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Let G and H be finite groups and let o: H — Aut(G) be a fixed group
homomorphism from H to the automorphism group of G. A map f: H—- G
is called a crossed homomorphism if f(ab) = pa(f(6))f(a) for any a, b €
H. This is an extended definition of usual crossed homomorphism (cf. [3,
pp. 104—106]). The set of all crossed homomorphisms of H to G will be
denoted by Z,(H, G). For each fixed x € G, the map f.: H — G defined by
f«la) = palx)x™" is a crossed homomorphism. The function of this form f.
is called principal, and the set of all principal crossed homomorphisms of H
to G is denoted by B5(H, G). In case G is Abelian. Z,(H, G) and B,(H, G)
are Abelian groups and H)(H, G) = Z,(H, G)/B,(H, G) is the first coho- -
mology group of H over G.

When S is a finite set, | S| denotes the number of elements of S.

The purpose of this paper is to show that [7, Theorem 1 (3)] can be
derived from a more general proposition and to describe finite local rings
in terms of cohomology of their unit groups.

Theorem 1. Let G be a finite solvable group with order g, H = {c)
a cyclic group with order h, and p: H - Aui(G) a group homomorphism. If
(g. h) = 1. then Z5(H, G) = By(H, G). that is, all crossed homomorphisms
of H to G are principal.

Proof. Let G be the semidirect product of H with G determined by p.
That is, any element x of G is uniquely written as x = ai with a € H and
t € G, and the multiplication is given by

(at)(bv) = (ab)(polt)v) (a. b € H, t, v € G).

Note that p,(2) = b~'tb in G.
Let f: H - G be a crossed homomorphism. Then

(efle)® = cSposi(fe N o s dfle)).ccpc(fleNflc) = ¢f(c®)

for any integer s = 1, so the order of ¢ is equal to the order of cf(c). As
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(c) and {cf(c)) are both Hall subgroups of G, by [1, p. 141 Theorem
9.3.1. 2)], there exists y =bv € G(b € H, v € G) such that ylcy =
(cf(c))* for some integer k (1 <k < h). Then clc v lcv) = v lev =
y ey = c"c¥), sd k=1, and flc) = ¢ v 'ev = fii(c). Hence fis a
principal crossed homomorphism.

In the remainder of this paper suppose R is a (not necessarily commu-
tative) finite local ring with radical M. Let R/M = K = GF(p")(p a prime),
|R| = p™, |M| = p™ """, R* the unit group of R, and p* the characteristic
of R. The r-dimensional Galois extension GR(p"*", p*) of Zx = Z/p*Z is
called a Galois ring (see [4]). By [5, Theorem 8 (i )], R contains a subring
isomorphic to GR(p"*", p*), which will be called a maximal Galois subring
of R. If R, and R, are two maximal Galois subrings of R, then, by [5,
Theorem 8 (ii)], there exists @ € R* such that R, = a™'R,a. In the proof
of [6. Theorem], the author has proved that R* contains an element u such
that (i) its multiplicative order is p"—1, and (ii) Z,[u], the subring of
R generated by u, is a maximal Galois subring of R.

Let N=|x & M|xu = ux| be a subgroup of the additive group of M,
then, by [6, Remark], the number of maximal Galois subrings of R is equal
to |[M: N|, the index of N in M. In the following we fix such an element
u. Note that, if «' is another such element, then N and N'={x € M|xu’
= u'x | consist of the same number of elements.

Let us define ¢: {u) - Aut(14+M) by ¢(x) = v 'xv(v € (u), x €
1+M). By Theorem 1 and [7, Theorem 1 (2)], we see that | ZL({u), 1
+M)|, |Bu({u), 1+M)]|, and |M: N| are all equal to the number of
maximal Galois subrings of R. As M and N are modules over Z,[«], by
[4, p. 310 Theorem (XVL 2)], [M: N| is a power of p".

We will deal with the equation
(1) X '=1
in R.
Theorem 2. Let N, ={x € M|u'x = xu'| be a submodule of M,

|[M: N,| the index of N; in M,and v the number of solutions of (1) in R.
Then,

v= 2 ¢(d)|M: Nopr_usal.

aup’-1)

where ¢ is the Euler function.
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Proof. In the following, the word “order” always means the multipli-
cative order.

If t € R* satisfies t* ~' = 1, then the order of ¢ is a divisor of p"—1.
When d is a divisor of p"—1, let S, denote the set of all elements in R*
with order d, then v = 2, |Sa|. Any t € R* is uniquely written as ¢ =

aipT—1;

ve, v € (u), x € 1+M.

If the order of t = vx (v € (u), x € 1+M) is d, then the order of
v is d, for, orders of {(u) and 1 +M are coprime. Hence, if t = vx € S,
then v = u"°, where h ={p"—1)/d and s is an integer with 1 < s < d,
(s, d) = 1. The number of such s's is ¢(d).

Let s be such an integer and t = u"Sx € S, (x € 1 +M ), then both of
(t) and {(u"®) are Hall subgroups of G' = { (u"*°)’2|1 < j<d, 2 € 14+M]|
with the order dp™ '7". So, there exists some y € 1+M and an integer
1 <i<dsuch that (i,d) =1 and t = y '(¢"*%)’y. Then (si. d) =1, so
we see that Sg =z 'u"x|1 < s <d, (s,d) =1, x€ 14+M}.

Let us put Hs = {x 'u"x|x € 14+M| for each fixed u"S. Since
2 W =2 u s (x, 2’ € 1+M) is equivalent to s = s’ and xx' ™' € Ny,
we have |Hg| = |M: N,s|. When(s, d) =1, Nps = Ny, so |Hs| = | M:
N.|. Hence, |Sa| = ¢(d)|M: N.| and v= > [Su| = X &(d)|M:

diipT-1) dupT-1i
Nypr_1sa| . which completes the proof.

Corollary. If r = 2, then

(p,_l)[[¢(pr—1)(|Mp;TiV{—1)+p’—2]+1’ <v<
(pr_l)[(pr—p)lff;‘{z_i\fl +p—1 ]

where [a] denotes the greatest integer not exceeding a.
Proof. When d is a divisor of p—1, Npr_i;a= M by [7. Theorem
2(3)], so dl(l)2—1)¢(d) [IM: Nom_1y/q] :dlz_.l“q.’)(d) = p—1. Then,
Yy = Z ¢(d)’1M: N(p’f‘_n,'d[

aip’—1j
= ¢(p7_1) M: Nl 'hg, ¢(d) '1‘/1: 1Vapr_1;v;d| +(p—1),

where the second term is a sum with respect to all d such that ( %) d is a
proper divisor of p”—1 and not a divisor of p—1. Since MD Nyr_y,0 2 N,



80 T. SUMIYAMA

p(p"—1)|M: N|+:Z*I] pld)+(p—1) < v <
(¢(p’—1)+[};: #(d)) | M: N|+p—1.

Since
2 ¢(d) = dl{;_nqs(d)—mZ_‘.n #(d)—p(p™—1)
=p —p—¢(p"—1),
gp"—1)(|M: N|-1)+p"—1 < v <
(p"—p)IM: N|+p—1.

By [1, p. 137 Theorem 9.1.2], v is a multiple of p"—1, so we get the
inequality of Corollary.

In case R has only one maximal Galois subring. equivalent conditions
are given in [7, Theorem 2 (2)].

Let us deal with the case R has a plenty of maximal Galois subrings.

Suppose r = 2 and n = 2. Let V be a finite nilpotent ring, and more-
over two-sided vector space with dimension n—1 over a finite field F =
GF(p") which satisfies the following (2) —(6) for any a, b € F and any x,
ye V.

(2) alxy) = (ax)y

(3) (xy)a = x(ya)

(4) (ax)b = alxb)

(5) (xa)y = x(ay)

(6) If x 0, then there exists some a € F such that ax + xa.

Such V does exist (see [5, Section 1]).

Let F+ V denote the Abelian group direct sum F @ V with multiplication

(a, x)(a'. x') = (aa’, ax'+xa’ +xx').

F+ Vs a finite local ring with radical V' =1 (0, x) lxe V] and (F+V)/V
= F. Let ¢ be a multiplicative generator of F, then £'= (¢, 0) has multi-
plicative order p"—1, and generates a maximal Galois subring of F+V
isomorphic to F. Since x = 0 is the only element of V such that {x = x¢,
F+V has | V| = p™ " maximal Galois subrings.

Theorem 3. Suppose n = 2. If the number of maximal Galois subrings
of R is the largest.that is,if R has p™ """ maximal Galois subrings, then
R is isomorphic to F+V.
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Proof. Suppose ch R = p* and k = 2. As is shown in [5, pp. 200 —
201], ;—Zri Z ,u'is a direct sum, hence i‘;l,prkui is a subset of N consisting

of p* V" elements. Then |M: N| < p™ V" /p* """ < p™ ?" which contra-
dicts the assumption. So we see ch R = p. As R is an algebra over Z,
and R/M = GF(p") is a separable extension of Z,, by Wedderburn-Malcev
theorem [2, p. 491 Theorem 72.19], there exists a subfield K' of R iso-
morphic to K = R/M and R = K’ ® M as Abelian groups. K’ is a maximal
Galois subring of R, and M is a two-sided vector space over K'. K' contains
an element %' with order p™—1, then Z,[u] and K' = Z,[u'] are both maxi-
mal Galois subrings of R. So, the number of elements of N' ={x € M|u'x
= xu'l is equal to |N| = 1, that is, x = 0 is the only element of M sat-
isfying ux = xu’. f: R » K'+M defined by fla+m) = (a. m) (a € K', m
€ M) gives an isomorphism of R onto K'+M.
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