PRIMITIVE ELEMENTS OF CYCLIC EXTENSIONS OF COMMUTATIVE RINGS

Dedicated to Professor Hisao Tominaga on his 60th birthday

I SAO KIKUMASA and TAKASI NAGAHARA

Throughout this paper, A will mean a commutative ring with identity element 1 which is an algebra over a finite prime field GF(p), and all ring extensions of A will be assumed with identity element 1, the identity element of A. Moreover, B will mean a Galois extension of A with a cyclic Galois group $G = \langle \sigma \rangle$ generated by σ of order p^n , which will be called a cyclic p^n -extension of A (with a Galois group G). If B is generated by a single element z over A then we say that B/A has a primitive element and z is a primitive element for B/A.

This paper is about the existness of primitive elements for cyclic p^n -extensions. In [2], K. Kishimoto made a study on primitive elements for cyclic 2^2 -extensions. In §1, we shall present a sharpening of [2] and some generalizations. In §2, we shall give some applications and generalizations of the results of §1 to cyclic p^n -extensions with $p \ge 2$ and $n \ge 1$.

In what follows, given a Galois extension S/R with a Galois group G, we shall use the following conventions: For any subring T of S and any subgroup H of G,

- 1) $\mathfrak{M}(T) = \{M; M \text{ is a maximal ideal of } T\},$
- 2) $G(T) = \{ \sigma \in G; \ \sigma(a) = a \text{ for all } a \in T \},$
- 3) $S(H) = \{a \in S; \ \sigma(a) = a \text{ for all } \sigma \in H\},$
- 4) $t_{\text{H}}(a) = \sum_{\sigma \in \text{H}} \sigma(a)$ for each $a \in T$, which will be called the H-trace of a. Moreover, for any set V and its subset W,
 - 5) |V| = the cardinal number of V,
 - 6) $V \setminus W =$ the complement of W in V.

Now, we shall here consider a cyclic p^n -extension B/A with a Galois group $G = \langle \sigma \rangle$. Then, there exists an element a in B whose G-trace is 1 ([1, Lemma 1.6]). If, in particular, |G| = p then there exists an element b in B such that $\sigma(b) = b+1$. When this is the case, there holds that B = A[b] and $t_G(b) = 0$ if p > 2 ([7, Theorem 1.2]). Such an element b will be called a σ -generator of B/A (cf. [2]). In case |G| = 2, an element c in B is a σ -generator of B/A if and only if $t_G(c) = 1$.

1. On primitive elements of cyclic 2²-extensions. In this section, we shall discuss the case p=2 and n=2, i.e., $|\langle \sigma \rangle|=4$. Throughout this section, H will mean a subgroup of G generated by σ^2 , i.e., $H=\langle \sigma^2 \rangle$. Moreover we put T=B(H) and $\sigma|T=\bar{\sigma}$.

First, we shall prove the following theorem which contains the result of K. Kishimoto [2, Lemma 1].

Theorem 1. The following conditions are equivalent.

- (a) There exists a primitive element for B/A whose G-trace is zero.
- (b) There exists an invertible element of T whose $\langle \bar{\sigma} \rangle$ -trace is 1.

Proof. (a) \Rightarrow (b). Let B = A[z] and $t_G(z) = 0$, and set $b = z + \sigma(z)$. Then, we have $\sigma^2(b) = b$. This implies that $b \in T$ and $b + \sigma(b) \in A$. By [4, Theorem 3.3], b and $b + \sigma(b) = z + \sigma^2(z)$ are invertible in B. Hence $x = b(b + \sigma(b))^{-1}$ is an invertible element of T and $t_{\langle \overline{\sigma} \rangle}(x) = 1$.

(b) \Rightarrow (a). Let x be an invertible element of T whose $\langle \bar{\sigma} \rangle$ -trace is 1. Then, $\sigma(x) = x+1$. Hence we have T = A[x] by [7, Theorem 1.2]. Since B is a Galois extension of A, there exists an element y in B such that $t_{\mathcal{G}}(y) = 1$. Put

$$b = x^2 + x$$
 and $z = xy + x\sigma(y) + \sigma(xy + x\sigma(y))$.

Then, since x is invertible, $\sigma(x) = x+1$ is also invertible and so is $b = x\sigma(x)$. Moreover, since $t_G(y) = 1$, we have $\sigma^2(z) = z+1$. Hence B = T[z]. Further,

$$z + \sigma(z) = xy + x \sigma(y) + \sigma^{2}(xy + x \sigma(y))$$

= $xt_{G}(y) = x$.

Hence we have $\sigma(z) = z + x$. Then we obtain $\sigma(z^2 + z + xb) = z^2 + z + xb$. Therefore, it follows that $c = z^2 + z + xb \in A$, and $x = (z^2 + z + c)b^{-1} \in A[z]$. This implies that A[z] = A[z, x] = T[z] = B. Moreover, noting $\sigma(z) = z + x$ and $\sigma(x) = x + 1$, we have $t_{\sigma}(z) = 0$.

Corollary 2. Let x be an invertible element of T with $t_{(\bar{\sigma})}(x) = 1$ and y an element of B with $t_{\sigma}(y) = 1$. Then

$$z = xy + x \sigma^{2}(y) + \sigma(y) + \sigma^{2}(y)$$

is a primitive element for B/A whose G-trace is zero and so is z+a for any $a \in A$. Moreover

$$z_1 = xy + x\sigma^2(y) + \sigma(y) + \sigma^2(y^2) + y + y^2$$

is also an element which has this property.

Proof. The first part is shown in the proof of Theorem 1. Moreover, it is clear that A[z+a] = A[z] = B and $t_c(z+a) = t_c(z) = 0$ for any $a \in A$. Since $t_c(y) = 1$ and

$$z + z_1 = y + \sigma^2(y) + y^2 + \sigma^2(y^2),$$

$$\sigma(z + z_1) = (\sigma(y) + \sigma^3(y)) + (\sigma(y^2) + \sigma^3(y^2))$$

$$= (y + \sigma^2(y) + 1) + (y^2 + \sigma^2(y^2) + 1)$$

$$= z + z_1.$$

Hence, $z+z_1$ is in A and $z_1=z+b$ for some $b\in A$. This shows the last part.

Remark 1. Assume that there is an invertible element x in T whose $\langle \bar{\sigma} \rangle$ -trace is 1. Then, for any element y of B whose G-trace is 1, we set

$$b = x^2 + x$$
, $z = xy + x\sigma(y) + \sigma(xy + x\sigma(y))$, $c = z^2 + z + xb$ and $f = (X - z)(X - \sigma(z))(X - \sigma^2(z))(X - \sigma^3(z))$.

Then, noting $\sigma(z) = z + x$, we have

$$f = X^4 + (b+1)X^2 + bX + (b^3 + bc + c^2)$$

and $B = A[z] \cong A[X]/(f)$ by [4, Theorems 3.3 and 3.4]. Clearly $\{1, z, z^2, z^3 | \text{ is a linearly independent } A\text{-basis for } B$.

Next, for the z_1 in Corollary 2, we set $a = z_1 + z$ ($\in A$), and

$$f_1 = (X-z_1)(X-\sigma(z_1))(X-\sigma^2(z_1))(X-\sigma^3(z_1)).$$

Then

$$f_1 = X^4 + (b+1)X^2 + bX + (b^3 + b(c+a^2+a) + (c+a^2+a)^2)$$

and $B = A[z_1] \cong A[X]/(f_1)$. This primitive element z_1 for B/A and the polynomial f_1 are of K. Kishimoto's type in [2, Lemma 1].

Next, we shall present an alternative proof of [2, Lemma 2] which is simple.

Lemma 3 ([K. Kishimoto]). Assume that B/A has a primitive element. Then, given $M \in \mathfrak{M}(A)$, if A/M = GF(2) then T/TM = GF(4). Proof. Let $M \in \mathfrak{M}(A)$ and A/M = GF(2). Moreover, let x and z be primitive elements for T/A and B/A, respectively. Then B/BM is a cyclic 2^2 -extension of A/M with a Galois group $\langle \rho \rangle$ where ρ is the automorphism of B/BM induced by σ . We set r = x + BM and s = z + BM in B/BM. Then B/BM = GF(2)[s] and $(B/BM)(\rho^2) = T/TM = GF(2)[r]$. We shall here assume that $r^2 - r = 0$, i.e., $r^2 = r$. Then, noting [GF(2)[r]:GF(2)] = 2, we have $T/TM = GF(2)r \oplus GF(2)(1-r)$. Hence the units of T/TM are only 1. Clearly $s + \rho^2(s) \in T/TM$. By [4, Theorem 3.3], $s + \rho^2(s)$ is a unit in B/BM, and so is in T/TM. Hence $s + \rho^2(s) = 1$, which implies that $t\langle \rho \rangle(s) = 0$. Thus, by Theorem 1, there exists a unit t in T/TM such that $t + \rho(t) = 1$. For t = 1, we have $t + \rho(t) = 0$, and this is a contradiction. Hence $r^2 - r \neq 0$, and so, $r^2 - r = 1$. Since $f = X^2 + X + 1$ is irreducible over GF(2), $GF(4) = GF(2)[X]/(f) \cong GF(2)[r]$.

Now, we define here three sets \mathfrak{M}_0 , \mathfrak{M}_1 and \mathfrak{M}'_1 as follows:

$$\mathfrak{M}_0 = |M \in \mathfrak{M}(A); TM \in \mathfrak{M}(T)|,$$
 $\mathfrak{M}_1 = |N \in \mathfrak{M}(T); BN \in \mathfrak{M}(B)|$ and
 $\mathfrak{M}_1' = |N \in \mathfrak{M}(T); N \cap A \in \mathfrak{M}_0|.$

We will often use the sets in the rest of this section.

Lemma 4. (i) If
$$N \in \mathfrak{M}(T)$$
 then $N \cap \sigma(N) = T(N \cap A)$ and $|N' \in \mathfrak{M}(T); N \cap A \subset N'| = |N, \sigma(N)|.$

- (ii) For $N \in \mathfrak{M}(T)$, there holds $N \in \mathfrak{M}'_1$ if and only if $\sigma(N) = N$; and hence $N \in \mathfrak{M}'_1$ if and only if $\sigma(N) \neq N$.
 - (iii) $\mathfrak{M}'_1 = |TM; M \in \mathfrak{M}_0| \subset \mathfrak{M}_1.$

Proof. (i) Set
$$N_0=N\cap\sigma(N)$$
 and $M_0=N\cap A$. Then, since
$$\sigma(N_0)=N_0 \ \ {\rm and} \ \ \sigma(TM_0)=TM_0,$$

 T/N_0 and T/TM_0 are Galois extensions over the field A/M_0 of order 2. Hence,

$$\lceil T/N_0 : A/M_0 \rceil = \lceil T/TM_0 : A/M_0 \rceil = 2.$$

Moreover, since $TM_0 \subset N_0$, we have a natural A/M_0 -homomorphism of T/TM_0 to T/N_0 . Therefore, $T/TM_0 = T/N_0$ and $TM_0 = N_0$. This shows the first equality.

For any
$$N' \in \{N' \in \mathfrak{M}(T) : N \cap A \subset N'\}$$
,

$$N\sigma(N) \subset N \cap \sigma(N) = T(N \cap A) \subset N'$$
.

Thus $N \subset N'$ or $\sigma(N) \subset N'$ because N' is a prime ideal of T. Hence we have N = N' or $\sigma(N) = N'$ by maximality. This implies that

$$|N' \in \mathfrak{M}(T): N \cap A \subset N'| \subset \{N, \sigma(N)\}.$$

The converse inclusion is trivial.

(ii) Let N be an element of $\mathfrak{M}(T)$. Assume that $N \in \mathfrak{M}'_1$. Then, by (i), $N \cap \sigma(N) = T(N \cap A) \in \mathfrak{M}(T)$. Hence, by maximality,

$$N \cap \sigma(N) = N$$
 and $N \cap \sigma(N) = \sigma(N)$.

It follows therefore that $\sigma(N) = N$.

Conversely, assume that $\sigma(N) = N$. Then, by (i),

$$T(N \cap A) = N \cap \sigma(N) = N \in \mathfrak{M}(T).$$

Thus we obtain $N \in \mathfrak{M}'_1$.

(iii) By (i) and (ii), we can easily see that $\mathfrak{M}'_1 = |TM; M \in \mathfrak{M}_0|$. Let N be any element of \mathfrak{M}'_1 . Then, N = TM for some $M \in \mathfrak{M}_0$. Since $TM \in \mathfrak{M}(T)$, T/TM is a field. Thus, by [7, Theorem 1.8], B/BM is also a field. Hence

$$BN = B \cdot TM = BM \in \mathfrak{M}(B)$$
.

This implies that $N \in \mathfrak{M}_1$ and so $\mathfrak{M}_1' \subset \mathfrak{M}_1$.

Theorem 5. Assume that $|\mathfrak{M}(A)\backslash\mathfrak{M}_0|$ is finite and T/TM = GF(4) for any $M \in \mathfrak{M}(A)$ such that A/M = GF(2). Then, there exists an invertible element y in T with $t_{\langle \tilde{\sigma} \rangle}(y) = 1$. Therefore B/A has a primitive element.

Proof. First, we shall show that there exists an element y in T such that $y + \sigma(y) = 1$ and $y \in N$ for all $N \in \mathfrak{M}(T) \setminus \mathfrak{M}'_1$. Since $|\mathfrak{M}(A) \setminus \mathfrak{M}_0|$ is finite, so is $|\mathfrak{M}(T) \setminus \mathfrak{M}'_1|$. Hence by Lemma 4, we can put

$$\mathfrak{M}(T) \setminus \mathfrak{M}'_1 = \{N_{11}, N_{12}, N_{21}, N_{22}, ..., N_{t1}, N_{t2}\}$$

where $\sigma(N_{i1})=N_{i2}$ (i=1,2,...,t) and $N_{j1}\neq N_{i1},N_{i2}$ for $j\neq i$. Moreover, set

$$M_i = A \cap N_{i1} (i = 1, 2, ..., t).$$

Then, if $i \neq j$ then $M_i \neq M_j$. Indeed, if $M_i = M_j$ for some $i \neq j$ then

$$N_{i1} \cap A = N_{i1} \cap A \subset N_{i1}$$
 and $\subset N_{i1}$.

Since $N_{J_1} \neq \sigma(N_{t_1})$, this is a contradiction by Lemma 4(i). Therefore, for $I = \bigcap_{i=1}^t M_i$, $A/I = A/M_1 \oplus A/M_2 \oplus \cdots \oplus A/M_t$. Since all A/M_i are fields, there exists a set of orthogonal idempotents $|\bar{e}_1, \bar{e}_2, \ldots, \bar{e}_t|$ in A/I such that

$$\bar{1} = \bar{e}_1 + \bar{e}_2 + \cdots + \bar{e}_r$$

 $e_i \in A$, $e_i \notin M_i$ and $e_j \in M_i$ $(j \neq i)$. Moreover, by our assumption, A/M_i is a field such that $A/M_i \neq GF(2)$. Indeed, if $A/M_i = GF(2)$ then $T/TM_i = GF(4)$. This means that $TM_i \in \mathfrak{M}(T)$ and $N_{i1} \in \mathfrak{M}'_i$. This is a contradiction. Hence, there exists an element a_i of A such that $a_ie_i \neq e_i$ and a_ie

$$(a_i^2 + a_i)e_i \neq 0 \pmod{M_i}$$

Now, for an element x in T with $t_{\langle \bar{\sigma} \rangle}(x) = 1$, we define an element y in T as follows:

If $x \in N_{ik}$ for all i and k then y = x (in this case, it is clear that $y + \sigma(y) = 1$ and $y \in N$ for all $N \in \mathfrak{M}(T) \setminus \mathfrak{M}'_1$).

If $x \in N_{ik}$ for some i and k then, without loss of generality, we may choose an integer s $(1 \le s \le t)$ such that

$$x \in N_{i1}$$
 or $x \in N_{i2}$ if $1 \le i \le s$ and $x \notin N_{i1}$ and $x \notin N_{i2}$ if $s < j \le t$.

For the s and the above a_i , we put

$$a = a_1 e_1 + a_2 e_2 + \dots + a_s e_s$$
 and $y = x + a_s$.

Then, since $a \in A$, $y + \sigma(y) = x + \sigma(x) = 1$.

Now we shall show that $y \in N$ for all $N \in \mathfrak{M}(T) \setminus \mathfrak{M}'_1$. As is easily seen,

$$a^2 + a = (a_1^2 + a_1)e_1 + (a_2^2 + a_2)e_2 + \dots + (a_s^2 + a_s)e_s \pmod{I}.$$

Since $e_j \in M_i \ (j \neq i)$,

$$a^2 + a = (a_i^2 + a_i)e_i \neq 0 \pmod{M_i} (1 \le i \le s)$$
 and $a^2 + a = 0 \pmod{M_j} (s < j \le t).$

It follows that $a^2 + a \in M_i$ $(1 \le i \le s)$ and $a^2 + a \in M_j$ $(s < j \le t)$. We

note here that $x\sigma(x)$ is contained in $A=B(\sigma)$ and

$$x\sigma(x) \in N_{i1}N_{i2} \subset N_{i1} \cap N_{i2} (1 \leq i \leq s).$$

Then

$$x\sigma(x) \in A \cap (\bigcap_{i=1}^s (N_{i1} \cap N_{i2})) = \bigcap_{i=1}^s M_{i2}$$

Moreover, $y \sigma(y) = x \sigma(x) + a^2 + a$. Hence, we see that

$$y \sigma(y) \in M_i (1 \leq i \leq s).$$

For j ($s < j \le t$), x and $\sigma(x)$ are not in N_{jk} (k = 1, 2) by the definition of s. Since N_{j1} is a prime ideal, $x\sigma(x) \in N_{j1}$ and so $x\sigma(x) \in M_{j}$. Thus we have

$$y \sigma(y) \in M_i \ (s < j \le t).$$

Therefore, $y \in N_{i1}$ and $\sigma(y) \in N_{i1}$ $(1 \le i \le t)$. Since $\sigma(y) \in N_{i1}$ means that $y \in N_{i2}$, we see that $y \in N$ for all $N \in \mathfrak{M}(T) \setminus \mathfrak{M}'_1$.

Now, we are in a position to complete the proof. Indeed, it suffices to show that $y \in N$ for all $N \in \mathfrak{M}'_1$. Because if $y \in N$ for all $N \in \mathfrak{M}(T)$ then y is an inversible element of T. In this case, B/A has a primitive element by Theorem 1.

Let N be any element of \mathfrak{M}'_1 . Then, by Lemma 4, N=TM for some $M\in\mathfrak{M}_0$. Hence, σ induces an automorphism ρ of T/N. Thus, T/N is a Galois extension of $A/(A\cap N)$ with a cyclic Galois group $\langle\rho\rangle$. Since $y+\sigma(y)=1$, we have $\bar{y}+\rho(\bar{y})=\bar{1}$ in T/N. Hence $\bar{y}\neq\bar{0}$ and so $y\in N$.

Corollary 6. Assume that $|\mathfrak{M}(A)\backslash\mathfrak{M}_0|$ is finite. Then the following are equivalent.

- (a) B/A has a primitive element.
- (b) B/A has a primitive element whose G-trace is zero.

Proof. (b) \Rightarrow (a) is trivial.

(a) \Rightarrow (b). By Lemma 3, T/TM = GF(4) for any $M \in \mathfrak{M}(A)$ such that A/M = GF(2). Hence, by Theorem 1 and Theorem 5, we obtain (b).

The following theorem contains the result of [2, Theorem 3].

Theorem 7. Assume that $|\{M \in \mathfrak{M}(A); A/M \neq GF(2)\}|$ is finite. Then, the following conditions are equivalent.

(a) B/A has a primitive element.

(b) T/TM = GF(4) for any $M \in \mathfrak{M}(A)$ such that A/M = GF(2).

Proof. (a) \Rightarrow (b). It is clear by Lemma 3.

- (b) \Rightarrow (a). Let M be an element of $\mathfrak{M}(A)$ such that A/M = GF(2). Then, $TM \in \mathfrak{M}(T)$ because T/TM = GF(4) is a field. Hence we have $M \in \mathfrak{M}_0$. Since $||M \in \mathfrak{M}(A); A/M \neq GF(2)||$ is finite, so is $|\mathfrak{M}(A) \setminus \mathfrak{M}_0|$. Thus, by Theorem 5, B has a primitive element over A.
- 2. On primitive elements of cyclic p^n -extensions. Set $B_i = B(\sigma^{p^i})$ (i = 0, 1, 2, ..., n) and $\mathfrak{M}_i = |M \in \mathfrak{M}(B_i); B_{i+1}M \in \mathfrak{M}(B_{i+1})| (i = 0, 1, 2, ..., n-1)$. Then, obviously $B = B_n$ and $A = B_0$. Moreover, B_i is a cyclic p^{i-j} -extension of B_j with a Galois group $\langle \sigma^{p^j} | B_i \rangle$.

Theorem 8. Assume that p = 2 and $|\mathfrak{M}(B_0) \backslash \mathfrak{M}_0|$ is finite. Then, the following conditions are equivalent.

- (a) B_2/B_0 has a primitive element.
- (b) B_{k+2}/B_k has a primitive element for any $k \ (0 \le k \le n-2)$.

Proof. (a) \Rightarrow (b). We note that B_{k+2} is a cyclic 2^2 -extension of B_k with a Galois group $\langle \sigma^{2^k} | B_{k+2} \rangle$. First, we shall show that $|\mathfrak{M}(B_k) \backslash \mathfrak{M}_k|$ is finite for each k ($0 \le k \le n-2$) by induction. To prove this, let i be any integer such that $0 \le i < n-2$ and N an element of $\mathfrak{M}(B_{i+1})$ such that $N \cap B_i \in \mathfrak{M}_i$. Then, by Lemma 4(iii), we have $N \in \mathfrak{M}_{i+1}$. Hence, if $L \in \mathfrak{M}(B_{i+1}) \backslash \mathfrak{M}_{i+1}$ then $L \cap B_i \in \mathfrak{M}(B_i) \backslash \mathfrak{M}_i$. Combining this with Lemma 4(i), we see that if $|\mathfrak{M}(B_i) \backslash \mathfrak{M}_i|$ is finite then $|\mathfrak{M}(B_{i+1}) \backslash \mathfrak{M}_{i+1}|$ is also finite.

Now, we shall show that B_{k+2}/B_k has a primitive element for all k $(0 \le k \le n-2)$ by induction. We assume that B_{k+2}/B_k has a primitive element for all k $(0 \le k < n-2)$. Then, it is enough to show that $B_{k+1}/N \ne GF(2)$ for any $N \in \mathfrak{M}(B_{k+1})$. Indeed, in this case, we see that B_{k+3}/B_{k-1} has a primitive element by Theorem 5.

Assume that $B_{k+1}/N = GF(2)$ for some $N \in \mathfrak{M}(B_{k+1})$. Then, since

$$B_k/(B_k \cap N) \subset B_{k+1}/N$$
,

we obtain $B_k/(B_k \cap N) = GF(2)$. Hence, by Lemma 3, $B_{k+1}/(B_k \cap N)B_{k+1} = GF(4)$, which is a field. Thus, we have $(B_k \cap N)B_{k+1} = N$ by the maximality of $(B_k \cap N)B_{k+1}$. It follows that $B_{k+1}/N = GF(4)$. This is a contradiction.

(b) ⇒ (a) is trivial.

Theorem 9. Assume that p = 2 and $||M \in \mathfrak{M}(A); A/M \neq GF(2)||$ is finite. Then, the following conditions are equivalent.

- (a) B_2/B_0 has a primitive element.
- (b) B_{k+2}/B_k has a primitive element for any k ($0 \le k \le n-2$).

Proof. (a) \Rightarrow (b). Let M be an element of $\mathfrak{M}(B_0)$ such that A/M = GF(2). Then, by Theorem 7, $B_1/B_1M = GF(4)$. Hence $B_1M \in \mathfrak{M}(B_1)$ and so $M \in \mathfrak{M}_0$. This implies that

$$\mathfrak{M}(B_0) \setminus \mathfrak{M}_0 \subset \{M \in \mathfrak{M}(A) ; A/M \neq GF(2)\}.$$

Thus, $|\mathfrak{M}(B_0)\backslash\mathfrak{M}_0|$ is finite. Therefore, we have (b) by Theorem 8. (b) \Rightarrow (a). Trivial.

Corollary 10. When B/A is in the situation of Theorem 8 or 9, this has a system of generating elements consisting of m elements where m = n/2 if n is an even number, and m = (n+1)/2 if n is an odd number.

Proof. The assertion is obvious by Theorems 8 and 9.

Theorem 11. Assume that $p \ge 2$ and $\mathfrak{M}(A) = \mathfrak{M}_0$. Then, B/A has a primitive element. Moreover, if $x \in B$ with $t_G(x) = 1$ then x is a primitive element for B/A and is invertible.

Proof. Let M be any element of $\mathfrak{M}(A)$. Then, B/BM is a cyclic p^n -extension with a Galois group $\langle \rho \rangle$ where ρ is the automorphism of B/BM induced by σ . Further, (B/BM) (ρ^{ρ}) = B_1/B_1M which is a field. Hence, by [7, Theorem 1.8], B/BM is also a field. We will here denote b+BM ($\in B/BM$) by \bar{b} . For an element x of B satisfying $t_G(x)=1$, $\rho^i(\bar{x}) \neq \bar{x}$ for any i ($1 \leq i \leq p^n-1$) since $t_{\langle \rho \rangle}(\bar{x}) = \bar{1}$. Indeed, assume that $\rho^i(\bar{x}) = \bar{x}$ for some i and put $H = \{\tau \in \langle \rho \rangle : \tau(\bar{x}) = \bar{x}\}$. Then, H is a subgroup of $\langle \rho \rangle$ and hence $|H| = p^s$ for some integer s ($1 \leq s \leq n$). Since

$$\langle \rho \rangle = \rho_1 H \cup \rho_2 H \cup \cdots \cup \rho_m H \ (\rho_t \in \langle \rho \rangle; \ 1 \leq i \leq m)$$

for some integer m, we have $t_{\rho_l H}(\bar{x}) = p^s \rho_l(\bar{x}) = \bar{0}$. Hence, $t_{<\rho>}(\bar{x}) = \bar{0}$ which is a contradiction. Therefore, by the Galois theory of fields,

$$B/BM = (A/M)[\bar{x}].$$

This implies that B = A[x] + BM. Since M is any maximal ideal of A, we

have B = A[x] by [8, Theorem 9.1].

Next, we shall prove that the x is invertible. For any $M \in \mathfrak{M}(A)$, $\bar{x} \neq \bar{0}$ because $t_{(\wp)}(\bar{x}) = \bar{1}$. Noting that B/BM is a field, we have $(B/BM)\bar{x} = B/BM$. This means that Bx + BM = B. Thus, by the same way as in the above, we have Bx = B and so x is invertible.

Remark 2. Let

$$B = GF(3^3) \oplus GF(3^3) \oplus GF(3^3)$$

and τ an automorphism of $GF(3^3)$ of order 3. Moreover, let σ be an automorphism of B defined by

$$\sigma((x_1, x_2, x_3)) = (\tau(x_3), x_1, x_2).$$

Then, by [6, Lemma 1.1], B is a cyclic 3^2 -extension of

$$A = \{(a, a, a) : a \in GF(3)\}$$

with a Galois group $\langle \sigma \rangle$. As is seen in [3, p. 555], the following polynomials are irreducible over GF(3):

$$f_1 = X^3 + 2X + 1,$$

 $f_2 = X^3 + 2X + 2$ and
 $f_3 = X^3 + X^2 + 2.$

Clearly, each f_i and f_j $(i \neq j)$ are relatively prime. Hence for $g = f_1 f_2 f_3$, we have

$$A[X]/(g) \cong A[X]/(f_1) \oplus A[X]/(f_2) \oplus A[X]/(f_3).$$

Since $A[X]/(f_i) \cong GF(3^3)$ (i = 1, 2, 3), it follows that $A[X]/(g) \cong B$. Noting A[X]/(g) = A[x] for x = X + (g), B/A has a primitive element. However, we have

$$B(\sigma^3) = GF(3) \oplus GF(3) \oplus GF(3)$$

which is not a field. Hence Lemma 3 does not hold for p=3. Clearly, in the extension $B(\sigma^3)/A$, (2,1,1) is an invertible element whose trace is 1, but there are not invertible σ -generators. Moreover, there are 8 irreducible polynomials of degree 3 in GF(3)[X]. On the other hand, the ones of degree 2 in GF(2)[X] are only X^2+X+1 (cf. [3, pp. 553-555]).

Remark 3. Let B be a cyclic 2^n -extension of GF(2) with a Galois group $\langle \sigma \rangle$, $B_1 = B(\sigma^2)$, and $B_2 = B(\sigma^4)$. If $B_2/GF(2)$ has a primitive element then $B_1 = GF(4)$ by Lemma 3, and whence by [7, Theorem 1.8], B is a field, which has a primitive element over GF(2). However, the converse does not hold. This is seen in the following example. Let

$$B = GF(2^4) \oplus GF(2^4)$$

and τ an automorphism of $GF(2^4)$ of order 4. Then B is a cyclic 2^3 -extension of $A = \{(a, a) : a \in GF(2)\}$ with a Galois group $\langle \sigma \rangle$ where $\sigma((x_1, x_2)) = (\tau(x_2), x_1)$. Now, as is seen in [3, p. 553], the following polynomials in GF(2)[X] are irreducible over GF(2):

$$f_1 = X^4 + X^3 + 1$$
 and $f_2 = X^4 + X^3 + X^2 + X + 1$.

Hence, for $g = f_1 f_2$, we have the A-ring isomorphisms

$$A[X]/(g) \cong A[X]/(f_1) \oplus A[X]/(f_2) \cong GF(2') \oplus GF(2') = B.$$

Let b be an element of B which corresponds to X+(g) under the above isomorphisms. Then b is a primitive element for B/A. However, since B is not a field, $B_2 = B(\sigma^4)$ has no primitive elements over A by the preceding statement. Moreover, it can be easily checked that $t_{\langle \sigma \rangle}(b) = \alpha(1,1)$ where α is the sum of the coefficients of X^3 in f_1 and f_2 . In this case, $t_{\langle \sigma \rangle}(b) = 0$ because $\alpha = 0$. But if we replace the f_1 by $X^4 + X + 1$, which is irreducible over GF(2), then $\alpha = 1$ and so $t_{\langle \sigma \rangle}(b) = 1$. This shows that B/A has at least two primitive elements, each trace of which is 0 and 1.

Remark 4. Let

$$B = GF(4) \oplus \cdots \oplus GF(4)$$

which is the direct sum of 2^3 copies of GF(4). Then B is a cyclic 2^3 -extension of $A = \{(a, a, ..., a) : a \in GF(4)\}$ with a Galois group $\langle \sigma \rangle$ where $\sigma((x_1, x_2, ..., x_8)) = (x_8, x_1, ..., x_7) \ (x_i \in GF(4) : 1 \le i \le 8)$. We set here $B_1 = B(\sigma^2)$ and $B_2 = B(\sigma^4)$. Then by Theorem 7, B_2/A has a primitive element. Hence by Theorem 9, B/B_1 has a primitive element. However, B/A has no primitive elements. Indeed, if B = A[x] for some x in B then the elements $1, x, ..., x^7$ are linearly independent over A by [4. Theorems 3.3 and 3.4]; on the other hand, since $a^4 = a$ for all $a \in GF(4)$, there holds $x^4 = x$, which is a contradiction. As is seen in Corollary 10, B is generated

by two elements over A.

Remark 5. Let

$$B = GF(4) \oplus GF(4) \oplus GF(4) \oplus GF(4)$$
.

Then, B is a cyclic 2^2 -extension of $A = \{(a, a, a, a) : a \in GF(4)\}$ with a Galois group $\langle \sigma \rangle$ where $\sigma((x_1, x_2, x_3, x_4)) = (x_4, x_1, x_2, x_3) \ (x_i \in GF(4); i = 1, 2, 3, 4)$. Then, by Theorem 7, B/A has a primitive element. Let $x = (x_1, x_2, x_3, x_4)$ be any primitive element for B/A. If $x_i = x_j$ for some i < j then $x - \sigma^{j-i}(x)$ is not invertible in B, which is a contradiction by [4, Theorem 3.3]. Hence if $1 \le i \ne j \le 4$ then $x_i \ne x_j$. It follows therefore that $t_{(\sigma)}(x) = 0$ because $\sum_{a \in GF(4)} a = 0$.

REFERENCES

- S. U. CHASE, D. K. HARRISON and ALEX ROSENBERG: Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 15-33.
- [2] K. KISHIMOTO: Notes on biquadratic cyclic extensions of a commutative ring, Math. J. Okayama Univ. 28 (1986), 15-20.
- [3] R. LIDL and H. NIEDERREITER: Finite Fields, Encyclopedia of Mathematics and Its Applications 20, Addison-Wesley, 1983.
- [4] T. NAGAHARA: On separable polynomials over a commutative ring II, Math. J. Okayama Univ. 15 (1972), 149-162.
- [5] T. NAGAHARA: On separable polynomials over a commutative ring III, Math. J. Okayama Univ. 16 (1974), 189-197.
- [6] T. NAGAHARA and A. NAKAJIMA: On separable polynomials over a commutative ring IV, Math. J. Okayama Univ. 17 (1974), 49-58.
- [7] T. NAGAHARA and A. NAKAJIMA: On cyclic extensions of commutative rings, Math. J. Okayama Univ. 15 (1971), 81-90.
- [8] D. G. NORTHCOTT: Introduction to homological algebra, Cambridge University Press, 1960.

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY, OKAYAMA 700, JAPAN

(Received May 1, 1987)