CLOSED IDEALS IN NON-UNITAL MATRIX RINGS Dedicated to Professor Hisao Tominaga on his 60th birthday SHOJI KYUNO, MI-Soo B. SMITH and NOBUO NOBUSAWA Introduction. Closed ideals in a non-unital ring were first introduced in [3] to study the correspondence of ideals in Morita equivalent rings. I be an ideal of a ring R. We say that I is lower closed if RIR = I. Every irreducible ideal of R is lower closed. On the other hand, we say that I is upper closed if $R^{-1}IR^{-1} = I$, where $R^{-1}IR^{-1} = \{x \in R \mid RxR \subseteq I\}$. Every prime ideal is upper closed. Some properties which are usually satisfied by ideals of a unital ring fail for general ideals of a non-unital ring. But, they are satisfied by closed ideals in the above sense. For example, it is well known that there is a one-to-one correspondence between ideals of two Morita equivalent unital rings. This is not true in case of non-unital rings. However, if we restrict to closed ideals, the same property holds. (See Theorem 3 and Theorem 5.) In this paper, we consider two types of matrix rings. One is the total matrix ring over a ring, and the other is a Morita context which is considered as a subring of a matrix ring of 2×2 over a ring. Let R be a non-unital ring, and R_n the total matrix ring of $n \times n$ over R. It is known that an arbitrary ideal of R_n is not necessarily the total matrix ring A_n over an ideal A of R (contrary to the unital ring case). In 2, we show that every closed (lower or upper) ideal of R_n is expressed as A_n with some ideal A of R. Moreover, it will be shown that the ideal of R_n is lower (or upper) closed if and only if A is lower (or upper) closed. we deal with a Morita context ring $C=C_{11}\oplus C_{22}\oplus C_{12}\oplus C_{21}$, where C_{ij} are submodules satisfying that $C_{ij}C_{jk}\subseteq C_{ik}$ and $C_{ij}C_{km}=0$ if $j\neq k$. It is easy to see that C is considered as a subring of a total matrix ring of 2×2 over a ring. Here, we do not assume that C has the identity. However, we have to assume that $C_{12}C_{21}=C_{11}$ and $C_{21}C_{12}=C_{22}$. First, we show that every closed ideal I of C is a Morita context ring $I = I_{11} \oplus I_{22} \oplus I_{12} \oplus I_{21}$, where $I_{ij} = I \cap C_{ij}$ are $C_{ii} \cdot C_{jj}$ -submodules of C_{ij} . We can define upper and lower closed submodules, and we will show that I is lower (or upper closed if and only if all I_{ij} are lower (or upper closed. When there exists an ideal $I=I_{11}\oplus I_{22}\oplus I_{12}\oplus I_{21},$ we say that submodules $I_{11},\ I_{22},\ I_{12}$ and I_{21} correspond to each other via the ideal I. We can show that the correspondence is one-to-one among all upper (or lower) closed submodules. Especially, I_{11} and I_{22} are ideals of C_{11} and C_{22} , and the correspondence between closed ideals is one-to-one. C_{11} and C_{22} are Morita equivalent in a general sense, and the above result is a generalization of the result in case of a unital ring. See [1]. 2. Closed ideals in a total matrix ring. Let R_n be the total matrix ring of $n \times n$ over a non-unital ring R. Let e_{ij} be the matrix units. Note that e_{ij} do not exist in R_n . However, the formal multiplication by e_{ij} will always make sense in the following context. **Proposition 1.** Let I be an ideal of R_n . There exist ideals A and B of R such that $$R_n IR_n \subseteq B_n \subseteq I \subseteq A_n \subseteq R_n^{-1} IR_n^{-1}$$. *Proof.* Let $I(i,j) = | r \in R | r$ appears in the (i,j)-entry of some element of I|. It is clear that I(i,j) is an ideal of R. We have $$(RI(i,j)R)e_{km}\subseteq I,$$ because $(RI(i,j)R)e_{km} = (Re_{ki})I(Re_{jm}) \subseteq R_nIR_n \subseteq I$. Let $A = \sum_{l,i} I(i,j)$. A is an ideal of R, and $I \subseteq A_n$. On the other hand, $R_n A_n R_n \subseteq I$, because $e_{kk}(R_n A_n R_n) e_{mm} = (RAR) e_{km} \subseteq I$ by (1). Therefore, $A_n \subseteq R_n^{-1} I R_n^{-1}$. We obtained $I \subseteq A_n \subseteq R_n^{-1} I R_n^{-1}$. Let B = RAR. Then, $B_n = R_n A_n R_n$. Since $I \subseteq A_n \subseteq R_n^{-1} I R_n^{-1}$, we have $R_n I R_n \subseteq B_n \subseteq I$. The proof of Proposition 1 is completed. From Proposition 1, we can conclude that if I is lower (or upper) closed ideal of R_n , it is the total matrix ring over an ideal of R. **Theorem 1.** Let I be an ideal of R_n . I is upper closed if and only if $I = A_n$ with an upper closed ideal A of R. I is lower closed if and only if $I = B_n$ with a lower closed ideal B of R. *Proof.* First, suppose that I is upper closed. Then, $I = A_n$ with an ideal A as noted above. It is clear that $R_n(R^{-1}AR^{-1})_nR_n \subseteq A_n$. Since A_n is upper closed, we have $(R^{-1}AR^{-1})_n \subseteq A_n$ and $R^{-1}AR^{-1} \subseteq A$. Therefore, $R^{-1}AR^{-1} = A$ and A is upper closed. Conversely, let A be an upper closed ideal of R. We show that A_n is upper closed. Let x be an element of R_n such that $R_nxR_n \subseteq A_n$. Let r_{ij} be an element of R such that $e_{ii}xe_{jj} = r_{ij}e_{ij}$. Then, $(Rr_{ij}R)e_{km}=(Re_{ki})x(Re_{jm})\subseteq A_n$. So, $Rr_{ij}R\subseteq A$. Since A is upper closed, $r_{ij}\in A$. Hence, $x\in A_n$ and A_n is upper closed. Secondly, suppose that I is lower closed. Then, $I=B_n$ with an ideal B. $(RBR)_n=R_nB_nR_n=R_nIR_n=I=B_n$. So, RBR=B and B is lower closed. Conversely, let B be a lower closed ideal of R. Then, $R_nB_nR_n=(RBR)_n=B_n$. Hence, B_n is lower closed. The proof of Theorem 1 is completed. - Corollary. (i) If I is a prime ideal of R_n , then $I = P_n$ with a prime ideal P of R. - (ii) If $x \in R_n x R_n$ for every element x of an ideal I of R_n , then $I = A_n$ with an ideal A of R. - *Proof.* (i) A prime ideal of R_n is upper closed. For, let I be a prime ideal of R_n . Then, $R_n(R_n^{-1}IR_n^{-1})R_n \subseteq I$ implies $R_n^{-1}IR_n^{-1} \subseteq I$. Thus, I is upper closed. Then, $I = P_n$ with an ideal P of R. We want to show that P is prime. Let $CD \subseteq P$ for ideals C and D of R. $C_nD_n = (CD)_n \subseteq P_n = I$ implies $C_n \subseteq I$ or $D_n \subseteq I$. If $C_n \subseteq I = P_n$, then $C \subseteq P$. If $D_n \subseteq I$, then $D \subseteq P$. P is a prime ideal. - (ii) Suppose that the condition of (ii) of Corollary is satisfied. Then, $R_n I R_n = I$, and I is lower closed. So, $I = A_n$ with an ideal A of R. - (i) of Corollary is obtained by Sands [4]. (ii) of Corollary is obtained by Luh [2]. - 3. Closed ideals in a Morita context ring. A subring S of R_2 is called a Morita context ring (or a M. c. ring) if $S = S_{11} \oplus S_{22} \oplus S_{12} \oplus S_{21}$, where $S_{ij} = e_{ii}Se_{jj}$. Thus, S is a M. c. ring if and only if S contains all S_{ij} . Note that $S_{ij}S_{jk}$ is contained in S_{ik} but is not necessarily equal to S_{ik} . S_{ii} are rings, and S_{ij} are $S_{ii}S_{jj}$ -bimodules. In the following, we fix a M. c. ring C, which satisfies the conditions $C_{12}C_{21} = C_{11}$ and $C_{21}C_{12} = C_{22}$. Under this basic assumption, we have $C_{11}C_{12} = C_{12}C_{22}$ and $C_{22}C_{21} = C_{21}C_{11}$. Let I be an ideal of C. I is not necessarily a M. c. ring, and in this direction we have Proposition 2 which is an analogue of Proposition 1. - **Proposition 2.** Let I be an ideal of C. Then, there exist ideals A and B which are M. c. rings such that $CIC \subseteq B \subseteq I \subseteq A \subseteq C^{-1}IC^{-1}$. - *Proof.* Let $A = I_{11} \oplus I_{22} \oplus I_{12} \oplus I_{21}$. A is an ideal of C as well as a M. c. ring. Clearly, $I \subseteq A$. We have $C_{ik}I_{km}C_{mj} \subseteq C_{ik}IC_{mj} \subseteq I$. Hence, $CAC \subseteq I$ and hence $A \subseteq C^{-1}IC^{-1}$. Next, let B = CAC. $B_{ij} = e_{ii}CACe_{jj}$ $\subseteq CAC = B$. So, B is a M. c. ring. Clearly, B is an ideal of C. It is also clear that $CIC \subseteq B \subseteq I$. Proposition 2 implies that a lower (or upper) closed ideal of C is a M. c. ring. **Lemma.** $C_{ij}C_{jk}$ is either C_{ii} or $C_{ii}C_{ik}$. Similarly, $C_{ij}C_{jk}$ is either C_{kk} or $C_{ik}C_{kk}$. *Proof.* If $i \neq j \neq k$, then i = k and $C_{ij}C_{jk} = C_{ij}C_{ji} = C_{ii}$. Otherwise, $C_{ij}C_{jk} = C_{ii}C_{ik}$ due to the fact $C_{12}C_{22} = C_{11}C_{12}$ and $C_{21}C_{11} = C_{22}C_{21}$. The second part is similarly proven. Let M_{ij} stand for a C_{ii} - C_{jj} -submodule of C_{ij} in general. We say that M_{ij} is lower closed if $C_{ii}M_{ij}C_{jj}=M_{ij}$. **Theorem 2.** An ideal I of C is lower closed if and only if $I = I_{11} \oplus I_{22} \oplus I_{12} \oplus I_{21}$ with lower closed I_{ij} . *Proof.* Suppose that I is lower closed. Then, $I = I_{11} \oplus I_{22} \oplus I_{12} \oplus I_{21}$ as above. We want to show that I_{ij} is lower closed. Since I = CIC = C(CIC)C, we have $I_{ij} = \sum\limits_{s,k,m,t} C_{is}C_{sk}I_{km}C_{mt}C_{tj}$. Now, by Lemma, $C_{is}C_{sk}I_{km}C_{mj}C_{jj} \subseteq C_{ti}I_{tj}C_{jj}$. So, $I_{ij} \subseteq C_{ti}I_{ij}C_{jj}$, or I_{ij} is lower closed. Conversely, suppose that $I = I_{11} \oplus I_{22} \oplus I_{12} \oplus I_{21}$ with lower closed I_{ij} . Then, $CIC \supseteq C_{11}I_{11}C_{11} \oplus C_{22}I_{22}C_{22} \oplus C_{11}I_{12}C_{22} \oplus C_{22}I_{21}C_{11} = I$. Thus, CIC = I and I is lower closed. Let π_{ij} be the mapping of the set of ideals of C to the set of C_{ii} - C_{jj} -submodules of C_{ij} such that $\pi_{ij}(I) = e_{ii}Ie_{jj}$. **Theorem 3.** π_{ij} induces a bijection of the set of lower closed ideals of C to the set of lower closed C_{ii} - C_{jj} -submodules of C_{ij} . *Proof.* Let $I = I_{11} \oplus I_{22} \oplus I_{12} \oplus I_{21}$ be a lower closed ideal of C, where I_{ij} are all lower closed. We show that $I_{km} = C_{ki}I_{ij}C_{jm}$ for any i, j, k and m. For example, suppose that i = k and $j \neq m$. Then, $I_{km} = I_{im} \supseteq C_{ii}I_{ij}C_{jm} \supseteq C_{ii}(I_{im}C_{mj})C_{jm} = C_{ii}I_{im}C_{mm} = I_{im} = I_{km}$. Therefore, $I_{km} = C_{ii}I_{ij}C_{jm} = C_{ki}I_{ij}C_{jm}$ as required. All the other cases are similarly proven. Now, $I_{km} = C_{ki}I_{ij}C_{jm}$ implies that I_{km} is uniquely determined by I_{ij} for any k and m. Therefore, I is uniquely determined by I_{ij} . Conversely, let M_{ij} be a lower closed C_{ii} - C_{jj} -submodule of C_{ij} . Let $I_{km} = C_{ki}M_{ij}C_{jm}$. It is easily verified that I_{km} is lower closed. Let $I = I_{11} \oplus I_{22} \oplus I_{12} \oplus I_{21}$. We can show that I is a lower closed ideal. This completes the proof of Theorem 3. In order to discuss the upper closed case, we define the operators C_{ii}^{-1} as follows. Define $C_{ik}^{-1}M_{ij} = \{x \in C_{ki} \mid C_{ik}x \subseteq M_{ij}\}$ and $M_{ij}C_{kj}^{-1} = \{x \in C_{ik} \mid xC_{kj} \subseteq M_{ij}\}$. Now, we say that M_{ij} is upper closed if $C_{ii}^{-1}M_{ij}C_{jj}^{-1} = M_{ij}$. **Theorem 4.** Let I be an ideal of C. I is upper closed if and only if $I = I_{11} \oplus I_{22} \oplus I_{12} \oplus I_{21}$ with upper closed I_{ij} . Proof. First, suppose that I is an upper closed ideal of C. Then, $I = I_{11} \oplus I_{22} \oplus I_{12} \oplus I_{21}$ as above. We want to show that I_{ij} is upper closed. For it, observe that $CC(C_{ii}^{-1}I_{ij}C_{jj}^{-1})CC \subseteq I$ which follows due to Lemma. So, $C_{ii}^{-1}I_{ij}C_{jj}^{-1} \subseteq C^{-1}(C^{-1}IC^{-1})C^{-1} = I$, or $C_{ii}^{-1}I_{ij}C_{jj}^{-1} \subseteq I \cap C_{ij} = I_{ij}$. Thus, I_{ij} is upper closed. Conversely, suppose that $I = I_{11} \oplus I_{22} \oplus I_{12} \oplus I_{21}$ with upper closed I_{ij} . Let x be an element of C such that $CxC \subseteq I$. Express $x = x_{11} + x_{22} + x_{12} + x_{21}$ with $x_{ij} \in C_{ij}$. Then, $C_{ii}x_{ij}C_{jj} = C_{ii}xC_{jj} \subseteq I \cap C_{ij} = I_{ij}$. Since I_{ij} is upper closed, $x_{ij} \in I_{ij}$, which implies that $x \in I$, or I is upper closed. **Theorem 5.** $\pi_{i,j}$ induces a bijection of the set of upper closed ideals of C to the set of upper closed $C_{i,i}$ - $C_{j,j}$ -submodules of $C_{i,j}$. Proof. Let $I = I_{11} \oplus I_{22} \oplus I_{12} \oplus I_{21}$ be an upper closed ideal of C, where I_{ij} are all upper closed. We show that $I_{km} = C_{ik}^{-1}I_{ij}C_{mj}^{-1}$ for any i, j, k and m. For example, suppose that i = k and $j \neq m$. Then, $I_{km} = I_{im} \subseteq C_{ii}^{-1}I_{ij}C_{mj}^{-1} \subseteq C_{ii}^{-1}I_{im}C_{mm}^{-1}$ (due to the fact $C_{mj}C_{jm} = C_{mm}$) $= I_{im} = I_{km}$. So, $I_{km} = C_{ii}^{-1}I_{ij}C_{mj}^{-1} = C_{ik}^{-1}I_{ij}C_{mj}^{-1}$ as required. All the other cases are similarly proven. Thus, all I_{km} and hence I are uniquely determined by I_{ij} . Conversely, if M_{ij} is an upper closed C_{ii} - C_{jj} -submodule of C_{ij} , we let $I_{km} = C_{ik}^{-1}M_{ij}C_{mj}^{-1}$ and let $I = I_{11} \oplus I_{22} \oplus I_{12} \oplus I_{21}$. I is an upper closed ideal and its projection to the (i, j)-component is M_{ij} . ## REFERENCES - [1] S. KYUNO: Nobusawa's gamma rings with right and left unities, Math. Japonica 25 (1980), 179-190. - [2] J. Luh: On the theory of simple Γ -rings, Michigan Math. J. 16 (1969), 65-75. - [3] N. NOBUSAWA: Γ-rings and Morita equivalence of rings, Math. J. Okayama Univ. 26 (1984), 151-156. - [4] A. D. SANDS: Prime ideals in matrix rings, Proc. Glasgow Math. Assoc. 2 (1956), 193 -195. SHOJI KYUNO DEPARTMENT OF MATHEMATICS TOHOKU GAKUIN UNIVERSITY TAGAJO, MIYAGI 985, JAPAN MI-SOO B. SMITH COLLEGE OF ARTS AND SCIENCES CHAMINADE UNIVERSITY OF HONOLULU HONOLULU, HAWAII 96816, U. S. A. NOBUO NOBUSAWA DEPARTMENT OF MATHEMATICS UNIVERSITY OF HAWAII HONOLULU, HAWAII 96822, U. S. A. (Received May 9, 1986)