(σ, τ) -DERIVATIONS IN PRIME RINGS*

Dedicated to Professor Hisao Tominaga on his 60th birthday

NURCAN ARGAÇ, ARIF KAYA and ALEV KISIR

Throughout, R will represent a prime ring with center C, and I a non-zero right ideal of R. Let σ , τ be ring automorphisms of R. We set $C_{\sigma,\tau} = \{c \in R \mid c\,\sigma(x) = \tau(x)c \text{ for all } x \in R\}, [x,y]_{\sigma,\tau} = x\sigma(y) - \tau(y)x \text{ and } (x,y)_{\sigma,\tau} = x\sigma(y) + \tau(y)x; \text{ in particular, } C_{\tau} = C_{1,\tau}, [x,y]_{\tau} = [x,y]_{1,\tau} \text{ and } (x,y)_{\tau} = (x,y)_{1,\tau}.$ Needless to say, $C_1 = C$, $[x,y]_1 = [x,y] = xy - yx$ and $(x,y)_1 = (x,y) = xy + yx$. Let $d\colon x \to x'$ be a (σ,τ) -derivation of R, namely an additive endomorphism of R such that $(xy)' = x'\sigma(y) + \tau(x)y'$ for all $x,y \in R$. Given a subset U of R, we set $[U]_{\sigma,\tau} = \{u \in U \mid [u',u]_{\sigma,\tau} \in C_{\sigma,\tau}\}$ and $(U)_{\sigma,\tau} = \{u \in U \mid (u',u)_{\sigma,\tau} \in C_{\sigma,\tau}\}$; in case d is a $(1,\tau)$ -derivation, we write $[U]_{\tau} = [U]_{1,\tau}$ and $(U)_{\tau} = (U)_{1,\tau}$.

We consider the following conditions:

- a) R is commutative and $\sigma = \tau$.
- a)* R is a commutative ring of characteristic 2 and $\sigma = \tau$.
- b) $[a', a]_{\sigma,\tau} = 0$ for all $a \in I$.
- c) $(a', a)_{\sigma,\tau} = 0$ for all $a \in I$.
- d) $I = [I]_{\sigma,\tau}$, that is, $[a', a]_{\sigma,\tau} \in C_{\sigma,\tau}$ for all $a \in I$.
- e) $I = (I)_{\sigma,\tau}$, that is, $(a', a)_{\sigma,\tau} \in C_{\sigma,\tau}$ for all $a \in I$.
- f) $I = [I]_{\sigma,\tau} \cup (I)_{\sigma,\tau}$.

If d is a (σ, σ) -derivation of R, then $\sigma^{-1}d$ is a usual derivation, and so the next is immediate by [3, Theorem 2]: If d is a non-zero (σ, σ) -derivation, then a) and f) are equivalent.

In the present paper, we shall generalize [2, Proposition 2 and Theorem 1] by proving the following theorems.

Theorem 1. Let R be a prime ring. Let $d: x \to x'$ be a non-zero (σ, τ) -derivation of R, and I a non-zero right ideal of R. Then a) and b) are equivalent, and a)* and c) are equivalent.

Theorem 2. Let R be a prime ring of characteristic not 2. Let $d: x \to x'$ be a non-zero (σ, τ) -derivation of R, and I a non-zero right ideal of R. Then

^{*}This work has been supported by TUBITAK, Ankara (TBAG-756)

a), b), d) and e) are equivalent.

Theorem 3. Let R be a prime ring of characteristic not 2. Let $d: x \to x'$ be a non-zero (σ, τ) -derivation of R, and I a non-zero ideal of R. Then a), b), d), e) and f) are equivalent.

Proof of Theorem 1. Obviously, $\sigma^{-1}d$ is a $(1, \sigma^{-1}\tau)$ -derivation of R. So, without loss of generality, we may assume that d is a $(1, \tau)$ -derivation. As is easily seen, $I' \neq 0$ and a) and a)* imply b) and c), respectively. Assume b) (resp. c)). Linearlizing the identity b) (resp. c)) on I, we obtain $[a', b]_{\tau} + [b', a]_{\tau} = 0$ (resp. $(a', b)_{\tau} + (b', a)_{\tau} = 0$) for all $a, b \in I$. Replacing b by ab in the above equation, we get $0 = [a', ab]_{\tau} + [(ab)', a]_{\tau} =$ $\tau(a)[a',b]_{\tau}+[a',a]_{\tau}b+[a'b+\tau(a)b',a]_{\tau}=\tau(a)([a',b]_{\tau}+[b',a]_{\tau})+$ $a'ba - \tau(a)a'b = a'[b, a] + [a', a]_{\tau}b = a'[b, a], \text{ that is, } a'[b, a] = 0 \text{ (resp. }$ a'(b, a) = 0 for all $a, b \in I$. Replace b by $bx (x \in R)$ in the above equation to obtain 0 = a'b[x, a], i.e., a'I[x, a] = 0. This proves that either I'I = 0 or $I \subseteq C$. Assume now that $I \nsubseteq C$ (and so I'I = 0). Since b) (resp. c)) implies that $\tau(a)a' = 0$ for all $a \in I$, we get $0 = \tau(ab)(ab)' = \tau(aba)b'$ for all $a, b \in I$. Hence $axbax\tau^{-1}(b') = 0$ for all $x \in R$. Thus, either bI =0 or b'=0 for every $b \in I$, by [4, Lemma 2]; therefore $I^2=0$. This contradiction shows that $I \subseteq C$ and I is an ideal of R. Now, for the case b), we can apply the argument employed in the last part of the proof of [2, Proposition 2] to see that a) holds. On the other hand, for the case c), we can easily see that $\tau(a) = -a$ for all $a \in I$, Then $-ab = \tau(ab) = \tau(a)\tau(b) =$ ab for all a, $b \in I$, and so $2I^2 = 0$. Hence R is of characteristic 2 and $\tau = 1$.

In preparation for proving Theorems 2 and 3, we need some lemmas.

Lemma 1. Let d be a non-zero $(1, \tau)$ -derivation of R.

- (1) Let $a, b \in [I]_{\tau}$ (resp. $(I)_{\tau}$). Then $a+b \in [I]_{\tau}$ (resp. $(I)_{\tau}$) if and only if $a-b \in [I]_{\tau}$ (resp. $(I)_{\tau}$).
 - (2) If $b \in (I)_{\tau}$ then $[b', b^2]_{\tau} = 0$.
- (3) Let $a, b \in [I]_{\tau}$. If R is of characteristic not 3 and f) holds, then either $a+b \in [I]_{\tau}$ or $a, b, a+b, a-b \in (I)_{\tau}$; in particular, if $a \in I \setminus I)_{\tau}$ and $b \in [I]_{\tau}$ then $a+b \in [I]_{\tau}$.
- (4) If $I \neq [I]_{\tau}$, then there is no positive integer n such that $b^n = 0$ for all $b \in I \setminus [I]_{\tau}$.

Proof. (1) follows from $[a'-b', a-b]_{\tau} = -[a'+b', a+b]_{\tau} + 2([a', a]_{\tau} + [b', b]_{\tau})$ (resp. $(a'-b', a-b)_{\tau} = -(a'+b', a+b)_{\tau} + 2((a', a)_{\tau} + (b', b)_{\tau})$), and (2) is obvious by $[x, y^2]_{\tau} = [(x, y)_{\tau}, y]_{\tau}$ for all $x, y \in R$. In order to see (3), it is enough to take (1) into account and follow the proof of [1, Lemma 5]. The proof of (4) is quite similar to that of [3, Lemma 2 (2)].

Lemma 2. Let d be a non-zero $(1, \tau)$ -derivation of R. Suppose that R is of characteristic not 2 and f) holds.

- (1) If $b \in I \setminus [I]_{\tau}$, then $(b^2)' = \tau(b^2)b' = b'b^2 = 0$ and $b^2 \neq 0$.
- (2) If $C \cap I \neq 0$, then d) holds.
- (3) If $b \in I \setminus [I]_{\tau}$ and x is an element of R with x' = 0, then $\tau(b)b'xb^3 = 0$.

Proof. (1) Since $(b^2)' = (b', b)_{\tau} \in C_{\tau}$ and $[b', b^2]_{\tau} = 0$ by Lemma 1 (2), we have $[(b^2+b)', b^2+b]_{\tau} = [(b^2-b)', b^2-b]_{\tau} = [b', b]_{\tau} \in C_{\tau}$, namely $b^2+b \in [I]_{\tau}$ and $b^2-b \in [I]_{\tau}$. By Lemma 1 (1), these together with $(b^2+b)-(b^2-b) = 2b \in [I]_{\tau}$ show that $2b^2 = (b^2+b)+(b^2-b) \in (I)_{\tau}$, and so $b^2 \in (I)_{\tau}$. Hence $2(b^2)'b^2 = ((b^2)', b^2)_{\tau} \in C_{\tau}$ by $(b^2)' \in C_{\tau}$, i.e., $(b^2)'b^2 = \tau(b^2)(b^2)' \in C_{\tau}$. Furthermore, by Lemma 1 (2), $0 = (b^2)'[(b^2+b)', (b^2+b)^2]_{\tau} = 2(b^2)'[b', b^3]_{\tau} = 2(b^2)'\tau(b^2)[b', b]_{\tau}$. Now, by $(b^2)'b^2 \in C_{\tau}$ and $(b^2)' \in C_{\tau}$, $0 = [(b^2)'b^2, x]_{\tau} = \tau([b^2, x])(b^2)'$ for all $x \in R$. Hence, as is easily seen, either $b^2 \in C$ or $(b^2)' = 0$. If $b^2 \in C$ then, by $(b^2)'\tau(b^2)[b', b]_{\tau} = 0$ and $(b^2)' \in C_{\tau}$, $\tau(b^2)R[b', b]_{\tau} = 0$, and so $(b^2)' = 0$, in any case. Since $b^2+b \in [U]_{\tau}$, we have also $0 = ((b^2+b)^2)' = ((b^2+b)', (b^2+b))_{\tau} = (b', b^2)_{\tau} = 2b'b^2$. Hence $b'b^2 = 0$ and $\tau(b^2)b' = b'b^2-[b', b^2]_{\tau} = 0$.

Finally, we shall prove that $b^2 \neq 0$. Suppose, to the contrary, that $b^2 = 0$. Then $\tau(b)b'b = \tau(b)(b^2)' = 0$. Let $x \in R$. Since $c = (b+bx)'(b+bx) \mp \tau(b+bx)(b+bx)' \in C_{\tau}$, we see that $0 = \tau(b^2)c = \tau(b)cb = \tau(b)(b'+b'x+\tau(b)x')bxb = \tau(b)b'xbxb$, and so $\tau(b)b' = 0$ by [4, Lemma 2]. But, this forces a contradiction $[b',b]_{\tau} = (b^2)' - 2\tau(b)b' = 0$.

(2) First, we claim that $(c^2)' \in C_{\tau}$ and $\tau(c^2) = c^2$ for any $c \in C \cap I$. Let $x \in R$. Then $[c', x]_{\tau} = [x', c]_{\tau}$ by (cx)' = (xc)'. If $[c', c]_{\tau} \in C_{\tau}$ (resp. $(c', c)_{\tau} \in C_{\tau}$) then $0 = [[c', c]_{\tau}, x]_{\tau} = (c - \tau(c))[c', x]_{\tau} = (c - \tau(c))[x', c]_{\tau} = (c - \tau(c))^2 x'$ (resp. $0 = [(c', c)_{\tau}, x]_{\tau} = (c^2 - \tau(c^2))x'$). Now, $R' \neq 0$ shows that $\tau(c^2) = c^2$, in any case. Hence $0 = (c^2 x)' - (xc^2)' = [(c^2)', x]_{\tau}$, and so $(c^2)' \in C_{\tau}$.

Now, suppose, to the contrary, that there exists $b \in I \setminus [I]_{\tau}$. Take any

non-zero $c_0 \in C \cap I$, and put $c = c_0^2 (\neq 0)$. Then $\tau(c) = c$ and $c' \in C_\tau$ by the above claim. Hence $[(b+c)', b+c]_\tau = [b', b]_\tau \notin C_\tau$, namely $b+c \notin [I]_\tau$. Recalling that $((b+c)^2)' = 0 = (b^2)'$ by (1), we get $0 = [((b+c)^2)', b]_\tau = 2[b'c+\tau(b)c'+cc', b]_\tau = 2c[b', b]_\tau$. Since 2c is a non-zero central element, this forces a contradiction $[b', b]_\tau = 0$.

(3) Since $c = (b + bxb^2)'(b + bxb^2) \mp \tau(b + bxb^2)(b + bxb^2)' \in C_{\tau}$ and $(b^2)' = \tau(b^2)b' = 0$ by (1), we get $0 = \tau(b^2)cR = \tau(b^2)Rc$. Hence c = 0, because $b^2 \neq 0$ by (1). Now, $\tau(b)b'b = \tau(b)(b^2)' = 0$ and $0 = \tau(b)c = \tau(b)(b' + b'xb^2)(b + bxb^2) = \tau(b)b'xb^3 + \tau(b)b'xb^3xb^2$. Similarly, $0 = -\tau(b)b'xb^3 + \tau(b)b'xb^3xb^2$, and therefore $2\tau(b)b'xb^3 = 0$. Hence $\tau(b)b'xb^3 = 0$.

Proof of Theorem 2. We may, and shall, assume that d is a $(1, \tau)$ -derivation. In view of Theorem 1, it suffices to show that each of d) and e) implies b).

- d) \Rightarrow b). The proof of [2, Theorem 1] still works under the present hypothesis.
- e) \Rightarrow b). Suppose, to the contrary, that b) does not hold. For any $a \in I$, we have $2(a', a)_{\tau}a^2 = ((a', a)_{\tau}, a^2)_{\tau} = ((a^2)', a^2)_{\tau} \in C_{\tau}$. So, for any $x \in R$, $0 = [(a', a)_{\tau}a^2, x]_{\tau} = (a', a)_{\tau}[a^2, x]$, and therefore $(a', a)_{\tau}R[a^2, x] = 0$. Hence either $(a', a)_{\tau} = 0$ or $a^2 \in C$. By Theorem 1, $(b^2)' = (b', b)_{\tau} \neq 0$ for some $b \in I$, and hence b^2 is a non-zero element of $C \cap I$, and so d) holds, by Lemma 2 (2); hence b) holds by the above. This is a contradiction.

Lemma 3. Let d be $a(1, \tau)$ -derivation of R. If R is of characteristic 3 and I is a non-zero ideal, then a), b), d), e) and f) are equivalent.

Proof. In view of Theorem 2, it suffices to show that f) implies d). First, we claim that $(a^3)' = 0$ for all $a \in I$. Actually, if $a \in [I]_{\tau}$ then $(a^3)' = a'a^2 + \tau(a)a'a + \tau(a)\tau(a)a' = a'a^2 + (a'a - [a', a]_{\tau})a + \tau(a)(a'a - [a', a]_{\tau}) = 3a'a^2 - 3[a', a]_{\tau}a = 0$; if $a \in [I]_{\tau}$ then $(a^3)' = (a^2)'a + \tau(a^2)a' = 0$ by Lemma 2 (1).

Now, suppose, to the contrary, that $I \neq [I]_{\tau}$. Then, by Lemma 1 (4), there exists $b \in I \setminus [I]_{\tau}$ with $b^3 \neq 0$. Recalling that $(a^3)' = 0$ for all $a \in I$, we see that $\tau(b)b'(ax)^3b^3 = 0$ for all $a \in I$ and $x \in R$ (Lemma 2 (3)). Since $b^3 \neq 0$, [5, Theorem] proves that $\tau(b)b'I = 0$. Thus $\tau(b)b' = 0$, which together with $(b^2)' = 0$ (Lemma 2 (1)) forces a contradiction $[b', b]_{\tau} = 0$.

We are now in a position to complete the proof of Theorem 3.

Proof of Theorem 3. We may, and shall, assume that d is a $(1, \tau)$ -derivation. In view of Theorem 2 and Lemma 3, it remains only to show that f implies d or e under the hypothesis that R is of characteristic not 2 or 3.

Suppose, to the contrary, that neither d) nor e) holds. Then there exist $a \in [I]_{\tau} \setminus (I)_{\tau}$ and $b \in (I)_{\tau} \setminus [I]_{\tau}$. If $a+b \in (I)_{\tau}$ then $(a+b)-b=a \in (I)_{\tau}$ shows that $a+2b=(a+b)+b \in (I)_{\tau}$ (Lemma 1 (1)), and so $2b=a+2b-a \in [I]_{\tau}$ (Lemma 1 (3)), a contradiction. On the other hand, if $a+b \in (I)_{\tau}$ then $b=(a+b)-a \in [I]_{\tau}$ (Lemma 1 (3)), again a contradiction.

Acknowledgement. The authors are very much indebted to Professor H. Tominaga for valuable comments to improve the presentation of this paper.

REFERENCES

- L. O. CHUNG and J. LUH: On semicommuting automorphisms of rings, Canad. Math. Bull. 21 (1978), 13-16.
- [2] Y. HIRANO and H. TOMINAGA: Some commutativity theorems for prime rings with derivations and differentially semiprime rings, Math. J. Okayama Univ. 26 (1984), 101-108.
- [3] A. KAYA: Semi-centralizing derivations in prime rings, Doğa Turk, J. Math. 11 (1987), 100-105.
- [4] E. C. POSNER: Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
- [5] A. RICHOUX: A theorem for prime rings, Proc. Amer. Math. Soc. 77 (1979), 27-31.

DEPARTMENT OF MATHEMATICS

EGE UNIVERSITY

BORNOVA, IZMIR, TURKEY

(Received January 14, 1987)