ON HOPF GALOIS EXTENSIONS, AZUMAYA ALGEBRAS AND SKEW POLYNOMIAL RINGS

Dedicated to Professor Hisao Tominaga on his 60th birthday

ATSUSHI NAKAJIMA

In [4], S. Ikehata gave some characterizations of Galois extensions of commutative rings and applied these results to construct Azumaya algebras from skew polynomial rings in [5]. The essential part in his main theorems [5, Theorems 2.2 and 3.3] is to determine *H*-separable polynomials in skew polynomial rings. In this paper, we give a characterization of Hopf Galois extensions which is a generalization of [4, Theorem 2], and show that *H*-separable polynomials in the skew polynomial rings are closely related to the dual Hopf Galois extensions. Moreover we give another examples of *H*-separable polynomials.

Throughout the following, R is a commutative ring with identity 1, and A is a Hopf algebra over R which is a finitely generated projective R-module unless otherwise stated. An R-algebra means a ring extension of R with the same identity 1 such that R is contained in the center. Each \otimes , Hom, etc. is taken over R and each map is R-linear. As for notations and terminologies of Hopf algebras and Hopf Galois extensions used here, we follow $\lceil 1 \rceil$, $\lceil 6 \rceil$ and $\lceil 9 \rceil$.

Let A be a Hopf algebra which is not necessary finitely generated projective R-module. Let S be an R-algebra which is a left A-module. Then $S \otimes S$ and R are left A-modules by the comultiplication Δ and the counit ε of A:

$$a(x \otimes y) = \sum_{(a)} a^{(1)}x \otimes a^{(2)}y$$
 where $\Delta(a) = \sum_{(a)} a^{(1)} \otimes a^{(2)}$

and

$$ar = \varepsilon(a)r$$
.

respectively (a in A, x, y in S and r in R). An R-algebra S is called a left A-module algebra if S is a left A-module such that the structure maps

$$\mu_s : S \otimes S \to S(x \otimes y \mapsto xy)$$
 and $l_s : R \to S(r \mapsto r)$

are left A-module homomorphisms. These conditions say that

$$a(xy) = \sum_{(a)} (a^{(1)}x)(a^{(2)}y)$$
 and $al = \varepsilon(a)1$.

Let T be an R-algebra. T is called an A-comodule algebra if T is a right A-comodule with the structure map $\rho\colon T\to T\otimes A$ such that ρ is an R-algebra homomorphism. For an A-module algebra S and an A-comodule algebra T, we can define the *smash product algebra* S \sharp T which is equal to $S\otimes T$ as R-module but the multiplication given by

$$(s_1 \sharp t_1)(s_2 \sharp t_2) = \sum_{(t_1)} s_1(t_1^{(1)}s_2) \sharp t_1^{(0)}t_2,$$

where $\rho(t_1) = \sum_{(t_1)} t_1^{(0)} \otimes t_1^{(1)}$ is in $T \otimes A$. As is easily seen, S # T is an R-algebra with identity 1 # 1 and the maps

$$i_s: S \to S \sharp T(s \mapsto s \sharp 1), \quad i_\tau: T \to S \sharp T(t \mapsto 1 \sharp t)$$

are R-algebra homomorphisms. Since A is an A-comodule algebra by Δ , we can construct the usual smash product S # A.

Let A be a Hopf algebra. A left A-module algebra S is called an A-Hopf Galois extension of R if S is a finitely generated projective faithful R-module and the map $\phi \colon S \sharp A \to \operatorname{Hom}(S,S)$ defined by $\phi(s \sharp a)(x) = sa(x)$ is an R-algebra isomorphism. Since S is a faithfully flat R-module, S is an A-Hopf Galois extension of R if and only if S is a Galois $A^* = \operatorname{Hom}(A,R)$ -object in the sense of Chase-Sweedler [1, Theorem 9.3]. When this is the case, $S^A = |s|$ in $S | as = \varepsilon(a)s$ for any a in A | is equal to R. For details, we refer to [6].

Definition 1. A Morita context consists of the following data

- (a) R-algebras S and T.
- (b) An (S, T)-bimodule P and a (T, S)-bimodule Q, both centralized by R; i.e., rx = xr for all x in P or Q, r in R.
- (c) An (S, S)-bimodule homomorphism $|\cdot, \cdot|: P \otimes {}_{T}Q \to S$ and a (T, T)-bimodule homomorphism $[\cdot, \cdot]: Q \otimes {}_{S}P \to T$. Given x in P, y in Q, we shall denote the images of $x \otimes y$ and $y \otimes x$, under these mappings, by |x, y| and [y, x], respectively. These mappings will be called *pairings*.
 - (d) The following equations hold for all x, z in P and y, w in Q

$$\{x, y | z = x[y, z], [y, z]w = y|z, w\}.$$

The Morita context will be called *strict* if the pairings { , | and [,] are surjective ([1, Chap. [1, § 8]).

Definition 2. Let S be a left A-module algebra. Assume that $S^A = R$. Let D = S # A, and $Q = D^A = \{w \text{ in } S \# A | (1 \# a)w = \varepsilon(a)w \text{ for } a \in A\}$

any a in $A \mid$, a right ideal in D. Define pairings $\mid \cdot \mid : S \otimes_{R} Q \to D$, $[\cdot, \cdot] : Q \otimes_{D} S \to S^{A} = R$ by the formulae

$$\{x, w\} = (x \sharp 1)w, [w, x] = w(x) (x \text{ in } S \text{ and } w \text{ in } Q),$$

where S is a left D-module via (s # a)(x) = sa(x). Note that the definition of Q guarantees that $[\ ,\]$ is well defined. Then the algebras D and R, the (D,R)-bimodule S, the (R,D)-bimodule Q, and the pairings $|\ ,\ |\ ,\ [\ ,\]$ constitute a Morita context ([1,Definition and Remarks 9.4]).

Lemma 3. Let S be a left A-module algebra, and $S^A = R$. Then the map

$$\alpha$$
: Hom_{S#A} $(S, S \# A) \rightarrow (S \# A)^A$

defined by $\alpha(f) = f(1)$ is an (R, S # A)-bimodule isomorphism, where the right S # A-module structure of $\operatorname{Hom}_{S = A}(S, S \# A)$ is given by (f(s # a))(x) = f(x)(s # a).

Proof. For any a in A and f in $\operatorname{Hom}_{S\#A}(S,S \# A)$, we have (1 # a) $f(1) = f((1 \# a)1) = f(\varepsilon(a)1) = \varepsilon(a)f(1)$ and so α is well defined. Clearly α is one to one and (R,S # A)-bimodule homomorphism. If s # a is in $(S \# A)^A$, then the map $f_{s\#a}$ defined by $f_{s\#a}(x) = (x \# 1)(s \# a)$ is a left S # A-module homomorphism and thus α is an isomorphism. Q. E. D.

Let T be a ring extension of R with the common identity 1. If $T \otimes T$ is isomorphic to a direct summand of a finite direct sum of T as a (T, T)-bimodule, then T is called an H-separable extension of R.

Now, we have the following theorem which is a generalization of [4, Theorem 2].

Theorem 4. Let S be a left A-module algebra. Assume that $S^A = R$. Then the following statements are equivalent.

- (1) S is an A-Hopf Galois extension of R.
- (2) S # A is an Azumaya R-algebra.
- (3) S # A is an H-separable extension of S.
- (4) The Morita context of Definition 2 is strict.

Proof. (1) \Rightarrow (2) follows from definition. (2) \Rightarrow (3). Since S # A is projective left S-module, it follows from [4, Theorem 1]. (3) \Rightarrow (4) \Rightarrow (1). By [4, Lemma], the left S # A-module S is a generator, i.e., the map τ :

112 A. NAKAJIMA

 $S \otimes \operatorname{Hom}_{S=A}(S, S \sharp A) \to S \sharp A$ defined by $\tau(s \otimes f) = f(s)$ is an epimorphism. By Lemma 3, we have the following commutative diagram

Since τ is an epimorphism, $\{\cdot, \cdot\}$ is an epimorphism and by [1, Theorem 8.4], the Morita context defined in Definition 2 is strict. Thus by the same argument as used in the proof of [1, Theorem 9.6], S is an A-Hopf Galois extension of R.

Q.E.D.

Let S be a commutative left A-module algebra over R and R in S^A . Let $R < X_1, ..., X_n >$ be the (non-commutative) free algebra on n-variables. Suppose that $R < X_1, ..., X_n >$ is a right A-comodule algebra. We say that $S[X_1, ..., X_n; A] = S \sharp R < X_1, ..., X_n >$ is a generalized skew polynomial ring of type A. In this definition, we do not assume that A is a finitely generated projective R-module.

Example 5. Let S be a commutative R-algebra. Let σ be an R-algebra automorphism of S and let D be a σ -derivation of S (i.e., D is an R-module endomorphism of S such that $D(xy) = D(x)\sigma(y) + xD(y)$). We set

$$S^{\sigma} = \{s \text{ in } S \mid \sigma(s) = s\}, S^{D} = \{s \text{ in } S \mid D(s) = 0\}.$$

Then R is contained in $S^{\sigma} \cap S^{p}$. Let $R[\sigma, D]$ be the commutative free R-algebra on variables σ , D which has coalgebra structure maps and antipode as follows:

$$\begin{array}{lll} \varDelta(\sigma^i) \ = \ \sigma^i \otimes \ \sigma^i, \quad \varepsilon(\sigma^i) = 1, \quad \lambda(\sigma^i) = \sigma^{-i}, \\ \varDelta(D^i) = (D \otimes \sigma + 1 \otimes D)^i, \quad \varepsilon(D^i) = 0 \quad \text{and} \quad \lambda(D^i) = (-D\sigma^{-1})^i. \end{array}$$

As is easily seen, $R[\sigma, D]$ is a Hopf algebra and S is a left $R[\sigma, D]$ -module algebra. Let R[X] be the polynomial ring over R. Define an R-linear map $\rho \colon R[X] \to R[X] \otimes R[\sigma, D]$ by

$$\rho(X^i) = (X \otimes \sigma + 1 \otimes D)^i.$$

Then R[X] is a right $R[\sigma, D]$ -comodule algebra. Let $S[X; \sigma, D]$ be the skew polynomial ring in which the multiplication is given by

$$Xs = \sigma(s)X + D(s)$$
 (s in S),

(cf. [3]). We define a map ψ : $S \sharp R[X] \to S[X; \sigma, D]$ by $\psi(\sum s_i \sharp X^i) = \sum s_i X^i$. Then it is easy to check that ψ is an R-algebra isomorphism. Therefore the skew polynomial ring $S[X; \sigma, D]$ is a special case of our generalized skew polynomial ring.

In the following, we denote $R[\sigma, 0]$ (resp. R[1, D]) by $R[\sigma]$ (resp. R[D]). When this is the case, we also denote $S[X; \sigma, 0]$ (resp. S[X; 1, D]) by $S[X; \sigma]$ (resp. S[X; D]), which is called the *skew polynomial* ring of automorphism (resp. derivation) type.

A Hopf algebra A is called a *free Hopf algebra* if there exists a (noncommutative) free R-algebra $R < X_1, \ldots, X_n >$ with Hopf algebra structure such that A is isomorphic to $R < X_1, \ldots, X_n >$ as Hopf algebras. If A is a finitely generated free Hopf algebra, then there exist polynomials h_1, \ldots, h_m in $R < X_1, \ldots, X_n >$ such that A is isomorphic to $R < X_1, \ldots, X_n > /(h_1, \ldots, h_m)$ as Hopf algebras. Since this Hopf algebra isomorphism is an A-comodule algebra isomorphism, $S \not\equiv A$ is isomorphic to $S \not\equiv R < X_1, \ldots, X_n > /(h_1, \ldots, h_m)$ as R-algebras for any left A-module algebra S. Thus by Theorem 4, we have the following theorem (cf. [5, Theorems 2.2 and 3.3]).

Theorem 6. Let A be a free Hopf algebra and let S be an R-algebra. Assume that S is a left A-module algebra such that $S^A = R$. Then the following statements are equivalent.

- (1) A is a finitely generated free Hopf algebra and S is an A-Hopf Galois extension of R.
- (2) There exist polynomials $g_1,...,g_m$ in $R < X_1,...,X_n >$ satisfying the following conditions:
 - (a) $R < X_1, ..., X_n > /(g_1, ..., g_m) \cong A$ as right A-comodule algebras.
 - (b) $S \ddagger R < X_1, ..., X_n > /(g_1, ..., g_m)$ is an Azumaya algebra.
- (3) There exist polynomials $h_1,...,h_m$ in $R < X_1,...,X_n >$ satisfying the following conditions:
 - (a) $R < X_1, ..., X_n > /(h_1, ..., h_m) \cong A$ as right A-comodule algebras.
 - (b) $S \sharp R < X_1,...,X_n > /(h_1,...,h_m)$ is an H-separable extension of S.

Let A be a Hopf algebra which is not necessary finitely generated projective R-module. Let $R[X_1,...,X_n]$ be the polynomial ring on n-variables which is a right A-comodule algebra, and let $\{f_1,...,f_m\}$ be monic polynomi-

114 A. NAKAJIMA

als in $R[X_1,...,X_n]$. A set $|f_1,...,f_m|$ is called a set of comodule polynomials if the ideal generated by $|f_1,...,f_m|$ is a right A-subcomodule in $R[X_1,...,X_n]$. Let S be a left A-comodule algebra over R. A set of comodule polynomials $|f_1,...,f_m|$ in $R[X_1,...,X_n]$ is said to be H-separable in $S[X_1,...,X_n;A]$ if $S[X_1,...,X_n;A]/(f_1,...,f_m)$ is an H-separable extension of S.

Let A be a Hopf algebra, S an A^* -comodule algebra and T an A-comodule algebra. In [2], J. Gamst and K. Hoechsman defined a smash product $S \ \sharp \ T$ as follows: As an R-module $S \ \sharp \ T$ equals to $S \otimes T$ and the product is defined by

$$(s_1 \sharp t_1)(s_2 \sharp t_2) = \sum_{(s_2)(t_1)} s_1 s_2^{(0)} \langle s_2^{(1)}, t_1^{(1)} \rangle \otimes t_1^{(0)} t_2,$$

where ρ_S : $S \to S \otimes A^*$ (resp. ρ_T : $T \to T \otimes A$) is defined by $\rho_S(s_2) = \sum_{(s_2)} s_1^{(0)} \otimes s_2^{(1)}$ (resp. $\rho_T(t_1) = \sum_{(t_1)} t_1^{(0)} \otimes t_1^{(1)}$) and $\langle \cdot, \cdot \rangle$: $A^* \otimes A \to R$ is the evaluation. Since S is an A^* -comodule algebra, S is an A-module algebra by $as = \sum_{(s)} \langle s^{(1)}, a \rangle s^{(0)}$. When this the case, we can construct our smash product S # T, which is equal to that of [2].

Theorem 7. Let S be a commutative A-Hopf Galois extension of R. If $\{f_1,...,f_m\}$ is a set of comodule polynomials in $R[X_1,...,X_n]$ such that $R[X_1,...,X_n]/(f_1,...,f_m)$ is an A^* -Hopf Galois extension of R, then $\{f_1,...,f_m\}$ is H-separable in $S[X_1,...,X_n; A]$.

Proof. By [2, Theorem 1], $S \# R[X_1,...,X_n]/(f_1,...,f_m)$ is an Azumaya R-algebra and so by [4, Theorem 1], $S \# R[X_1,...,X_n]/(f_1,...,f_m)$ is an H-separable extension of S. Since $S \# R[X_1,...,X_n]/(f_1,...,f_m)$ is isomorphic to $S[X_1,...,X_n; A]/(f_1,...,f_m)$, $|f_1,...,f_m|$ is H-separable in $S[X_1,...,X_n; A]$. Q. E. D.

Example 8. Let R be a commutative algebra over the prime field GF(2). Define a commutative Hopf algebra $A = R[\sigma, D]$ by

algebra structure: $\sigma^4=1$ and $D^2=\sigma^2+1$, coalgebra structure: $\Delta(\sigma)=\sigma\otimes\sigma$, $\Delta(D)=D\otimes\sigma+1\otimes D$, $\varepsilon(\sigma)=1$ and $\varepsilon(D)=0$, antipode: $\lambda(\sigma)=\sigma^{-1}(=\sigma^3)$ and $\lambda(D)=D\sigma^{-1}$.

Let R[X, Y] be the polynomial ring on two variables. Define a map ρ : $R[X, Y] \to R[X, Y] \otimes A$ by

$$\rho(X) = X \otimes \sigma, \ \rho(Y) = Y \otimes \sigma + 1 \otimes D \text{ and } \rho(X^i Y^i) = \rho(X)^i \rho(Y)^i.$$

Then R[X, Y] is a right A-comodule algebra via ρ . When this is the case, the ideal generated by X^4+1 and Y^2+X^2+1 is a right A-subcomodule in R[X, Y]. Since $R[X, Y]/(X^4+1, Y^2+X^2+1)$ is isomorphic to $R[\sigma, D]$ as $R[\sigma, D]$ -comodule algebras and $R[\sigma, D]$ is a Galois $R[\sigma, D]$ -object by [1, Proposition 9.1], i.e., $R[X, Y]/(X^4+1, Y^2+X^2+1)$ is a $R[\sigma, D]^*$ -Hopf Galois extension of R, the pair of polynomials $[X^4+1, Y^2+X^2+1]$ satisfies the condition in Theorem 7. Moreover if S is a commutative $R[\sigma, D]$ -Hopf Galois extension of R, then by Theorem 6, $S \# R[X, Y]/(X^4+1, Y^2+X^2+1) \cong S[X, Y; \sigma, D]/(X^4+1, Y^2+X^2+1)$ is Azumaya R-algebra.

Theorems 6 and 7 give some information in relation to Hopf algebras, H-separable polynomials in skew polynomial rings and Azumaya algebras. Under suitable conditions, H-separable polynomials in $S[X; \sigma]$ (resp. S[X; D]) were completely determined by S. Ikehata [5]. There are closely related to A^* -Hopf Galois extension of R, where $A = R[\sigma]$ or A = R[D].

Now let A be a Hopf algebra which is not necessary finitely generated projective R-module. Let S be a commutative A-module algebra such that $S^A = R$. Let f(X) be a monic polynomial in R[X] such that S[X; A]f(X) = f(X)S[X; A].

Automorphism type. Assume that σ is an R-algebra automorphism of S and $A=R[\sigma]$. If f(X) is H-separable in $S[X;\sigma]$, then by [5], Theorem 2.1], the order of σ is m and $f(X)=X^m+r$, where r is invertible in R. When this is the case, $R[X]/(X^m+r)$ has an $R[\sigma]$ -comodule structure map $\rho\colon R[x]\to R[x]\otimes R[\sigma]$ defined by $\rho(x)=x\otimes \sigma$, where $x=X+(X^m+r)$. As is easily checked, ρ induces an R-algebra isomorphism $R[x]\otimes R[x]\cong R[x]\otimes R[\sigma]$, which shows that R[x] is an $R[\sigma]^*$ -Hopf Galois extension of R (cf. [1], Chapter [1], [1], [1]

Derivation type. Let R be a commutative algebra over the prime field GF(p). Assume that D is a derivation of S and A = R[D]. If f(X) is H-separable in S[X; D], then by [5, Lemma 1.6 and Theorem 3.3],

$$f(X) = X^{\rho e} - u_{e-1} X^{\rho e-1} - \dots - u_1 X^{\rho} - u_0 X - u_{-1} (u_i \text{ in } R)$$

and $f(D) = -u_{-1}$. Define a map $\rho: R[x] \to R[x] \otimes R[D]$ by $\rho(x) = x \otimes 1 + 1 \otimes D$, where x = X + (f(X)). Then we can check that ρ gives an R[D]-comodule structure on R[x] and induces an R-algebra isomorphism $R[x] \otimes R[x]$

116

 $R[x] \cong R[x] \otimes R[D]$, which shows that R[x] is an $R[D]^*$ -Hopf Galois extension of R (cf. [8, Theorem 1.3]). Under the above assumptions and notations, we get the following

Theorem 9. If f(X) is H-separable in $S[X; \sigma]$ (resp. S[X; D]), then R[X]/(f(X)) is an $R[\sigma]^*$ (resp. $R[D]^*$)-Hopf Galois extension of R.

By [1, Chapter I, § 4], [8, Theorem 1.4], [2] and [5, Theorems 2.1 and 3.1], we have the converse case of Theorem 9.

Theorem 10. Let f(X) be a monic polynomial in R[X].

- (1) If σ is of order m and if R[X]/(f(X)) is an $R[\sigma]^*$ -Hopf Galois extension of R, then for any $R[\sigma]$ -Hopf Galois extension S of R, $f(X)S[X; \sigma] = S[X; \sigma]f(X)$ and f(X) is H-separable in $S[X; \sigma]$.
- (2) Let R be a commutative algebra over the prime field GF(p). If $D^{\rho e}-u_{e-1}D^{\rho e-1}-\cdots-u_1D^{\rho}-u_0D=0$ (u_i in R) and if R[X]/(f(X)) is an $R[D]^*$ -Hopf Galois extension of R, then for any R[D]-Hopf Galois extension S of R, f(X)S[X; D]=S[X; D]f(X) and f(X) is H-separable in S[X; D].

Remark 11. In the skew polynomial rings of automorphism type and derivation type, the following hold by [3, Corollary 1.5 and Lemma 1.6]. Let f(X) be in $S[X; \xi]$ and $f(X)S[X; \xi] = S[X; \xi]f(X)$, where $\xi = \sigma$ or $\xi = D$. Then, f(X) is in R[X] when f(X) is in $S[X; \sigma]$ and S is a semiprime ring, or when f(X) is in S[X; D]. Thus the assumption that f(X) is contained in R[X] in Theorem 10 is reasonable.

Finally we give the following example which is an H-separable polynomial of another case.

Example 12. Let R be a commutative algebra over the prime field GF(p). Let u be a fixed element in R and $H(u, p^e)$ the Hopf algebra defined in [7], that is, $H(u, p^e)$ has an R-free basis $1, D, \ldots, D^{p^e-1}$ and a Hopf algebra structure is given by the following;

```
algebra structure: D^{\rho e}=0, coalgebra structure: \Delta(D)=D\otimes 1+1\otimes D+uD\otimes D, \varepsilon(D)=0, antipode: \lambda(D)=\sum_{i=0}^{\rho e-1}(-1)^{i}u^{i-1}D^{i}.
```

For a polynomial ring R[X], we define an R-module homomorphism ρ : R[X]

 $ightharpoonup R[X] \otimes H(u, p^e)$ by $\rho(X^i) = (X \otimes \sigma + 1 \otimes D)^i$, where $\sigma = 1 + uD$. Then it is easy to see that R[X] is a right $H(u, p^e)$ -comodule algebra by ρ . Let S be an $H(u, p^e)$ -module algebra over R. Since $\Delta(\sigma) = \sigma \otimes \sigma$, $\varepsilon(\sigma) = 1$ and $\Delta(D) = \sigma \otimes D + D \otimes 1$, D is a σ -derivation on S and thus we can construct the skew polynomial ring $S[X; \sigma, D]$. Then by

$$X^{pi}s = \sigma^{pi}(s)X^{pi} + D^{pi}(s) (s \text{ in } S),$$

we have $X^{pe}s = sX^{pe}$. Moreover $S \# H(u, p^e)$ is canonically isomorphic to $S[X; \sigma, D]/X^{pe}S[X; \sigma, D]$ as R-algebras. Therefore if S is an $H(u, p^e)$ -Hopf Galois extension of R, then $S[X; \sigma, D]/X^{pe}S[X; \sigma, D]$ is an Azumaya R-algebra and by [4, Theorem 1], $S[X; \sigma, D]/X^{pe}S[X; \sigma, D]$ is an H-separable extension of S. This shows that X^{pe} is an H-separable polynomial in $S[X; \sigma, D]$. When this is the case, $R[X]/(X^{pe})$ is also an $H(u, p^e)^*$ -Hopf Galois extension of R. Finally we note that if we set $\theta = D - uD$, then θ is also a σ -derivation and we can prove that $S[X; \sigma, \theta]/(X^{pe}-1)$ $S[X; \sigma, \theta]$ is Azumaya R-algebra. Thus $X^{pe}-1$ is H-separable in $S[X; \sigma, \theta]$.

References

- [1] S. U. CHASE and M. E. SWEEDLER: Hopf Algebras and Galois Theory, Lecture Notes in Math. 97, Springer-Verlag, Berlin, 1969.
- [2] J. GAMST and K. HOECHSMANN: Quaternions generalises, C. R. Acad. Sci. Paris, 269 (1969), 560-562.
- [3] S. IKEHATA: On separable polynomials and Frobenius polynomials in skew polynomial rings, Math. J. Okayama Univ. 22 (1980), 115-129.
- [4] S. IKEHATA: A note on Azumaya algebras and H-separable extensions, Math. J. Okayama Univ. 23 (1981), 17-18.
- [5] S. IKEHATA: Azumaya algebras and skew polynomial rings, Math. J. Okayama Univ. 23 (1981), 19-32.
- [6] H. F. KREIMER and M. TAKEUCHI: Hopf algebras and Galois extensions of an algebra, Indiana Univ. Math. J. 30 (1981), 675-692.
- [7] A. NAKAJIMA: A certain type of commutative Hopf Galois extensions and their groups, Math. J. Okayama Univ. 24 (1982), 137-152.
- [8] A. NAKAJIMA: P-polynomials and H-Galois extensions, J.Alg. 110(1987), 124-133.
- [9] M. E. SWEEDLER: Hopf Algebras, Benjamin, New York, 1969.

OKAYAMA UNIVERSITY
OKAYAMA 700, JAPAN

(Received March 12, 1986)