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Throughout, R will represent a prime ring with center C, and I a non-
zero right ideal of R. Let o, v be ring automorphisms of R. We set C,r =
{c € Rlcolx) = (x)c for all x € R}, [x, ¥]or = xo(y) —7(¥)x and (a,
v)or = xoly) +z(y)x; inparticular, C; = Cir. [x. y]: = [, y]1,r and (z,
v)z = (x, ¥)12. Needless to say, C, = C, [x, y], = [x, y] = xy—yx and
(x, ) ={(x,y) = xy+yx. Letd: x - x be a(o, r)-derivation of R, name-
ly an additive endomorphism of R such that (xy) = x'o(y)+ z(x)y for all
x,y € R. Given a subset Uof R, weset [U]or =lu € Ul[w, u)or € Corl
and (U) g =lu € Ul(w, u)or € Corl; in case d is a(l, r)-derivation, we
write [U]; = [U]iz and (U)r = (U),.

We consider the following conditions :

a) R is commutative and 0 = 1.

a)* R is a commutative ring of characteristic 2 and ¢ = .

b) [d,aler=0foralla e L

c) (d,a)er=0foralla el

d) 1= [I]O'.Ts that is, [a'. a]a,r S Ca,r forall ¢ € I.

e) I=(I)sr thatis, (&, a)er € Cyrforall a € I

£) I=[I]or UI)ar.

If d is a (o, o)-derivation of R, then o7 'd is a usual derivation, and so
the next is immediate by [3, Theorem 2] : Ifd is a non-zero (o, ¢)-derivation,
then a) and f) are equivalent.

In the present paper, we shall generalize [2. Proposition 2 and Theorem
1] by proving the following theorems.

Theorem 1. Let R be a prime ring. Let d: x — x' be a non-zero(o, 7)-
derivation of R, and I a non-zero right ideal of R. Then a) and b) are equiv-
alent, and a)* and c) are equivalent.

Theorem 2. Lei R be a prime ring of characteristic not 2. Let d: x — x'
be a non-zero (o, 7)-derivation of R, and I a non-zero right ideal of R. Then
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a), b), d) and e) are equivalent.

Theorem 3. Let R be a prime ring of characteristic not 2. Let d: x —
x' be a non-zero (o, t)-derivation of R, and I a non-zero ideal of R. Then a),
b), d), e) and f) are equivalent.

Proof of Theorem 1. Obviously, ¢7'd is a (1, ¢~ 'z)-derivation of R.
So, without loss of generality, we may assume that d is a (1, ¢)-derivation.
As is easily seen, I' + 0 and a) and a)* imply b) and ¢), respectively. As-
sume b) (resp. ¢)). Linearlizing the identity b) (resp. ¢)) on I, we obtain
(e, bl:+[b', al: =0 (vesp. (&, b):+(b', a)r =0) for all a,b € I. Re-
placing b by ab in the above equation, we get 0 = [, ab].+[(ad)’, a]. =
(a)ld, b].+[d, al b+ [ab+1(a)b, al: = v(a)([a’, bl + b, al:) +
aba—t(a)a'b = a'[b, al +[d, alb =d'[b, al, that is, a'[ b, a] =0 (resp.
a'(b, a) = 0) for all @, b € I. Replace b by bx(x € R) in the above equa-
tion to obtain 0 = a'b[x, a), i.e., @I[x, a] = 0. This proves that either
I'I'=00r I C C. Assume now that ] & C(and so I'T = 0). Since b) (resp.
c)) implies that 7(a)a’' = O forall a € I, weget 0 = z(ab)(ab) = r(aba)b’
for all @, b € I. Hence axbaxz™'(b') = 0 for all x € R. Thus, either 8] =
Oor b =0 for every b € I, by [4, Lemma 2] ; therefore I = 0. This con-
tradiction shows that 7 € C and [ is an ideal of R. Now, for the case b),
we can apply the argument employed in the last part of the proof of [2, Prop-
osition 2] to see that a) holds. On the other hand, for the case c), we can
easily see that 7(a) = —aforalla € I, Then —ab = z(ab) = z(a)z(b) =
ab for all a, b € I, and so 2]* = 0. Hence R is of characteristic 2 and
r=1.

In preparation for proving Theorems 2 and 3, we need some lemmas.

Lemma 1. Lei d be a non-zero (1, t)-derivation of R.

(1) Let a, b € [I);(resp. (I)¢). Then a+b € [I]); (resp. (I)) if
and only if a—b € [I]. (vesp. (I).).

(2) Ifb e (I); then[d', 8%, = 0.

(3) Leta, b €[Il:. IfR is of characteristic not 3 and f) holds, then
either a+b € [Il; or a, b, a+b, a—b € (I); in particular, ifa € INI),
and b € [I]; thena+b € [I]..

(4) IfI4 [I)+, then there is no positive integer n such that b™ = 0 for
all b € I\[I]..
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Proof. (1) follows from [a'—b', a—b]. = —[a'+b, a+b]:+2([a,
a):+[b, b];) (resp. (a'—b'. a—b)e = —(a'+b', a+b).+2((a’, a)+(b
5);)), and (2) is obvious by [x, ¥*]: = [(x, y)z, ¥]c for all x, y € R. In
order to see (3), it is enough to take (1) into account and follow the proof of
[1, Lemma 5]. The proof of (4) is quite similar to that of [3, Lemma 2 (2)].

Lemma 2. Let d be a non-zero (1, )-derivation of R. Suppose that R
is of characteristic not 2 and f) holds.

(1) Ifb € INI]., then(b®)' = v(b*)bd = b'b* = 0 and b* + 0.

(2) IfCNI=#*O0, thend) holds.

(3) Ifb € I\NI]:and x is an element of R withx' = 0, then t(b)b'xb*
= 0.

Proof. (1) Since (6%)' = (b, b); € Crand [b, b*]. = 0 by Lemma
1(2), we have [(624+b), b*+b]. = [(b2—=b)", b*—b]. = [b", b]l: & C..
namely b°+b & [I].and b2—b & [I].. By Lemma 1 (1), these together with
(b*+b)—(b*—b) = 2b & [I]: show that 26> = (b2+b)+(b?—b) € (I)-,
and so b2 € (I),. Hence 2(5?)'6* = ((b?)', b*). € C. by (b?)' € C., i.e.,
(52)'b? = (b*) (b?)' € C,. Furthermore, by Lemma 1 (2), 0 = (4?)'[(s%*+
b)Y, (B2 +5)% = 2(82)'[¥, 6] = 2(6%) ' z(b?) ¥, b]-. Now, by (52)'b? €
C; and (b?)' € C,, 0 = [(b?)'b? x]: = ([b% x])(b?) for all x € R.
Hence, as is easily seen, either b> € C or (6%?)' = 0. If 4> € C then, by
(62)'z(8®) [, bl = 0 and (b%)' € C,, 7(b?) R (*)'R[d', b]- =0, and so
(%) = 0, in any case. Since b%+b & [U]., we have also 0 = ((424+5)?)
= ((b2+b),(b2+b))r = (b, b¥)r = 2b'b% Hence b'b? =0 and z(b2)b' =
b'b:—[b". %], = 0.

Finally, we shall prove that b* &= 0. Suppose, to the contrary, that 62
=0. Then z(b)b'b = z(b)(b?)' =0. Letx € R. Since ¢ = (b+bx)(b
+bx) F v(b+bx)(b+bx) € C;, we see that 0= z(b%)c = z(b)chb =
7(b)(b'+b'x+7(b)x')bxb =7(b)b'xbxb, and so z(b)b =0 by [4, Lemma 2].
But, this forces a contradiction [, 6]+ = (2)'—27(b)b' = 0.

(2) First, we claimthat (¢?)' € C, and 7(c?) = c*foranyc € CN I
Let x € R. Then [¢, x]: =[x, ¢]r by (cx)' = (x¢)'. If [¢, ¢]: € C;
(resp. (¢’, ¢)r € C;) then 0 = [[¢', ¢]r, x]e =(c—1(c))[c, x]e =(c—
() [z, c]e = (e—1(c))?x (resp. 0 = [(c. ¢)r x]r = (c*—z(c?))x).
Now, R’ %= 0 shows that z(c?) = ¢? in any case. Hence 0 = (c¢*x)' —(xc?)’
= [(¢?)', ]+ and so (c?)’ € C..

Now, suppose, to the contrary, that there exists b € [\[I],. Take any
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non-zero co € C N I, and put ¢ = ¢((#0). Then z(c) = c and ¢’ € C; by
the above claim. Hence [(b+c¢)’, b+c]- =[b, b]: & Cr, namely b+c &
[I]:. Recalling that ((6-+¢c)?)' =0 = (4%) by (1), we get0 = [((b+c)?),
bl =2[be+z(b)c'+cc,ble = 2¢[b, b]+. Since 2¢ is a non-zero central
element, this forces a contradiction [4', ], = 0.

(3) Since ¢ = (b+bxb?)'(b+bxb?) F v(b+bxb?) (b+bxb?)' € C; and
(b%) = z(b3)b' =0 by (1), we get 0 = 7v(b?)cR = z(6*)Rc. Hence
¢ =0, because b=+ 0 by (1). Now, z(b)b'db = z(b)(b?)' =0 and 0 =
(b)) c = v(b)(b'+b'xb?)(b+bxb?) = v(b)b'xb*+ (b )b'xb’xb%. Similarly,
0= —7z(b)bxb®*+ r(b)b'xb*xb?, and therefore 27(b)b'xb* =0. Hence
(b)b'xb® = 0.

Proof of Theorem 2. We may, and shall, assume that d is a (1, z)-der-
ivation. In view of Theorem 1, it suffices to show that each of d) and e) im-
plies b).

d) == b). The proof of [2, Theorem 1] still works under the present
hypothesis.

e) = b). Suppose, to the contrary, that b) does not hold, For any
a € I, we have 2(d’, a)a* = ((d, @)z, a°)c=((a?), a*) € C¢. So, for any
x€R,0=[(cd, a)a® x)]: =(d, a)a® x], and therefore (', a).R[d%
x] = 0. Hence either (a’, a)r = 0 or a®* € C. By Theorem 1, (%) = (&',
b)r #+ 0 for some b € I, and hence b* is a non-zero element of C N I, and
so d) holds, by Lemma 2 (2); hence b) holds by the above. This is a con-
tradiction.

Lemma 3. Letd be a(1, 7)-derivation of R. If R is of characteristic
3 and I is a non-zero ideal, then a), b), d), e) and f) are equivalent.

Proof. In view of Theorem 2, it suffices to show that f) implies d).
First, we claim that (¢*®)’ = 0 for all @ € I. Actually, if a € [I];then(a®)’
=da’+tla)da+tla)r(a)a = da®+(da—[a, als)a+ r(a) (da—[a,
al:) =3da*—3[d, alra=0; if a & [I]; then (&®) = (a®)'a+ r(a?)a =
0 by Lemma 2 (1).

Now, suppose. to the contrary, that I = [I].. Then, by Lemma 1 (4),
there exists b € I\[I]; with ° = 0. Recalling that (a®)’ = 0 for all ¢ € I,
we see that 7(b)b'(ax)*h® = 0 forall ¢ € Tand x € R (Lemma 2(3)). Since
b* = 0, [5, Theorem] proves that z(b)6'I=0. Thus z(b)b' = 0, which
together with (4%)' = 0 (Lemma 2 (1)) forces a contradiction [, 4], = 0.

We are now in a position to complete the proof of Theorem 3.
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Proof of Theorem 3. We may, and shall, assume that d is a (1, 7)-der-
ivation. In view of Theorem 2 and Lemma 3, it remains only to show that f)
implies d) or e) under the hypothesis that R is of characteristic not 2 or 3.

Suppose, to the contrary, that neither d) nor e) holds. Then there exist
a€[I1:NI): and b € (1) \I]z. ¥ a+b € (I); then (a+b)—b=ad
(I); shows that a+2b = (a+b)+b & (I),(Lemmal (1)), and so 2b = a+
2b—a € [I]; (Lemma 1 (3)), a contradiction. On the other hand, if a+
b €& (I):thenb = (a+b)—a € [I), (Lemma 1 (3)), again a contradiction.
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