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ON MORITA PAIRS OF RINGS
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1. Introduction. Let(Q, R; S, T; u v) be a Morita context where
Q@ and R are rings with or without identities, S =Sy, T =xT4q, and g and v
are homomorphisms of S®@r T to Q and of T ®¢ S to R, respectively ([2]).
Especially when x and v are surjective, we say that (@, R) is a Morita pair
of rings. In this case, rings Q and R have many common properties. For
example, it was shown in [4] and [6] that there is a one-to-one correspon-
dence between properly generated @- and R-modules. The purpose of this
note is to derive some important Morita pairs from a given Morita pair.
For a ring Q. we denote by P(Q) the prime radical of @, and by JQ) the
Jacobson radical of Q. We shall show that if @ and R have unities, then
(B(Q), B(R)) and (JHQ). I(R)) are Morita pairs, and that, regardless of
the existence of unities, (Q/R(Q), R/B(R)) and (Q/NQ), R/I(R)) are
Morita pairs. The same results hold for another kind of radicals which are
the intersections of maximal ideals of rings provided the rings @ and R
satisfy Q* = Q and R* = R. These last results are slightly generalized in
a general case, i.e., when rings are not idempotent as above. In a general
case, we consider as a radical the intersection of all maximal non-special
ideals, where ideals are called non-special if they contain no powers of the
rings.

The methods used in this note are the ring-theoretic formalisms of
a Morita context. A Morita context is considered as a gamma ring, which
is a natural generalization of a gamma ring of homomorphisms given in [5]
and [6]. The ring-theoretic formalisms of a gamma ring will be explained
in 2. In 3, the correspondences of ideals of @ and R will be discussed.
Then, in 4, we prove the above mentioned results.

2. Gamma rings of Morita contexts. Let(Q. R) be aMorita pair as
in1. Denote u(s ® t) by st and v(i ® s) by is for s € S and ¢t € T.
Then, Q = ST ={X:s:t:|s: € S. t; € Tl. Also, R = TS. We have
(st)s’ = s(is’) for s. s’ € S and t € T due to the associative properties of
a Morita context. So, we denote (st)s' by sts', etc. Clearly, STS C S,
and similarly, TST C T. A pair (S, T) of modules S and T satisfying the
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above conditions is called a gamma ring. (For more precise definitions, see[1]
or [3].) A gamma ring (S, T) which is obtained from a Morita context as
above is called a gamma ring of a Morita context. In the previous works [5]
and [6], a gamma ring of homomorphisms was introduced and the relations
between the left and right operator rings were obtained. The same results
hold for a gamma ring of a Morita context where @ and R are considered as
the left and right operator rings.

In the following. we consider left modules over a ring unless mentioned
otherwise. Let M be a Q-module. We define an R-module TM as follows.
For t € T and m € M, let tm be a homomorphism of S to M defined by
tm: s - (st)m. We define TM as the submodule of Homy(S, M ) generated
by all tm for t € T and m € M.. For r € R and 2; t;m; € TM, define
r(3: tmy) = 20, (rt;)m;. We have to show that it is well defined. Let
> tim; = 0. It is enough to show that > ; (rt;)m; = 0. First, let r = ts.
Then X; (tst;)m; maps any element s’ of S to 2, (s'ts)t;m; = (s'ts) 2 tim;
= 0. Hence, 2);(ist;)m; = 0. Since R = TS, we have 2;(rt;)m; =0 as
required. Thus, TM is an R-submodule of Homy(S, M ). Similarly, for an
R-module N, we can define SN which is a Q-submodule of Homy(T, N).

Let M be a @-module. We say that M is properly generated (over Q)
if (i) QM =M and (ii) Qm = 0 implies m =0 for m € M. Assume that
M is properly generated. We want to show that TM is properly generated
(over R). First, we see easily that R(TM) =(RT)M =(TQ )M = T(QM)
= TM. Next, suppose that R(>; t;m;) =0. Then, >, (tst;)m; = 0 for any
s and ¢, and hence 3 ; (s'tst;)m; = 0 for any s', which implies Q(2; st;m;)
=0 as @ is generated by s't. Since M is properly generated, we have
> stym; = 0. Therefore, 23, t;m; = 0 as required.

Let M be a properly generated @-module as above. Then S(TM) is
a properly generated Q-module as we can apply the above argument twice.
We can show that S(TM ) is isomorphic with M in a natural sense. For it,
consider the mapping >.; s,( >3, tymy) = 2us Sityymy of S(TM) to M. The
mapping is an isomorphism by a similar argument as above. In the following,
we identify S(TM) and M = (ST)M.

Proposition 1. If M is an irreducible Q-module, then TM is an
irreducible R-module.

Proof. First, note that an irreducible @-module M is a properly gen-
erated @Q-module. For, QM = M by the definition of an irreducible module.
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Let M ={m € M|Qm = 0|. Then, M' is a proper submodule of M and
hence M’ =0. Now, let N be a non-zero R-submodule of TM. SN is
a submodule of M and hence SN =0 or SN =M. If SN =0, then RN =
TSN = 0, which implies N = 0. Just note that TM is a properly generated
R-module as shown early and that N is a subset of TM. Therefore, SN must
coincide with M. Then, TM = TSN = RN C N, which implies TM = N.
We have shown that TM is an irreducible R-module.

3. Correspondences of ideals. Let (Q, R) be a Morita pair. Let 4 be
an ideal of Q. We define Ax = TAS and A¥* = ST'AT' ={y € R|SyT
C A}. Ax and A* are ideals of R. Let U be an ideal of R. We define
Usxs = SUT and U* = T 'US™'. Let A; = (Ax)x and A° = (A*)*. Simi-
larly, we define U. and U°. When A, = A, we say that A is closed below,
and when A° = A. we say that A is closed above. Then the mapping A — Ax
gives a bijection of the set of lower closed ideals of @Q to that of R. Simi-
larly, A — A* gives a bijection of the set of upper closed ideals of Q to that
of R. In this note. we consider the correspondence A — A*. In this con-
nection, note that a prime ideal is always closed above. Thus, the above
mapping gives a bijection of the set of prime ideals of Q to that of R.

Next, we consider a primitive ideal of Q. Let P be a primitive ideal
of Q. Itis definedas P=(0: M) ={x € Q|xM =0} for some irreducible
Q-module M. P is a prime ideal, and hence is closed above.

Proposition 2. If P is a primitive ideal of Q, then P* is a primitive
ideal of R.

Proof. Let P =(0:M) as above. By Proposition 1, TM is an
irreducible R-module. We show that P* =(0: TM). LetU =(0: TM).
P*TM is an R-submodule of an irreducible TM. and hence P*TM =0 or
P*TM =TM. SP*TM C PM =0, and hence P*TM # M. So, P*TM
= 0. Hence, P* C U. Since STM = M, we have U* C P by symmetry.
Then, U = U** € P*. Thus, P* =U =(0: TM), and hence P* is
a primitive ideal of R.

Let A; (i € I) be upper closed ideals. Then (); 4; is also closed above,
because we have ([); A;)* = (); A*. Note that the latter identity holds for
any ideals A;. This fact is applied for radicals. The prime radical of
a ring is defined to be the intersection of all prime ideals. In the above, let
A; range over all prime ideals of Q. Then, (), A; = B(Q) = the prime
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radical of @ and we have (R(Q))* = R(R). Next, let A, range over all
primitive ideals of Q. Then (N A; = J(Q) = the Jacobson radical of Q.
We have obtained

Theorem 1. R(Q), B(R), JQ) and J(R) are all closed above, and
we have (B(Q))* = B(R) and (HQ))* = JR).

We apply the above argument for A; which range over maximal ideals
of Q. However, a maximal ideal is not necessarily closed above. We need
a new concept. An ideal A of Q is said non-special if A does not contain Q"
for any integer n. Note that if Q° = Q. then Q is the only special ideal.
Now, an ideal A is said maximally non-special if A is non-special and
every ideal which contains A properly is special.

Proposition 3. If A is a maximally non-special ideal of Q, then A is
closed above and A* is a maximally non-special ideal of R.

Proof. First, we show that if B is a non-special ideal of @, then B*
is a non-special ideal of R. For it, suppose that B* contains R" for some n.
Then, BD SB*T D SR"T = @™", which is a contradiction. Thus, B*
is non-special. Then, B is also non-special. So. for the ideal 4 in
Proposition 3, A® is non-special. Since A is maximally non-special and
A° D A, we have A° = A, or A is closed above. Next, let U be an ideal of
R containing A* properly, and assume that U is non-special. Then, U* is
non-special and contains (A*)* = A. Thus, U* = A. Then, U C (U*)*
= A*, whieh is a contradiction. We have proved Proposition 3.

Define M(Q) = the intersection of all maximally non-special ideals of
Q. The following Theorem 2 is clear.

Theorem 2. M(Q) is closed above and (M(Q))* = M(R ).

4. Morita pairs of rings. First, recall that a Morita pair is a pair
(Q, R) of rings Q and R such that @ = ST and R = TS with some modules
S and T where we have STS C S and TST C T. For example, if I and J
are ideals of a ring, then (IJ, JI) is a Morita pair. Now, let (@ R) be
a Morita pair. If A is an ideal of Q. then a pair (AST. TAS) is also
a Morita pair because (AS)T(AS) C AS and T(AS)T C T. Similarly,
(STA, TAS) is a Morita pair.
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Proposition 4. If A is an ideal of Q, then (AQ, Ax) and (QA, Ax) are
Morita pairs. If A is closed below, then (A. Ax) is a Morita pair.

Proof. Just note that @ = ST and Ax = TAS. Also note that if A is
closed below then QAQ = Q4 = AQ = A.

Corollary. (Q". R") is a Morita pair.
Proof. Let A = Q"' in Proposition 4.

Theorem 3. Suppose that Q and R have unities. Then, (B(Q), B(R)),
(Q), H(R)) and (M), M(R)) are all Morita pairs.

Proof. Theorem 3 follows from the latter part of Proposition 4. Note
that if A is an ideal of @ then A* = S7'AT™' =(TS)S'AT"(TS) C
TAS = A and hence A* = Ax.

Proposition 5. Let A be an ideal of Q. Then, (Q/A, R/Ax) and
(Q/A, R/A*) are Morita pairs.

Proof. LetS = S/AS. T =T/TA. Q = Q/A and R = R/Ax. 5 de-
notes an element of S which is represented by s. and f denotes an element
of T represented by t. Define 5T as an element of Q represented by si.
Similarly define 5 as an element of R represented by is. We can verify
that these are well defined. Then we have ST = é and TS = R. Next,
define 55" as an element of S represented by sts’. Similarly, define F57.
It is almost routine to verify that we obtain a Morita pair (Q. R). For the
second part. let S = S/AT™'. where AT = ls € S|sTC Al T=
T/S™'A where S7'A =1t € T|St C A}, @ = Q/A and R = R/A*. Asin
the first part, we can show that (Q, ﬁ) is a Morita pair.

Theorem 4. Let (Q. R) be a Morita pair. Then, (Q/R(Q), R/R(R))
are Morita pairs where R =B, I or M.

Proof. Theorem 4 is a direct consequence of the latter part of Propo-
sition 5.
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