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1. Introduction. Closed ideals in a non-unital ring were first introduced
in [3] to study the correspondence of ideals in Morita equivalent rings. Let
I be an ideal of a ring R. We say that I is lower closed if RIR = 1. Every
irreducible ideal of R is lower closed. On the other hand, we say that I is
upper closed if R"'IR™" =1, where R"'IR™' =|x € R|RxR C I}. Every
prime ideal is upper closed. Some properties which are usually satisfied by
ideals of a unital ring fail for general ideals of a non-unital ring. But, they
are satisfied by closed ideals in the above sense. For example, it is well
known that there is a one-to-one correspondence between ideals of two
Morita equivalent unital rings. This is not true in case of non-unital rings.
However, if we restrict to closed ideals, the same property holds. (See
Theorem 3 and Theorem 5.) In this paper. we consider two types of matrix
rings. One is the total matrix ring over a ring, and the other is a Morita
context which is considered as a subring of a matrix ring of 2 X2 over
a ring. Let R be a non-unital ring, and R, the total matrix ring of a Xn
over R. It is known that an arbitrary ideal of R, is not necessarily the total
matrix ring A, over an ideal A of R (contrary to the unital ring case). In 2,
we show that every closed (lower or upper) ideal of R, is expressed as A,
with some ideal A of R. Moreover, it will be shown that the ideal of R, is
lower (or upper) closed if and only if A is lower (or upper) closed. In 3,
we deal with a Morita context ring C = C,, @ Cy, @& Cy, @ C,,. where C,;
are submodules satisfying that C;;C;x € Cix and C;;Crn =0 if j#F k. It is
easy to see that C is considered as a subring of a total matrix ring of 2 X2
over a ring. Here. we do not assume that C has the identity. However, we
have to assume that C,,C,, = C,; and C,;C,; = C,,. First, we show that
every closed ideal I of C is a Morita context ringl =1,, ® L, & I, & I,
where I;; = I N C,; are C;;-C,;-submodules of C;;. We can define upper and
lower closed submodules, and we will show that I is lower {or upper closed
if and only if all I; are lower (or upper closed. When there exists an ideal
I=1,®1L, &1, ® I, we say that submodules I,,. L,. 1, and I, corre-
spond to each other via the ideal I. We can show that the correspondence is
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one-to-one among all upper (or lower) closed submodules. Especially, I, and
I, are ideals of C,, and C,,, and the correspondence hetween closed ideals
is one-to-one. C,, and C,, are Morita equivalent in a general sense, and the
above result is a generalization of the result in case of a unital ring. See[1].

2. Closed ideals in a total matrix ring. Let R, be the total matrix
ring of nXn over a non-unital ring R. Let e;; be the matrix units. Note
that e;; do not exist in R,. However, the formal multiplication by e; will
always make sense in the following context.

Proposition 1. Let I be an ideal of R,. There exist ideals A and B of
R such that

RuIR, C B, C1C A, CR;'IR;".

Proof. Let I(i,j) =|r € R|r appears in the (i, j)-entry of some
element of Il. It is clear that I(Z, j) is an ideal of R. We have

(1) (RI(i, j)R)exm C I,
because (RI(i, j)R )exnm = (Rex;)I(Re;n) € RoIR, C 1. Let A = :Z" I(i, j).

A is an ideal of R, and I C A,. On the other hand, R,A,R, C I, because
exi(RnAnRy) emn =(RAR )exm € I by (1). Therefore, A, C R;'IR;'. We
obtained I € A, C R;'IR;'. Let B = RAR. Then, B, = R,A,R.. Since
I C A, C R:'IR;', we have R,IR, C B, C I. The proof of Proposition 1
is completed.

From Proposition 1, we can conclude that if I is lower (or upper) closed
ideal of R,, it is the total matrix ring over an ideal of R.

Theorem 1. Let I be an ideal of R,. I is upper closed if and only if
I = A, with an upper closed ideal A of R. I is lower closed if and only if
I = B, with a lower closed ideal B of R.

Proof. First, suppose that I is upper closed. Then, I = A, with an
ideal A as noted above. It is clear that R,(R™'AR™").R, C A,. Since A,
is upper closed, we have (R"'AR™ '), C A, and R"'AR™' C A. Therefore,
R'AR™' = A and A is upper closed. Conversely, let A be an upper closed
ideal of R. We show that A, is upper closed. Let x be an element of R,
such that R,xR, C A,. Let r;; be an element of R such that e;;xe;; = r;;e5.
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Then, (Rr;R)exn = (Rexi)x(Resm) € An. So. Rri;R C A, Since A is
upper closed, r;; € A. Hence, x € A, and A, is upper closed. Secondly,
suppose that I is lower closed. Then, I = B, with an ideal B. (RBR), =
R.B,R, = R,IR, =1 = B,. So, RBR = B and B is lower closed. Con-
versely, let B be a lower closed ideal of R. Then, R,B,R, =(RBR ), =
B,. Hence, B, is lower closed. The proof of Theorem 1 is completed.

Corollary. (i) IfIis a prime ideal of R,, then I = P, with a prime
ideal P of R.

(ii) Ifx € RnxR, for every element x of an ideal I of R, thenl = A,
with an ideal A of R.

Proof. (i) A prime ideal of R, is upper closed. For, let I be
a prime ideal of R,. Then. R.(R;'IR;')R, C I implies R;'IR;' C L
Thus, I is upper closed. Then, I = P, with an ideal P of R. We want to
show that P is prime. Let CD C P for ideals C and D of R. C,D, =
(CD), C P, =1impliesC, ClorD,CI. IfC,CI=P, then C CP.
If D, C I then D C P. P is a prime ideal.

(ii) Suppose that the condition of (ii) of Corollary is satisfied. Then,
R,IR, =1, and I is lower closed. So, I = A, with an ideal A of R.

(1) of Corollary is obtained by Sands [4]. (ii) of Corollary is obtained
by Luh [2].

3. Closed ideals in a Morita context ring. A subring S of R, is called
a Morita context ring (ora M. c. ring) if S = S,, & S,, ® S1; ® S, where
S.; = e;Se;;. Thus, S is a M. c. ring if and only if S contains all S,;.
Note that S;;S,. is contained in S;, but is not necessarily equal to S.
S;; are rings, and S;; are S;;-S;;-bimodules. In the following, we fix a M.
c. ring C. which satisfies the conditions C,;C;, = C,, and C;, Cy; = Cs,.
Under this basic assumption, we have C,,C,, = C,;,C;; and C,,C;, = C,,C,,.
Let I be an ideal of C. I is not necessarily a M. c. ring, and in this direction
we have Proposition 2 which is an analogue of Proposition 1.

Proposition 2. Let I be an ideal of C. Then, there exist ideals A and
B which are M. c. rings such that CICC BCIC A CC'IC™.

Proof. Let A =5, &L, &1, ®L,. A is an ideal of C as well as
a M. c. ring. Clearly, I C A. We have C;xLinCn; C CixIC,; € I. Hence,
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CAC C Tand hence A C C'IC™'. Next, let B= CAC. B, = e;;CACej;
C CAC =B. So, Bisa M.c.ring. Clearly, B is an ideal of C. It is
also clear that CIC C B C 1.

Proposition 2 implies that a lower (or upper) closed ideal of C is a M.
c. ring.

Lemma. C;C;; is either C;; or C;;Cix. Similarly, C;;C;y is either
Ckk or CixChy.

Proof. lf i+ j+ k, then i =k and C,,C,;, = C;;C,, = C,;. Other-
“'ise. C,;j Cj]c = C,;,;Cik due to the fact Clz ng = C]] C12 and C2|Cn = CQQ C2]-
The second part is similarly proven.

Let M;; stand for a C;;-C,;-submodule of C,; in general. We say that
MU is lO'W@TCZOSEd if Ci,‘MijCJJ = M,:j.

Theorem 2. An ideal I of C is lower closed if and only if = I,, & L.
® L, ® L, with lower closed I;.

Proof. Suppose that [ is lower closed. Then, I =1, ® L, & I, & I,
as above. We want to show that I;; is lower closed. Since I = CIC =
C(CIC)C, we have I;; = s;’,“ CisCsxlinCmiCy;. Now, by Lemma, C;sCax:

LinCnsCy; € Cyul;Cyy. So, I; € CuI;Cyy, or I, is lower closed. Con-
versely, suppose that I = I, @ L, @ L, @ I,, with lower closed I;;. Then,
CIC =2 CnInCn &) szlzzczz ] CllIIZCZZ (&) C22121C11 =1 ThUS, CIC=1

and I is lower closed.

Let m; be the mapping of the set of ideals of C to the set of C;-Cj;-
submodules of C;; such that z,;(I) = euley;.

Theorem 3. m; induces a bijection of the set of lower closed ideals of
C to the set of lower closed C;-C;;-submodules of C,;.

Proof. Let I=1,® L, ® 1, @1, be a lower closed ideal of C.
where I; are all lower closed. We show that I,y = Cy,I;;C;n for any i, j,
k and m. For example, suppose that i = k and j = m. Then, Iin = Iin
Ciuli;Cin 2 CiilIinCni)Cim = CiiIinCnm = Lim = Iin. Therefore, ILin
Cu1,;Cin = Cy1;C;m as required. All the other cases are similarly proven.
Now, Iin = Cyl,;Cin implies that [y is uniquely determined by I; for any

Iy
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k and m. Therefore, I is uniquely determined by I;;. Conversely. let M;;
be a lower closed C;-C;;-submodule of C,;. Let Iy = Ce M Cin. 1t is
easily verified that I, is lower closed. Let I =15, & L, ® L,; ® L.
We can show that I is a lower closed ideal. This completes the proof of
Theorem 3.

In order to discuss the upper closed case, we define the operators C;;'
as fO“O\VS. Deﬁne C,'—liM,;_, = {I c ijl Cu;.l’ - l"[ij% and ﬂ’];jcg_,-l = |I c
Cix|xCx; S M;;1. Now. we say that M;; is upper closed if C;;'M;;C;} =
AM,_'}.

Theorem 4. Lei I be an ideal of C. I is upper closed if and only if
I=5L &L, ®1,, ® L with upper closed 1,;.

Proof. First. suppose that I is an upper closed ideal of C. Then, I =
L& L, ® L, ®L, as above. We want to show that I; is upper closed.
For it, observe that CC(C;'L;C;;')CC C I which follows due to Lemma.
So, Ci'I;C;; ccMC'IC " )C' =1, or C;'I;Cj; €I N Cy =1I.
Thus, I; is upper closed. Conversely, suppose that I = L, & L,, ® I, & I,
with upper closed I;;. Let x be an element of C such that CxC C 1. Express
x =xn+x2+xi24xn with x; € C;;. Then, Cuxi;C; = CiuxCyy C 1T N
C;; = I;. Since I; is upper closed. x;; € I;;, which implies that x € I, or
I is upper closed.

Theorem 5. m; induces a bijection of the set of upper closed ideals of
C to the set of upper closed C;;-C;;-submodules of C,;.

Proof. Let I =1, & L: @& I, @ ., be an upper closed ideal of C,
where I; are all upper closed. We show that I, = C;'I;;Cn} for any i, j,
k and m. For example. suppose that i =k and j #= m. Then. Iin = L;n C
Cl—llIlJCI;_} - CL_Ll(Izm C.i_rr:)cr;.; = C«_le;m Cn_wln (due to the fact ijc.im = Cmm)
= Iim = Lin. So. Iin = Cii'[;Cr} = Ci'I;;Cy} as required. All the other
cases are similarly proven. Thus, all I, and hence I are uniquely deter-
mined by [;;. Conversely, if M;; is an upper closed C;;-C;;-submodule of
Ci. welet Iym = Ci!M;Cr} andlet I =1, @ L, ® I, @ L. 1 is an upper
closed ideal and its projection to the (i, j)-component is M;;.
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