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RADICALS OF SKEW POLYNOMIAL RINGS
AND SKEW LAURENT POLYNOMIAL RINGS

Dedicated to Professor Hisao Tominaga on his 60th birthday
MicteL FERRERO

Let K be a ring., p an automorphism of K. and D a derivation of K.
We denote by K[X: p] (resp. K(X: p): resp. K[X;D]) the skew
polynomial ring of automorphism type (resp. skew Laurent polynomial ring;
resp. skew polynomial ring of derivation type) over K. We write the
coefficients at right. An element either of K[X : p] or K[X; D] is a poly-
nomial 2%, X',. b, € K, and an element of K(X; p) is of the form

n _.X%, b; € K. The addition is defined as usually and the multipli-

cation is defined by 86X = Xp(b) in K[X: p] and K(X; p), and by bX
= Xb+D(b) in K[X; D], for all b € K.

In ([2], Theorem 3.1) it is proved that the Jacobson radical J(S) of
S =K[X; p] is equal to A @ 3>, X'B, where A =J(S) N K and B=
1b€ K: Xb € J(S)I. A similar result is obtained in ([9], Theorem 3.1)
for the prime radical. The Jacobson radical of R = K{(X; p) is also ob-
tained in ([2], Theorem 3.1). It is proved that J(R) is equal to C{(X; p),
where C = J(R) N K. Finally, in([4], Theorem 3.2) we proved that the
Jacobson radical J(T) of T = K[X: D] is equal to I[X; D], where I =
J(T) N K. A similar result is obtained for the prime radical of T (Corol-
lary 2.2).

The purpose of this paper is to give a generalization of these theorems.
We will give a unified proof of these generalizations for a class of radicals
which includes several of the most well-known radicals, namely, the Brown-
McCoy, Jacobson, Levitzki, prime and strongly prime radicals. We will
use the recent results on normalizing extensions obtained in [8] and [10].
Our proof is an adaptation of the proofs in [2] and [4], which finally are
generalizations of that in [1], to the general case.

We use § 1 as an introductory section. In § 2 we consider the radicals
of K(X; p) and K[X: p]. In § 3 we deal with a skew polynomial ring
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of derivation type. Finally, we devote § 4 to the generalized nil radical of
these rings, a particular case which is not included in the general case.

1. Prerequisites. Let o be a radical in the class of the associative
rings. We remember that the radical ¢ is said to be hereditary if every
ideal of a e-ring is a a-ring again. Equivalently, « is hereditary if and only
if for every ring A and for every ideal I of A, a(I) = a(A) N I. Every
special radical is hereditary ([3], Ch.7). Also every normal class of rings
is a special class [7]. Hence every radical defined by a normal class is
hereditary. Thus all the radicals considered in ([10], § 3) as well as the
strongly prime radical ([8]) are hereditary radicals.

We denote by 7 the upper radical defined by the class of all finite fields.
Thus for every ring A, y(A) = N{I: 1< Aand A/I is a finite field| where
I <<A means that I is an ideal of A. We say that a < y if a(A4) C 7(A)
for every ring A. It is clear that « < y holds for all the radicals «a
mentioned above.

Let A be a normalizing extension of the ring B. Recently some papers
have studied whether the radical o satisfies the condition a(4) N B = a(B)
(see [5], [6], [8] and [10]). This is the key condition for our theorems to
hold. In ([10], § 3) a radical which is defined by a class # of prime rings
is considered and a rigid class is defined. When # is a rigid class and a is
defined by #, i.e., a(lA) = N|I: I < A and A/I € #}, then a(A) N B =
a(B), for every normalizing extension A of B ([10], Proposition 3.3).
Following this we say here that a is a rigid radical in this case, namely,
if ais defined by a rigid class of prime rings. In case that for some radical
a the equation a(A) N B = a(B) holds for any normalizing extension A of
B, we say that ¢ is an admissible radical. Hence all the radicals considered
in ([10], § 3) as well as the strongly prime radical [8] are rigid (and hence
admissible) radicals.

We begin with some elementary facts.

Lemma 1.1, Let Z be the ring of the integer numbers and Z, the prime
field of p elements (p prime). We have y(Z[X]) =0, y(Z{(X)) =0,
Y Z[X]) =0 and (Z,(X)) = 0.

Proof. It is clear since 7y coincides with the Jacobson radical for these

rings.

Lemma 1.2. Let A be a finite Galois extension of B and lel o be
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a radical with a(A) N B = a(B). Then a(A) = Aa(B) = a(B)A.

Proof. Let G be the Galois group and x;, y;, i =1,2,...,n, the
Galois coordinates of A over B. If x € a(A) thenx = 2%, tr(y,x), where
tr{y,x) = Dlsec o{nx) € a(A) N B= a(B). Thus o(A) = Aa(B) and
similarly a(A) = a(B)A.

Corollary 1.3. Let A be an algebra over the commutative ring C and let
B be a commutative Galois extension of C. If a is an admissible radical, then

a(A ® B) = a(A) ®cB.

Proof. Since A ®c B is a Galois extension as well as a normalizing
extension of A, it follows easily from Lemma 1.2.

2. Radicals of K(X; o) and K[X; p]. Throughout this section p is
an automorphism of K, R = K{(X; p) is the skew Laurent polynomial ring
over K and S = K[X : p] is the skew polynomial ring. A p-ideal I of K is
an ideal of K such that p(I) = 1. If I'is a p-ideal of K, then I (X; o) (resp.
I[X; pl) is an ideal of R (resp. S). The automorphism o can be extended
to R (and S) by the natural way. We denote the extension by p again.

Let K* = K ©@ Z be the usual extension of K obtained by adjoining the
identity of Z and p™* the automorphism of K* defined by p*(a, n) = (0(a), n)
for (a,n) € K* Further we put R* = K*(X; p*). Then we have the
following.

Lemma 2.1. Let o be a hereditary radical with a < y. Then
(i) o(R*) = a(R);
(ii) a(R*) N K*= o(R) N K.

Proof. (i) Since K is a p*ideal of K* R is an ideal of R* and
R*/R = Z(X). Thus a«(R*/R) = a(Z(X)) C ¥(Z{(X)) =0 and one
can see that a(R*) ©€ a(R) by ([11], Theorem 1.12). Hence a(R) =
a(R*) N R = afR).

(ii) Since o(R) € K{(X; p) we have a(R*) N K*= o«(R) N K*
=a(R) N K.

Lemma 2.2, Let o be a hereditary admissible radical with o« < y. If
I=a(R)NK=0, then a(R) = 0.

Proof. Assume that a(R) #+ 0 and = 0. By Lemma 2.1 we may
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assume that K has an identity. Since X is invertible in R we may suppose
that there exists a polynomial f= 3., X'a; € a(R) of minimal degree
n=1 (a,#+ 0). We consider two cases.

Case (I): There exists an integer number m such that ma, = 0. Then
mf = 0 and we have pf = 0, for a prime p. Put K, ={a € K: pa = 0}.
Then K, is a p-ideal of K and hence R, = K,{X: p) is an ideal of R.
Since «a is hereditary a(R,) = o(R) N R, and we have that f is a polynomial
of minimal degree n in a(R,).

Then we may suppose that K is a Z,-algebra, for a prime p. Let K' =
K © Z, be the usual extension of K obtained by adjoining the identity of Z,
and o' the automorphism defined by p'a, n) = (p(a), n), for (a,n) € K.
Then one can see that a(R’) = a(R) arguing as in Lemma 2.1, (i), and
so f is a polynomial of minimal degree n in a(R’).

Then we may suppose that K contains the field Z,. Let F, be the field
of ¢ = p™"' elements and put K* = K ®, F; and p*(x ® a) = p(x) ® a,
for all t ® a € K* Thus R* = K*(X: p*) =R ®,, F, and o(R*) =
a(R) ®;, F, by Corollary 1.3. Hence f is a polynomial of minimal
degree n in a(R*). Let 7, 71,.... 72 be n+1 distinet units of F; and o; the
automorphism of R* defined by o(X) = X5, j=0,1,....,n. We have
Sr. Xlant € alR*). So we get X"a,d € a(R*), where d € F, is the
value of the Vandermonde determinant of the matrix (7). Since d is invert-
ible, X™a, € a(R*) and hence a, € a(R¥*), a contradiction.

Case (II) : a, is not a Z-torsion element. In this case we may suppose
that K contains the ring of integers. Let ¢ be a complex primitive (n+1)th
root of the unity, K* = K ®; Z[¢] and p* = p ® idgs. Thus R* =
K*(X; p*) = R ®;, Z[¢] and a(R*) N R= a(R), since R* is a normal-
izing extension of R. Then f € o(R¥*).

Let %o, 1.-.., 72 be n+1 distinct units of Z[{]. As above, we get
X"a,d € a(R*), where d € Z[ ] is the determinant of the matrix (/). Let
0; be the automorphisms of the Galois extension Q[¢] of Q, i=1,...,n.
Since of(d) € Z[£] we have X"an0i(d)---a,(d) € a(R¥*), where m = a,(d)
wal(d) € Z[E] N Q[¢)° = Z. Henceaym € a(R*) N R = a(R), a con-

tradiction since a,m #F 0.

Now we have our first main result.

Theorem 2.3. Let a be a heredilary admissible radical with a < 7.
Then a(R) = I{(X: p), where ] = a(R) N K is a p-ideal of K.
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Proof. Since I is a p-ideal of K, K = K/I has an automorphism
 induced by p and R = K{(X; p) = R/I{X; p). Consider the natural
homomorphism from R to R. Then, as I{X; p) C a(R), a(R) = a(R)/
I{X: p) by an easy consequence of ([11], Theorem 1.12). It follows that

o(R) N K = 0 and from the former Lemma we have a(R) = I{X; p).

Now we consider the skew polynomial ring S = K[X; p). Suppose that
a is a radical defined by a class # of prime rings, i.e., a(4) = N{I T A:
A/I € #}. Define B=|b € K: Xb € a(S)|. Then Bis a p-ideal of K.

Lemma 2.4. Lei o be a hereditary rigid radical with a < y. If B=0,
then a(S) = 0.

Proof. Assume that o(S) # 0. Arguing as in Lemma 2.2 we can see
that there exists a polynomial of the form X"a € o(S), with n =1 and
a+ 0. Suppose n=>2 and X" 'a € a(R). Then there is a prime P in &
such that X" 'a &€ P while X"a € P. Since XS = SX we have XSX™ 'aS
= SX"S C P and so X € P, a contradiction. Thus Xa € 2(R) and so
B=+0.

Theorem 2.5. Let o be a hereditary rigid radical with a < ¥. Then
a(S) = A ® XB[X; o], where A= a(S) N Kand B=1{bE K: Xb €
a(S)].

Proof. It is clear that I = A ® XB[X; p] is an ideal of S and
IC o(S). The ring K = K/B has an automorphism p induced by 0. Put
S=K[X; ] = S/B[X: p] and note that o(S) = 0. In fact, let a € K
and suppose Xa € a(S). If P is a prime ideal with S/P € #, we have
XB[X: p] € a(S) € P. Then either X € P or B[X; p] € P. In this
last case, Xa € P/B[X; p] because S/(P/B[X; p]) = S/P € #. Thus
Xa+B[X; p] € P and so we get Xa € P. Hence Xa € o(S) and it follows
that @ = 0. Then a(S) = 0 from Lemma 2.4.

Now Theorem 1.12 in [11] gives a(S) C€ B[X; p]. If 2, X%, €
2(S), n=1, thenb, € Bfori =1,....,n. We have 2,2, X%, € a(S) and
so by € a(S§8) N K = A. This completes the proof.

Remark 2.6. It is easy to see that a(S) N K C a(K) when o is
a radical defined by a class & of prime rings. In fact, if P is a prime ideal of

Kand K/P € #, then P @ XS is an ideal of Sand S/P ® XS = K/P € &.
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Hence «(S) N K C P.

3. Radicals of K[X; D]. Throughout this section D is a derivation
of Kand T = K[X; D] is the skew polynomial ring of derivation type. We
omit the proofs of the following results because they are very similar to that
in Section 2. In particular, Lemma 3.1 can be proved by the same way as
it is proved Lemma 3.1 in [4]. We have

Lemma 3.1. Let « be a hereditary admissible radical with a < 7. If
I=a(R) N K =0, then a(R) = 0.

Theorem 3.2. Let o be a hereditary admissible radical with o < 7.
Then o(R) = I[X; D], where I = o(R) N K is a D-ideal of K.

4. The Generalized Nil Radical. An ideal P of a ring K is said to be
completely prime if K/P has no zero divisors. The intersection N(K) of all
the completely prime ideals of K is called the generalized nil radical of K
([3], § 7.8). Then N is a special radical and so it is hereditary. Also
N < 7is clear. But N is not an admissible radical. In fact, a field F is
N-semisimple and the full matrix ring M(F), n = 2, is a N-radical ring.
Thus the generalized nil radical cannot be obtained as a consequence of our
theorems. Nevertheless, we can obtain directly similar results. To see
this we denote by N(K) (resp. Ny(K)) the intersection of all the p-ideals
(resp. D-ideals) of K which are also completely prime ideals. We have the
following

Proposition 4.1. Let p be an automorphism of K. Then
(i) NK(X;p)) = NAK)(X; p):
(ii) N(K[X; p]) = N(K) ® XNAK)[X: p].

Proof. (i) Put R=K(X; p). If P is a completely prime ideal
of R, then PN K is a p-ideal as well as a completely prime ideal of K,
because K/P N K € R/P. Then N, (K) € P.and so we get NJ (K )(X ; p) C
N(R). Conversely, if Q is a p-ideal of K which is completely prime, then
R/Q{X; p) = K/Q{X; p) (where p is the automorphism induced by p)
has no zero divisors as it is easy to see. Hence N(R) € Q{(X; p) and so
N(R) S NJAK)(X: o).

(ii) Let S be K[X; p]. If P is a completely prime ideal of S, then
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PN K is a completely prime ideal of K. Hence N(K) € N(S) N K.
Conversely, if @ is a completely prime ideal of K, then Q+ XS is a com-
pletely prime ideal of S since S/Q+XS = K/Q. Thus N(S) N K € Q and
so we get N(S) N K = N(K).

Let now P be a completely prime ideal of S. If X &€ P, since P is
prime. P N K is a p-ideal ([9]. Proposition 1.2) as well as a completely
prime ideal of K. Then we have XN K)[X: p] € P and also N(K) @
XNALK)[X: p] € N(S). On the other hand, suppose that f = >3, X%, €
N(S). Hence f € Q+XS for every completely prime ideal Q of K. It
follows that b, € N(K) C N(S) and so X2, X*'b, € N(S). Further,
if I is a completely prime ideal as well as a p-ideal of K, it can be easily
seen that I[X ; p] is a completely prime ideal of S. Thus X2)%, X* ', €
I[X: p] and hence >3-, X*'b, € I[X; p]. This gives b, € I and so b; €
NJK), for i = 1. The proof is then completed.

Example 4.2. This is an example in which NAK) = N(K). Let E
be a field and A = E[X;: i € Z] a polynomial ring in indeterminates X,,
i € Z. Define p: A > A by p|E=id,; and o(X,) = X,,,, for all i € Z,
and let H be the ideal of A generated by { X;X;: i + J|. Then p induces
an automorphism on the ring K = A/H, which we denote by p again. We
write x;, = X;+H € K and we have x,;x; = 0 if i #+ Jand p(x;) = x,,,, for
all i € Z. We can easily see that N(K) = 0 and N{K) is the ideal of K
generated by lx;: i € Z|. Thus N(K[X: p]) = XQ[X; p].

Finally we have

Proposition 4.3. Let D be a derivation of K. Then NK[X; D]) =
NS(K)[X: D].

Proof. It is similar to Proposition 4.1, (i ).
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