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ON THE COMPLEMENT CLASS TO THE
TORSION THEORY

Dedicated to Professor Hisao Tominaga on his 60th birthday

Kazvo SHIGENAGA

In this paper, we shall define the leftover class L for a torsion theory
(T, F) to be the class of all modules, each of which does not belong to
neither T nor F, and study some basic properties on this class.

It is shown that the torsion class T is splitting if and only if L is the
class consisting of all modules of the form M @& N with M a nonzero torsion
module and N a nonzero torsionfree module (Theorem 5), that the torsion
class T is hereditary if and only if each element of L has no nonzero tor-
sionfree essential submodules (Theorem 8), and that the hereditary torsion
class T is stable if and only if L is closed under essential submodules
(Theorem 11).

Finally, for a 3-fold torsion theory (T, T,, Ts), let L, and L, be the
leftover classes for (T,, T.) and (T,, T;) respectively., We shall show that
T, is hereditary if and only if Ly 2 L,, or equivalently, T, N L, is empty.

1. Preliminaries. Throughout this paper, R is a ring with identity and
modules are unitary left R-modules. R-mod denotes the category of all R-
modules. Let (T, F) be a torsion theory for R-mod with the associated
idempotent radical t. Define the leftover class L of (T, F) to be the class
of all modules, each of which does not belong to neither T nor F. Hence we
have three classes of modules, namely

T=IM[t(M)=M],
F=|M[t(M) =0} and
L=IM0=%+tM)s M|

The modules in T are said to be torsion modules, and those in F are
said to be torsionfree modules. We call the modules in L leftover modules.
We will retain these notations throughout this paper.

For example, when (T, F) is trivial, i.e.(T, F) = (R-mod, 0) or (0,
R-mod), L is empty. If (T, F) is a splitting torsion theory, every element
of L is of the form of M@ N with0 #+M € T and 0 += N € F (Theorem 5).

For all undefined notions about torsion theories we refer to Stenstorém
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[2].

2. Some basic properties of the class L. We are assuming that ¢ is
an idempotent radical, but some of our results hold only assuming that ¢ is
a preradical or an idempotent preradical.

Proposition 1. The leftover class L is closed under group extensions,
direct sums and direct producis.

S

Proof. let)0 —m K—>M £, N — 0 be an exact sequence with K
€ L and N € L. Since t(K) #+0 and f(t(K)) < t(M), t(M) must be
nonzero. If ¢(M) =M then N =g(M) = g(t(M)) <t(N); hence N =
t(N), a contradiction. So 0 =+ t(M) = M, namely, M is in L.

Next, we show that L is closed under direct sums and direct products.
Let | M,] be a family of modules in L. If :(@&M,) = O then t{M,) = 0. So,
t( ®M,) must be nonzero. Since ((®M,) < ®t(M,), we have 0 =+ (DM,)
= ©M,. Therefore ®M, is in L. Similarly, II M, is in L.

Proposition 2. A module K is in L if and only if K has a nonzero
submodule in T and a nonzero factor module in F.

Proof. The “only if” part is trivial. Suppose that K has a nonzero
submodule K' in T and a nonzero factor module K/K" in F. Then, K'<
t(K) and hence :(K) #+ 0. Let n: K — K/K" be the natural homomorphism.
Then »(+(K))< t(K/K") = 0. Hence t{(K) < K". Since K/#{(K) - K/K"
— 0 is exact, it follows that K/t(K) #+ 0. Thus K is in L.

Corollary 3. For a submodule N of a module M, M/N is in L if and
only if there is a proper submodule N' of M such that N <= N', N'/N is in
T and M/N’ is in F.

Corollary 4. If M is a nonzero torsion module and N is a nonzero
torsionfree module, then M @ N is a leftover module.

Proof. This is clear by Proposition 2.

Theorem 5. The following conditions are equivalent.

(1) T is splitting.
(2) L is the class consisting of all modules of the form M & N with
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M a nonzero torsion module and N a nonzero iorsionfree module.

Proof. (1) = (2). By Corollary 4 the module of the form M & N,
where M is nonzero torsion and N is nonzero torsionfree, is leftover.
Conversely, let K be any element of L. Since T is splitting, {(K) is a
direct summand of K. There is a submodule N of K such that K = ¢(K)
® N. Since N= K/t(K) #+ 0, it follows that N is nonzero torsionfree.
(2) =(1). If Kis in T or F. then #(K) is trivially a direct summand of K.
Otherwise K is in L and K =M & N for some M( = 0) in T and N( = 0)
in F. Then t(K) must be equal to M and hence is a direct summand of K.

Proposition 6. The following conditions are equivalent.

(1) If N is a submodule of a torsion module M such that t(N) =+ 0,
then N is a torsion module.

(2) L is closed under extensions. (i.e.. if Nisin L and N < M, then
M is inL.)

Proof. (1) = (2). Let N be a leftover module containd in a module M.
Since 0 == }(N) =t(M), t(M) =0. If (M) =M then by (1) N is torsion,
a contradiction. (2) = (1). Let M be a torsion module and N a submodule
of M with t(N) = 0. If N is not torsion, then by (2) M is in L, a contra-

diction. So N is torsion.
Corollary 7. If T is hereditary. then L is closed under extensions.

Theorem 8. The following conditions are equivaleni.
(1) T is hereditary.
(2) Each element of L has no nonzero torsionfree essential submodule.

Proof. (1) =(2). This follows from the fact that F is closed under
essential extensions. (2) =(1). Let M be a nonzero element of F and
E(M) its injective hull. Since M is a nonzero torsionfree essential sub-
module of E(M), E(M) is not in L. If E(M) isin T, then M @ E(M) is
in L by Corollary 4. But this is impossible because M @ M is a nonzero
torsionfree essential submodule of M @ E(M). Thus, E(M) must be in F,
that is T is hereditary.

Lemma 9. If L is closed under essential submodules, then T is stable.

Proof. Let M be any nonzero torsion module and N an essential ex-
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tension of M. Since t(N) # 0, N is not torsionfree. Since t(N) =. N and
t(N) can not be in L. N is not in L by assumption. Thus N is in T and
T is stable.

Lemma 10. If T is hereditary and stable, then L is closed under es-
sential submodules.

Proof. Trivial.

Theorem 11. If T is hereditary, then the following conditions are
equivalent.
(1) T is stable.

(2) L is closed under essential submodules.

Proof. This follows from Lemmas 9 and 10.

3. Leftover class for 3-fold torsion theory. Let (T,, T,, T;) be a
3-fold torsion theory. By L, and L, we denote the leftover classes for (T,
T,) and (T,, T;), respectively.

Proposition 12. The following conditions are equivalent.

(1) T, is hereditary.

(2) T\STs.

(3) L] ;) LZ»

(5) Each element of L, has no nonzero torsionfree essential submodules.
(6) L, is closed under essential submodules.

Proof. (1) <>(2) is well-known. (2) <>(3) is clear since T, & T;
means that (R-mod—(T; U T.)) 2 (R-mod— (T, U T3)). (3) =(4) is clear.
(4) =(3). Since L, S (R-mod—T,), L, S (R-mod—T,) N (R-mod—T,) =
L. (1)<>(5) and (1) <= (6) follow from Theorems 8 and 11, respectively.

Corollary 13. A 3-fold torsion theory (T, T., Ts) has length 2 if and
only if Ly = L.
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