ON MORITA PAIRS OF RINGS

Dedicated to Professor Hisao Tominaga on his 60th birthday

Nobuo NOBUSAWA

Let $(Q, R; S, T; \mu, \nu)$ be a Morita context where Q and R are rings with or without identities, $S = {}_{Q}S_{R}$, $T = {}_{R}T_{Q}$, and μ and ν are homomorphisms of $S \otimes_R T$ to Q and of $T \otimes_Q S$ to R, respectively ([2]). Especially when μ and ν are surjective, we say that (Q, R) is a Morita pair of rings. In this case, rings Q and R have many common properties. example, it was shown in [4] and [6] that there is a one-to-one correspondence between properly generated Q- and R-modules. The purpose of this note is to derive some important Morita pairs from a given Morita pair. For a ring Q, we denote by $\mathfrak{P}(Q)$ the prime radical of Q, and by $\mathfrak{J}(Q)$ the Jacobson radical of Q. We shall show that if Q and R have unities, then $(\mathfrak{P}(Q),\,\mathfrak{P}(R))$ and $(\mathfrak{J}(Q),\,\mathfrak{J}(R))$ are Morita pairs, and that, regardless of the existence of unities, $(Q/\mathfrak{P}(Q), R/\mathfrak{P}(R))$ and $(Q/\mathfrak{P}(Q), R/\mathfrak{P}(R))$ are Morita pairs. The same results hold for another kind of radicals which are the intersections of maximal ideals of rings provided the rings Q and R satisfy $Q^2 = Q$ and $R^2 = R$. These last results are slightly generalized in a general case, i.e., when rings are not idempotent as above. In a general case, we consider as a radical the intersection of all maximal non-special ideals, where ideals are called non-special if they contain no powers of the rings.

The methods used in this note are the ring-theoretic formalisms of a Morita context. A Morita context is considered as a gamma ring, which is a natural generalization of a gamma ring of homomorphisms given in [5] and [6]. The ring-theoretic formalisms of a gamma ring will be explained in 2. In 3, the correspondences of ideals of Q and R will be discussed. Then, in 4, we prove the above mentioned results.

2. Gamma rings of Morita contexts. Let (Q, R) be a Morita pair as in 1. Denote $\mu(s \otimes t)$ by st and $\nu(t \otimes s)$ by ts for $s \in S$ and $t \in T$. Then, $Q = ST = \{\sum_i s_i t_i | s_i \in S, t_i \in T\}$. Also, R = TS. We have (st)s' = s(ts') for $s, s' \in S$ and $t \in T$ due to the associative properties of a Morita context. So, we denote (st)s' by sts', etc. Clearly, $STS \subseteq S$, and similarly, $TST \subseteq T$. A pair (S, T) of modules S and T satisfying the

above conditions is called a gamma ring. (For more precise definitions, see [1] or [3].) A gamma ring (S, T) which is obtained from a Morita context as above is called a gamma ring of a Morita context. In the previous works [5] and [6], a gamma ring of homomorphisms was introduced and the relations between the left and right operator rings were obtained. The same results hold for a gamma ring of a Morita context where Q and R are considered as the left and right operator rings.

In the following, we consider left modules over a ring unless mentioned otherwise. Let M be a Q-module. We define an R-module TM as follows. For $t \in T$ and $m \in M$, let tm be a homomorphism of S to M defined by $tm \colon s \to (st)m$. We define TM as the submodule of $\operatorname{Hom}_Q(S,M)$ generated by all tm for $t \in T$ and $m \in M$. For $r \in R$ and $\sum_i t_i m_i \in TM$, define $r(\sum_i t_i m_i) = \sum_i (rt_i)m_i$. We have to show that it is well defined. Let $\sum_i t_i m_i = 0$. It is enough to show that $\sum_i (rt_i)m_i = 0$. First, let r = ts. Then $\sum_i (tst_i)m_i$ maps any element s' of S to $\sum_i (s'ts)t_i m_i = (s'ts)\sum_i t_i m_i = 0$. Hence, $\sum_i (tst_i)m_i = 0$. Since R = TS, we have $\sum_i (rt_i)m_i = 0$ as required. Thus, TM is an R-submodule of $\operatorname{Hom}_Q(S,M)$. Similarly, for an R-module N, we can define SN which is a Q-submodule of $\operatorname{Hom}_R(T,N)$.

Let M be a Q-module. We say that M is properly generated (over Q) if (i) QM = M and (ii) Qm = 0 implies m = 0 for $m \in M$. Assume that M is properly generated. We want to show that TM is properly generated (over R). First, we see easily that R(TM) = (RT)M = (TQ)M = T(QM) = TM. Next, suppose that $R(\sum_i t_i m_i) = 0$. Then, $\sum_i (tst_i)m_i = 0$ for any s and t, and hence $\sum_i (s'tst_i)m_i = 0$ for any s', which implies $Q(\sum_i st_i m_i) = 0$ as Q is generated by s't. Since M is properly generated, we have $\sum_i st_i m_i = 0$. Therefore, $\sum_i t_i m_i = 0$ as required.

Let M be a properly generated Q-module as above. Then S(TM) is a properly generated Q-module as we can apply the above argument twice. We can show that S(TM) is isomorphic with M in a natural sense. For it, consider the mapping $\sum_i s_i(\sum_j t_{ij}m_{ij}) \to \sum_{i,j} s_i t_{ij}m_{ij}$ of S(TM) to M. The mapping is an isomorphism by a similar argument as above. In the following, we identify S(TM) and M = (ST)M.

Proposition 1. If M is an irreducible Q-module, then TM is an irreducible R-module.

Proof. First, note that an irreducible Q-module M is a properly generated Q-module. For, QM = M by the definition of an irreducible module.

Let $M' = \{m \in M \mid Qm = 0\}$. Then, M' is a proper submodule of M and hence M' = 0. Now, let N be a non-zero R-submodule of TM. SN is a submodule of M and hence SN = 0 or SN = M. If SN = 0, then RN = TSN = 0, which implies N = 0. Just note that TM is a properly generated R-module as shown early and that N is a subset of TM. Therefore, SN must coincide with M. Then, $TM = TSN = RN \subseteq N$, which implies TM = N. We have shown that TM is an irreducible R-module.

3. Correspondences of ideals. Let (Q, R) be a Morita pair. Let A be an ideal of Q. We define $A_* = TAS$ and $A^* = S^{-1}AT^{-1} = \{y \in R \mid SyT \subseteq A\}$. A_* and A^* are ideals of R. Let U be an ideal of R. We define $U_* = SUT$ and $U^* = T^{-1}US^{-1}$. Let $A_c = (A_*)_*$ and $A^c = (A^*)^*$. Similarly, we define U_c and U^c . When $A_c = A$, we say that A is closed below, and when $A^c = A$, we say that A is closed above. Then the mapping $A \to A_*$ gives a bijection of the set of lower closed ideals of Q to that of Q. In this note, we consider the correspondence Q and Q to that of Q to that a prime ideal is always closed above. Thus, the above mapping gives a bijection of the set of prime ideals of Q to that of Q.

Next, we consider a primitive ideal of Q. Let P be a primitive ideal of Q. It is defined as $P = (0:M) = \{x \in Q \mid xM = 0\}$ for some irreducible Q-module M. P is a prime ideal, and hence is closed above.

Proposition 2. If P is a primitive ideal of Q, then P^* is a primitive ideal of R.

Proof. Let P=(0:M) as above. By Proposition 1, TM is an irreducible R-module. We show that $P^*=(0:TM)$. Let U=(0:TM). P^*TM is an R-submodule of an irreducible TM, and hence $P^*TM=0$ or $P^*TM=TM$. $SP^*TM\subseteq PM=0$, and hence $P^*TM\neq M$. So, $P^*TM=0$. Hence, $P^*\subseteq U$. Since STM=M, we have $U^*\subseteq P$ by symmetry. Then, $U=U^{**}\subseteq P^*$. Thus, $P^*=U=(0:TM)$, and hence P^* is a primitive ideal of R.

Let A_i ($i \in I$) be upper closed ideals. Then $\bigcap_i A_i$ is also closed above, because we have $(\bigcap_i A_i)^* = \bigcap_i A_i^*$. Note that the latter identity holds for any ideals A_i . This fact is applied for radicals. The prime radical of a ring is defined to be the intersection of all prime ideals. In the above, let A_i range over all prime ideals of Q. Then, $\bigcap_i A_i = \mathfrak{P}(Q) = \text{the prime}$

radical of Q and we have $(\mathfrak{P}(Q))^* = \mathfrak{P}(R)$. Next, let A_i range over all primitive ideals of Q. Then $\bigcap_i A_i = \mathfrak{F}(Q) =$ the Jacobson radical of Q. We have obtained

Theorem 1. $\mathfrak{P}(Q)$, $\mathfrak{P}(R)$, $\mathfrak{J}(Q)$ and $\mathfrak{J}(R)$ are all closed above, and we have $(\mathfrak{P}(Q))^* = \mathfrak{P}(R)$ and $(\mathfrak{J}(Q))^* = \mathfrak{J}(R)$.

We apply the above argument for A_i which range over maximal ideals of Q. However, a maximal ideal is not necessarily closed above. We need a new concept. An ideal A of Q is said non-special if A does not contain Q^n for any integer n. Note that if $Q^2 = Q$, then Q is the only special ideal. Now, an ideal A is said maximally non-special if A is non-special and every ideal which contains A properly is special.

Proposition 3. If A is a maximally non-special ideal of Q, then A is closed above and A^* is a maximally non-special ideal of R.

Proof. First, we show that if B is a non-special ideal of Q, then B^* is a non-special ideal of R. For it, suppose that B^* contains R^n for some n. Then, $B \supseteq SB^*T \supseteq SR^nT = Q^{n+1}$, which is a contradiction. Thus, B^* is non-special. Then, B^c is also non-special. So, for the ideal A in Proposition 3, A^c is non-special. Since A is maximally non-special and $A^c \supseteq A$, we have $A^c = A$, or A is closed above. Next, let U be an ideal of R containing A^* properly, and assume that U is non-special. Then, U^* is non-special and contains $(A^*)^* = A$. Thus, $U^* = A$. Then, $U \subseteq (U^*)^* = A^*$, which is a contradiction. We have proved Proposition 3.

Define $\mathfrak{M}(Q)$ = the intersection of all maximally non-special ideals of Q. The following Theorem 2 is clear.

Theorem 2. $\mathfrak{M}(Q)$ is closed above and $(\mathfrak{M}(Q))^* = \mathfrak{M}(R)$.

4. Morita pairs of rings. First, recall that a Morita pair is a pair (Q, R) of rings Q and R such that Q = ST and R = TS with some modules S and T where we have $STS \subseteq S$ and $TST \subseteq T$. For example, if I and J are ideals of a ring, then (IJ, JI) is a Morita pair. Now, let (Q, R) be a Morita pair. If A is an ideal of Q, then a pair (AST, TAS) is also a Morita pair because $(AS)T(AS) \subseteq AS$ and $T(AS)T \subseteq T$. Similarly, (STA, TAS) is a Morita pair.

Proposition 4. If A is an ideal of Q, then (AQ, A_*) and (QA, A_*) are Morita pairs. If A is closed below, then (A, A_*) is a Morita pair.

Proof. Just note that Q = ST and $A_* = TAS$. Also note that if A is closed below then QAQ = QA = AQ = A.

Corollary. (Q^n, R^n) is a Morita pair.

Proof. Let $A = Q^{n-1}$ in Proposition 4.

Theorem 3. Suppose that Q and R have unities. Then, $(\mathfrak{P}(Q), \mathfrak{P}(R))$, $(\mathfrak{P}(Q), \mathfrak{P}(R))$ and $(\mathfrak{M}(Q), \mathfrak{M}(R))$ are all Morita pairs.

Proof. Theorem 3 follows from the latter part of Proposition 4. Note that if A is an ideal of Q then $A^* = S^{-1}AT^{-1} = (TS)S^{-1}AT^{-1}(TS) \subseteq TAS = A_*$ and hence $A^* = A_*$.

Proposition 5. Let A be an ideal of Q. Then, (Q/A, R/A*) and (Q/A, R/A*) are Morita pairs.

Proof. Let $\overline{S}=S/AS$, $\overline{T}=T/TA$, $\overline{Q}=Q/A$ and $\overline{R}=R/A_*$. \overline{s} denotes an element of \overline{S} which is represented by s, and t denotes an element of \overline{T} represented by t. Define $\overline{s}\overline{t}$ as an element of \overline{Q} represented by st. Similarly define $\overline{t}\overline{s}$ as an element of \overline{R} represented by ts. We can verify that these are well defined. Then we have $\overline{S}\overline{T}=\overline{Q}$ and $\overline{T}\overline{S}=\overline{R}$. Next, define $\overline{s}\overline{t}\overline{s}'$ as an element of \overline{S} represented by sts'. Similarly, define $\overline{t}\overline{s}\overline{t}'$. It is almost routine to verify that we obtain a Morita pair $(\overline{Q}, \overline{R})$. For the second part, let $\widehat{S}=S/AT^{-1}$, where $AT^{-1}=|s|\in S|sT\subseteq A|$, $\widehat{T}=T/S^{-1}A$ where $S^{-1}A=|t|\in T|St\subseteq A|$, $\widehat{Q}=Q/A$ and $\widehat{R}=R/A^*$. As in the first part, we can show that $(\widehat{Q}, \widehat{R})$ is a Morita pair.

Theorem 4. Let (Q, R) be a Morita pair. Then, $(Q/\Re(Q), R/\Re(R))$ are Morita pairs where $\Re = \Re$, \Im or \Re .

Proof. Theorem 4 is a direct consequence of the latter part of Proposition 5.

References

[1] W. E. COPPAGE and J. LUH: Radicals of gamma rings, J. Math. Soc. Japan, 23 (1971), 40-52. 158

N. NOBUSAWA

- [2] N. JACOBSON: Basic Algebra II, Freeman, San Francisco, 1980.
- [3] S. KYUNO: On the radicals of Γ -rings, Osaka J. Math., 12 (1975), 639-645.
- [4] S. KYUNO: Equivalence of module categories, Math. J. Okayama Univ., 28 (1986), 147-150.
- [5] N. Nobusawa: On duality in Γ -rings, Math. J. Okayama Univ., 25 (1983), 69-73.
- [6] N. NOBUSAWA: Γ-rings and Morita equivalence of rings, Math. J. Okayama Univ., 26 (1984), 151-156.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF HAWAII
HONOLULU, HAWAII, 96822, U. S. A.

(Received December 9, 1985)