ON THE DOUBLE CENTRALIZER OF THE INJECTIVE HULL RELATIVE TO A TORSION THEORY

Dedicated to Professor Hisao Tominaga on his 60th birthday

Yoshiki KURATA and Ming-Ting CHEN

1. It is a well-known result due to Lambek that the double centralizer of the injective hull of $_RR$ is isomorphic to the localization R_η of R with respect to the Lambek torsion radical η . Recently, A. Beg [1] has generalized this result and proved that, for a given left exact radical t, the double centralizer of the t-injective hull of $_RR$ is isomorphic to the localization R_t of R with respect to $t' = t \cap \eta$.

Let t and t' be left exact radicals for R-mod such that $t' \leq t$ and t'(R) = 0. In this paper, generalizing the results due to both Lambek and Beg, we shall give necessary and sufficient conditions for the double centralizer of t-injective hull of ${}_RR$ to be isomorphic to R_v . We shall provide an example to show that it is not necessary to assume that $t' = t \cap \eta$.

2. Let R be a ring with identity 1_R and t a left exact radical for R-mod with the corresponding left Gabriel topology L(t). The t-injective hull of ${}_RR$ is given by

$$E_t(R) = \{x \in E(R) | (R:x) \in L(t) \}.$$

where E(R) denotes the injective hull of $_RR$. Then $E_t(R)$ is t-injective and $E_t(R)/R$ is t-torsion, while $E(R)/E_t(R)$ is t-torsion-free.

Let $S = \operatorname{End}(_R E_t(R))$ and Q the double centralizer of $_R E_t(R)$. Then $E_t(R)$ may be seen as a Q-left and S-right bimodule. The canonical mapping $f \colon R \to Q$ defined by $a \to a_L$, the left multiplication by a, is an injective ring homomorphism and by this mapping we can regard Q as a left R-module. Also the canonical mapping $S \to E_t(R)$ defined by $s \to 1_R s$ is a surjective S-homomorphism. Furthermore, the mapping $Q \to E_t(R)$ given by $\alpha \to \alpha(1_R)$ is an injective R-homomorphism ([1, Lemma 2.1]) and its image $Q1_R = \{\alpha(1_R) \mid \alpha \in Q \mid \text{ is an } R$ -submodule of $E_t(R)$ containing R. This submodule is also characterized by

$$Q1_R = \{x \in E_t(R) \mid s \in S, 1_R s = 0 \Rightarrow xs = 0\}$$

([1, Proposition 2.2]).

Now let t' be a left exact radical for R-mod with the corresponding left Gabriel topology L(t'). Assume that $t' \leq t$. Then the t'-injective hull $E_{t'}(R)$ of $_{R}R$ is also an R-submodule of $E_{t}(R)$ containing R. The following lemma connects the R-submodule $E_{t'}(R)$ with $Q1_{R}$.

Lemma 1. If
$$t'(R) = 0$$
 and $Q1_R \le E_{t'}(R)$, then $Q1_R = E_{t'}(R)$.

Proof. Since $R \leq Q1_R \leq E_{t'}(R) \leq E_t(R)$ and $E_{t'}(R)/R$ is t'-torsion, $E_{t'}(R)/Q1_R$ is also t'-torsion. Therefore, to prove the lemma we may show that $E_{t'}(R)/Q1_R$ is t'-torsion-free. Let $x \in E_{t'}(R)$ and assume that $(Q1_R: x) \in L(t')$. Then, for any $s \in S$ with $1_R s = 0$, we have $(Q1_R: x) \leq l_R(xs)$. Hence $l_R(xs) \in L(t')$ and so $xs \in t'(E_t(R)) = 0$. This shows that $x \in Q1_R$ and that $E_{t'}(R)/Q1_R$ is t'-torsion-free.

Note that, concerning the assumption of the preceding lemma, the following conditions are equivalent:

- $(1) \quad Q1_R \leq E_{t'}(R).$
- (2) $(R\alpha(1_R)+R)/R$ is t'-torsion for all $\alpha \in Q$.
- (3) $Q1_R/R$ is t'-torsion.
- (4) $\operatorname{Coker}(f)$ is t'-torsion.

The equivalence of the last two conditions follows from the fact that Coker (f) is R-isomorphic to $Q1_R/R$ via $\alpha + f(R) \rightarrow \alpha(1_R) + R$.

Now we prove

Lemma 2. If t'(R) = 0, then

- (1) Q is t'-torsion-free.
- (2) Q is t'-injective.

Proof. (1) is obvious, since Q is isomorphic to $Q1_R$ and $Q1_R \le E(R)$.

(2) Suppose that $A \in L(t')$ and that an R-homomorphism $v: A \to Q$ is given. For $x \in E_t(R)$, the R-homomorphism $v_x: A \to E_t(R)$ defined by $a \to v(a)x$ can be extended uniquely to an R-homomorphism $w_x: R \to E_t(R)$. It is easily seen that, for $x, y \in E_t(R)$ and $s \in S$, we have $w_{x+y} = w_x + w_y$ and $w_{xs}(a) = w_x(a)s$ for all $a \in R$. Therefore, the mapping $a: E_t(R) \to E_t(R)$ defined by $x \to w_x(1_R)$ is an S-homomorphism. For each $a \in A$ and $x \in E_t(R)$, $v(a)(x) = v_x(a) = w_x(a) = a \cdot w_x(1_R)$ and hence $v(a) = a\alpha$. This shows that $v: A \to Q$ has an extension $R \to Q$ and thus Q is t-injective.

3. For a given left exact radical t for R-mod and any R-module $_RM$, define the localization of M with respect to t to be

$$M_t = \lim_{A \in L(t)} \operatorname{Hom}_R(A, M/t(M)).$$

Then by definition, for each $A \in L(t)$, there is a Z-homomorphism

$$u_A: \operatorname{Hom}_R(A, M/t(M)) \to M_t$$

and the canonical mapping

$$\phi_M:M\to M_t$$

is given by $x \to u_R(\overline{x}_R)$ where \overline{x}_R denotes the right multiplication by $\overline{x} = x + t(M)$.

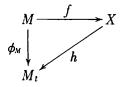
It is well-known (cf. [4]) that

- (1) both $Ker(\phi_M)$ and $Coker(\phi_M)$ are t-torsion,
- (2) M_t is t-torsion-free, and
- (3) M_t is t-injective.

It is shown that these properties characterize the localization of $_{R}M$. Here we shall quote from [2] the following

Proposition 3. Let M and X be R-modules and $f: M \to X$ an R-homomorphism. Suppose that a left exact radical t for R-mod is given and that both Ker(f) and Coker(f) are t-torsion. Then,

(1) there exists a unique R-homomorphism $h: X \to M_t$ making the diagram



commutative.

- (2) $\operatorname{Ker}(h) = t(X)$.
- (3) h is surjective iff X/t(X) is t-injective.

Proof. (1) Since $\operatorname{Coker}(f)$ is t-torsion, $(f(M):x) \in L(t)$ for all $x \in X$. Define the R-homomorphism $\alpha: (f(M):x) \to M/t(M)$ to be $\alpha(a) = m+t(M)$ for $a \in (f(M):x)$, where ax = f(m) for some $m \in M$. Then the R-homomorphism $h: X \to M_t$ given by $x \to u_{(f(M):x)}(\alpha)$ has the desired property.

Suppose that both h, $h': X \to M_t$ satisfy the condition that $hf = \phi_M = h'f$. Then the R-homomorphism $\operatorname{Coker}(f) \to M_t$ given by $x + f(M) \to h(x) - h'(x)$ is the zero mapping, and so we have h = h'.

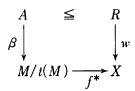
- (2) Clearly $h(t(X)) \le t(M_t) = 0$. Conversely, suppose that $x \in \text{Ker}(h)$. For each $a \in (f(M): x)$, we can find $m \in M$ such that ax = f(m). Then $m \in \text{Ker}(\phi_M) = t(M)$ and hence $ax \in f(t(M)) \le t(X)$. Therefore, $(l_R(x): a) \in L(t)$, which shows that $l_R(x) \in L(t)$ and thus $x \in t(X)$.
- (3) Note that it suffices to prove (3) in case where t(X) = 0. Suppose that h is surjective. Let $A \in L(t)$ and $v: A \to X$ any R-homomorphism. Since $\operatorname{Coker}(f)$ is t-torsion, $(v^{-1}(f(M)): a) = (f(M): v(a)) \in L(t)$ for $a \in A$. Hence $v^{-1}(f(M)) \in L(t)$. Let $\beta: v^{-1}(f(M)) \to M/t(M)$ be the R-homomorphism given by $a \to m + t(M)$, where v(a) = f(m) for some $m \in M$. Then $u_{v^{-1}(f(M))}(\beta) \in M_t$ and hence by assumption there exists $x \in X$ such that

$$u_{v^{-1}(f(M))}(\beta) = h(x) = u_{(f(M):x)}(\alpha).$$

This means that there exists $A' \in L(t)$ such that $A' \leq v^{-1}(f(M)) \cap (f(M) : x)$ and that $\alpha(a) = \beta(a)$ for all $a \in A'$.

Let $a \in A'$. Then there are some m and m' in M such that ax = f(m) and v(a) = f(m'). Hence $m + t(M) = a(a) = \beta(a) = m' + t(M)$ and $m - m' \in t(M)$. However, t(M) = Ker(f) and so v(a) = ax. The R-homomorphism $A/A' \to X$ given by $a + A' \to v(a) - ax$ is the zero mapping and therefore v(a) = ax for all $a \in A$. This shows that X is t-injective.

Conversely, suppose that X is t-injective. Let $u_A(\beta)$ be any element of M_t , where $A \in L(t)$ and $\beta: A \to M/t(M)$. By assumption there is an R-homomorphism $w: R \to X$ such that the diagram



is commutative, where f^* is the R-homomorphism induced by f. For $a \in A$, if we put $\beta(a) = m + t(M)$, then $a \cdot w(1_R) = w(a) = f^*(\beta(a)) = f(m)$. Hence $A \leq (f(M): w(1_R))$ and $h(w(1_R)) = u_{(f(M): w(1_R))}(\alpha) = u_A(\beta)$. This shows that h is surjective, which completes the proof of the proposition.

If, in particular, M = R, X is a ring and $f: M \to X$ is a ring homomorphism, then h is also a ring homomorphism. To see this, it is enough to note that, for any $y \in X$, the mapping $\operatorname{Coker}(f) \to M_t$ given by $x + f(M) \to h(xy)$

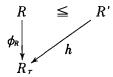
-h(x)h(y) is an R-homomorphism and must be the zero mapping.

Let R be a subring of a ring R'. Given a left exact radical r for R-mod, we shall call R', following [3], a ring of left quotients of R with respect to r, if, for any $x \neq 0$ R', R', R' if R' and R' and R' if R

As an application of Proposition 3, we shall prove

Proposition 4 (cf. [3, p. 99, Proposition 8], [1, Proposition 2.12]). Let R be a subring of a ring R' and r a left exact radical for R-mod with r(R) = 0. Then the following conditions are equivalent:

- (1) R' is a ring of left quotients of R with respect to r.
- (2) R'/R is r-torsion and $R \leq_e R'$ as left R-modules.
- (3) R'/R is r-torsion and R' is r-torsion-free.
- (4) There exists a unique injective ring homomorphism $h: R' \to R_r$ making the diagram



commutative.

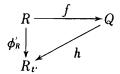
Proof. $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious and $(3) \Rightarrow (4)$ follows from Proposition 3.

 $(4) \Rightarrow (1)$. Since $R'/R \cong h(R')/\phi_R(R) \leq R_r/\phi_R(R)$, it follows that R'/R is r-torsion. Let $x \neq 0 \in R'$ and assume that (R:x)x = 0. Then $(R:x) \leq l_R(x)$ and so $x \in r(R')$. However, $h(r(R')) \leq r(R_r) = 0$ implies that r(R') = 0. Therefore, x = 0, a contradiction.

4. As another application of Proposition 3, we have

Theorem 5. Let t and t' be left exact radicals for R-mod such that $t' \leq t$ and t'(R) = 0. Let $E_t(R)$ and $E_{t'}(R)$ be the t- and t'-injective hull of $_RR$ respectively and Q the double centralizer of $_RE_t(R)$. Then the following conditions are equivalent:

(1) There exists a ring isomorphism $h: Q \to R_v$ such that the diagram



is commutative, where ϕ'_R denotes the canonical mapping of the localization with respect to t'.

- (2) $\operatorname{Coker}(f)$ is t'-torsion.
- $(3) \quad Q1_R \leq E_{t'}(R).$
- (4) $Q1_R = E_{t'}(R)$.

Proof. As was already remarked in Section 2, (2), (3) and (4) are equivalent.

 $(1) \Rightarrow (2)$ follows from the fact that $\operatorname{Coker}(f)$ is R-isomorphic to $\operatorname{Coker}(\phi_R')$, while $(2) \Rightarrow (1)$ follows from Lemma 2 and Proposition 3.

Note that if we take t=1 and $t'=\eta$ in Theorem 5, then we get Lambek's result mentioned in Section 1, while in case t is any and $t'=t\cap\eta$ we get Beg' one. These facts are immediate consequences of the following

Lemma 6. With the notation of Section 2, $Q1_R/R$ is η -torsion.

Proof. First we shall show that, for each $\alpha \in Q$,

$$s \in S$$
, $(R : \alpha(1_R)) \cdot s = 0 \Rightarrow 1_R s = 0$.

Indeed, by assumption the mapping $v: R+R\cdot\alpha(1_R)\to E_t(R)$ given by $a+b\cdot\alpha(1_R)\to bs$ is an R-homomorphism. Since $E_t(R)/(R+R\cdot\alpha(1_R))$ is t-torsion, v can be extended to an R-homomorphism $s'\in S$. Then $1_Rs'=v(1_R)=0$ and thus $1_Rs=v(\alpha(1_R))=(\alpha(1_R))s'=\alpha(1_Rs')=0$.

Now, for each $\alpha \in Q$, $(R:\alpha(1_R))$ is dense. For assume that there are $a, b(\neq 0)$ in R such that $((R:\alpha(1_R)):a)b=0$. Then the mapping $R\to R$ defined by $c\to cb$ can be extended to an $s\in S$ and $(R:a\cdot\alpha(1_R))s=(R:a\cdot\alpha(1_R))b=0$. Thus we have $b=1_Rs=0$, as was shown above. This shows that $(R:\alpha(1_R))$ is dense.

Finally, we shall give an example of a ring R and show that to obtain the isomorphism $Q \cong R_{t'}$ in Theorem 5 it is not necessary to assume that $t' = t \cap \eta$.

Example 7. We may give a ring R for which

- (1) R is left non-singular,
- (2) the left exact radical t' for R-mod defined by $t'(M) = |x \in M|$ $l_R(x)$ contains a regular element in R | for each $_RM$, is strictly smaller than η , and
 - (3) $R_{t'}$ is isomorphic to R_{η} over R.

To do this, let $_{D}V$ be a vector space over a division ring D and let $R = \operatorname{End}(_{D}V)$. Then, as is well-known, R is a regular, left self-injective ring. Since R is regular, it follows that R is left non-singular and every regular element of R is a unit in R. Therefore, $R_{t'}$ is isomorphic to R_{η} over R. If, in addition, $_{D}V$ is infinite dimensional over D, then $R = \operatorname{soc}(_{R}R)$ and so $L(t') \subseteq L(\eta)$. Thus, we have $t' \subseteq \eta$.

REFERENCES

- [1] A. Beg: The double centralizer of the σ -injective hull, Arch. Math. 43 (1984), 412-417.
- [2] Y. KURATA: On the localization of modules, Preprint 1971.
- [3] J. LAMBEK: Lectures on Rings and Modules, Waltham-Toronto-London, Blaisdel 1966.
- [4] B. STENSTRÖM: Rings of Quotients, Berlin-Heidelberg-New York, Springer 1975.

Yamaguchi University, Yamaguchi, Japan National Cheng Kung University, Tainan, R. O. C.

(Received November 1, 1985)