" '] = 0.

Proof. By (*), (a—a")? =0, namely a® = a’(2a™'—a*™""). Since
n—1 >0, we can easily see that a* = 0. Now, let 6 € N. Then 0 =
(a—a™)(b—b" = ab. Hence N forms an ideal by [4, Lemma 1 (1)]. Finally,
noting that x—x™ € N by (*), we get [a, x*"']—|a, x**"| = a(x—x™)x*—

x*(x—x")a =0.

Lemma 5. (1) Let R be a ring with1. If R satisfies (i)', then R is
normal, that is, every idempotent in R is central.
(2) If R satisfies any of (ii)—(iv). then R is normal.

Proof. Let e be an idempotent in R, and r € R.

(1) Put x=e+er(l—e) and y=1—e in (i) to get 0 =
[1— e, (er(l—e))™' —er(l —e)] =er(l —e), and hence er = ere.
Similarly, re = ere.

(2) Put x=e, y=-e+er(l—e) in (ii) to get 0 =
[e,(e+er(l —e))"—e] = er(l —e), and hence er = ere. Similarly,
re = ere. The proof is similar under the hypotheses (iii) and (iv).

Lemma 6. (1) Let R be a subdirectly irreducible ring with 1. If R
satisfies (*) and (i)', then R is a local ring with radical N and R/N is a
finite field.
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(2) Let R be a subdirectly irreducible ving different from N. If R
satisfies (*) and any of (ii)—(iv), then R is a local ring with radical N and
R/N is a finite field.

Proof. Let r be an arbitrary element in R\N. Then, by (*), r* =
7*f(r) for some f(t) € Z[t]. Obviously, e = (vf(7))* is an idempotent
with r%¢ = r2. Hence e is a non-zero central idempotent by Lemma 5. Since
R is subdirectly irreducible, e =1 and r is invertible. We have thus seen
that R is a local ring with radical N. Finally, noting that R/N satisfies the
identity x—x" = 0, we see that R/N is a finite field, by Jacobson’s theorem.

We are now in a position to prove our theorems.

Proof of Theorem 1. Let x € R, a € N, and choose a pseudo-identity
e of {a, xl(see [2]). Then, by Lemma 4, (n—1)[x, a] = (n—1)[x", a] =
{((e+a)x)"—(e+a)"x"t —{(x{e+a))"—x"(e+a)?t € C, namely (n—1)[y,
[x, a]] =0 for all y € R. Hence [y, [x, a]] =0, and therefore R is com-
mutative by L.emma 2.

Corollary 1. Let R be an s-unital ring. Suppose (x—x*)(y—y*) =0
and (xy)*—x*y* € C for all x, y € R. Then R is commutaiive.

Proof of Theorem 2. In view of [2, Proposition 1], we may assume that
R has 1. Then, by Lemmas 4 and 6, we may assume further that R is a
local ring with radical N, N* = 0 and R/N = GF(p®) with some prime p.

Let u, vbe units in R, a € N, and x, y € R. By Lemma 4, n[x* o] =
ale™), o]l =1 +a)x)"'—(1+a)™ '™ —{x(l+a)™ ' —2™ (1 +a)™ '}
€ C. Since R/N is commutative and N® =0, [{w)"—v™W™ x] =
[,V—l {(vu)n+1_vn+1un+l iu“,x]: 3(vu)n+1_,vn+1un+l}[,v—lu—l’ I)Z 0, and SO
{uv)*—+v™" € C. Hence (n+1)[u, a] =(n+1)[u", a] = {(a(1 +a))"—(1 +
a)"u™ — (1 +a)u)*~u™1+a)" € C. Since both n[«? a]and (n+1)[u?, a]
are in C, we get [4* a] € C, and therefore [x* a] € C. If p + 2 then
2[u, a]=[(1+u)*—u?, a] € C and p*[u, a]= 0 show that [u, a] €C. On the
other hand, if p = 2 then u**—u &€ N, and so [u, a] = [u, a ] —[u—u*, a] =
[4*, @] € C. Thus, in either case, [x, a] € C, and therefore R is commu-
tative by Lemma 2.

Proof of Theorem 3. In view of Lemmas 4 and 6, we may assume that
R is a local ring with radical N, N> =0 and R/N = GF(p®) with some
prime p.
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Suppose first R satisfies (ii). Then, for any x, y, z € R, we have
[(ay) ™ —x™y™, 2] = |acl(yx)"—x"y™y, 2] = H(yx)"—x™y™ [y, 2] =0.
Hence R satisfies (i)', and R is commutative by Theorem 2.

Next, suppose R satisfies (iii). Let a € N, and x € R. Then, by
Lemma 4, [a, ] = [a, "] = (x+ax)"—(x+xa)" = ((14+a)x)"—(x(1+a))"
€ C. Hence R is commutative by Lemma 2.

Finally, suppose R satisfies (iv). Let u, v be units in R, ¢« € N, and
xz, ¥y € R. Then [, v" '] = [1—u"", 1—v""] = 4" (u—u")(v—r")v~!
—v  (v—v")(u—u™)u"' = 0. Since N> =0 and [a, v" '] =0 by Lemma
4, this proves that [x™', ¥™ '] = 0. Then, noting that [«" v"] € C, we
get 0 = [u™ ", ™ V] = (p—1)%™" 2™ 2[y" p"](Lemma 1), namely
(n—1)%*[u" v"] = 0. Hence (n—1)*[x" y"] = 0. On the other hand, by
Lemma 4, [a,ny] = nla, y] = n[a, y*] = [(14a)™ y"] € C. If p ¥ n then
nR =R, and so [a, x] € C. Hence R is commutative by Lemma 2. If
p|n then n’[x", y*] = 0. This together with (n—1)%[x" y"] =0 implies
[x", y"] = 0. Hence R is commutative, by Lemma 3.

Example 1. Let R be the ring considered in the introduction. Obvi-
ously, R is not s-unital but satisfies (*), (i) and (i) for n =2. This
example shows that in Theorems 1 and 2 the hypothesis that R is s-unital
cannot be deleted.

ab ¢
Example 2. Let R = {{0 a®* 0{la.b.c € GF(4)|. Then R is a ring
00 a a0 0) /010
with 1 satisfying (*) and (i) for n = 7. Obviously, ||{0 a* 0, |0 0 O
00 a/ 00O

# 0 for a#+ 0, 1. This example shows that in Theorem 1 the last hypoth-
esis cannot be deleted.
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