ON COHOMOLOGY OF GROUPS IN FINITE LOCAL RINGS

Dedicated to Professor Hisao Tominaga on his 60th birthday

TAKAO SUMIYAMA

Let G and H be finite groups and let $\rho \colon H \to Aut(G)$ be a fixed group homomorphism from H to the automorphism group of G. A map $f \colon H \to G$ is called a crossed homomorphism if $f(ab) = \rho_a(f(b))f(a)$ for any $a, b \in H$. This is an extended definition of usual crossed homomorphism (cf. [3, pp. 104-106]). The set of all crossed homomorphisms of H to G will be denoted by $Z_{\rho}^1(H, G)$. For each fixed $x \in G$, the map $f_x \colon H \to G$ defined by $f_x(a) = \rho_a(x)x^{-1}$ is a crossed homomorphism. The function of this form f_x is called principal, and the set of all principal crossed homomorphisms of H to G is denoted by $B_{\rho}^1(H, G)$. In case G is Abelian, $Z_{\rho}^1(H, G)$ and $B_{\rho}^1(H, G)$ are Abelian groups and $H_{\rho}^1(H, G) = Z_{\rho}^1(H, G)/B_{\rho}^1(H, G)$ is the first cohomology group of H over G.

When S is a finite set, |S| denotes the number of elements of S.

The purpose of this paper is to show that [7, Theorem 1 (3)] can be derived from a more general proposition and to describe finite local rings in terms of cohomology of their unit groups.

Theorem 1. Let G be a finite solvable group with order g, $H = \langle c \rangle$ a cyclic group with order h, and $\rho: H \to Aut(G)$ a group homomorphism. If (g, h) = 1, then $Z^1_{\rho}(H, G) = B^1_{\rho}(H, G)$, that is, all crossed homomorphisms of H to G are principal.

Proof. Let \overline{G} be the semidirect product of H with G determined by ρ . That is, any element x of \overline{G} is uniquely written as x = at with $a \in H$ and $t \in G$, and the multiplication is given by

$$(at)(bv) = (ab)(\rho_b(t)v) \ (a, b \in H, t, v \in G).$$

Note that $\rho_b(t) = b^{-1}tb$ in \overline{G} .

Let $f: H \to G$ be a crossed homomorphism. Then

$$(cf(c))^s = c^s \rho_{cs-1}(f(c)) \rho_{cs-2}(f(c)) \dots \rho_c(f(c)) f(c) = c^s f(c^s)$$

for any integer $s \ge 1$, so the order of c is equal to the order of cf(c). As

 $\langle c \rangle$ and $\langle cf(c) \rangle$ are both Hall subgroups of \overline{G} , by [1, p. 141 Theorem 9.3.1.2)], there exists $y = bv \in \overline{G}(b \in H, v \in G)$ such that $y^{-1}cy = (cf(c))^k$ for some integer k $(1 \le k \le h)$. Then $c(c^{-1}v^{-1}cv) = v^{-1}cv = y^{-1}cy = c^k f(c^k)$, so k = 1, and $f(c) = c^{-1}v^{-1}cv = f_{v-1}(c)$. Hence f is a principal crossed homomorphism.

In the remainder of this paper suppose R is a (not necessarily commutative) finite local ring with radical M. Let $R/M=K \cong GF(p^r)(p$ a prime), $|R|=p^{nr}, |M|=p^{(n-1)r}, R^*$ the unit group of R, and p^k the characteristic of R. The r-dimensional Galois extension $GR(p^{kr}, p^k)$ of $Z_{p^k}=Z/p^kZ$ is called a Galois ring (see [4]). By [5, Theorem 8 (i)], R contains a subring isomorphic to $GR(p^{kr}, p^k)$, which will be called a maximal Galois subring of R. If R_1 and R_2 are two maximal Galois subrings of R, then, by [5, Theorem 8 (ii)], there exists $a \in R^*$ such that $R_2 = a^{-1}R_1a$. In the proof of [6, Theorem], the author has proved that R^* contains an element u such that (i) its multiplicative order is p^r-1 , and (ii) $Z_{p^k}[u]$, the subring of R generated by u, is a maximal Galois subring of R.

Let $N = |x \in M|xu = ux|$ be a subgroup of the additive group of M, then, by [6, Remark], the number of maximal Galois subrings of R is equal to |M:N|, the index of N in M. In the following we fix such an element u. Note that, if u' is another such element, then N and $N' = |x \in M|xu' = u'x|$ consist of the same number of elements.

Let us define ϕ : $\langle u \rangle \to Aut(1+M)$ by $\phi_{\nu}(x) = \nu^{-1}x\nu$ ($\nu \in \langle u \rangle$, $x \in 1+M$). By Theorem 1 and [7, Theorem 1 (2)], we see that $|Z_{\phi}^{1}(\langle u \rangle, 1+M)|$, $|B_{\phi}^{1}(\langle u \rangle, 1+M)|$, and |M:N| are all equal to the number of maximal Galois subrings of R. As M and N are modules over $Z_{\rho^{k}}[u]$, by [4, p. 310 Theorem (XVI. 2)], |M:N| is a power of p^{r} .

We will deal with the equation

$$(1) \quad X^{\rho^{r_{-1}}} = 1$$

in R.

Theorem 2. Let $N_i = \{x \in M | u^i x = x u^i \}$ be a submodule of M, |M|: N_i the index of N_i in M, and ν the number of solutions of (1) in R. Then,

$$u = \sum_{d \mid pr_{-1}} \phi(d) |M: N_{(pr_{-1})/d}|,$$

where ϕ is the Euler function.

Proof. In the following, the word "order" always means the multiplicative order.

If $t \in R^*$ satisfies $t^{p^r-1}=1$, then the order of t is a divisor of p^r-1 . When d is a divisor of p^r-1 , let S_d denote the set of all elements in R^* with order d, then $\nu = \sum_{d:(p^r-1)} |S_d|$. Any $t \in R^*$ is uniquely written as t = vx, $v \in \langle u \rangle$, $x \in 1+M$.

If the order of t = vx ($v \in \langle u \rangle$, $x \in 1+M$) is d, then the order of v is d, for, orders of $\langle u \rangle$ and 1+M are coprime. Hence, if $t = vx \in S_d$, then $v = u^{hs}$, where $h = (p^r - 1)/d$ and s is an integer with $1 \le s < d$, (s, d) = 1. The number of such s's is $\phi(d)$.

Let s be such an integer and $t = u^{hs}x \in S_d$ $(x \in 1+M)$, then both of $\langle t \rangle$ and $\langle u^{hs} \rangle$ are Hall subgroups of $G' = \{(u^{hs})^j z | 1 \leq j \leq d, z \in 1+M \}$ with the order $dp^{(n-1)r}$. So, there exists some $y \in 1+M$ and an integer $1 \leq i < d$ such that (i, d) = 1 and $t = y^{-1}(u^{hs})^i y$. Then (si, d) = 1, so we see that $S_d = \{x^{-1}u^{hs}x | 1 \leq s < d, (s, d) = 1, x \in 1+M \}$.

Let us put $H_s = \{x^{-1}u^{hs}x \mid x \in 1+M \}$ for each fixed u^{hs} . Since $x^{-1}u^{hs}x = x'^{-1}u^{hs'}x' (x, x' \in 1+M)$ is equivalent to s = s' and $xx'^{-1} \in N_{hs}$, we have $|H_s| = |M: N_{hs}|$. When (s, d) = 1, $N_{hs} = N_h$, so $|H_s| = |M: N_h|$. Hence, $|S_d| = \phi(d) |M: N_h|$ and $\nu = \sum_{d \mid (\rho^T - 1)} |S_d| = \sum_{d \mid (\rho^T - 1)} \phi(d) |M: N_h|$, which completes the proof.

Corollary. If $r \geq 2$, then

$$(p^{r}-1)\Big\{\Big[\frac{\phi(p^{r}-1)(|M\colon N|-1)+p^{r}-2}{p^{r}-1}\Big]+1\Big\} \leq \nu \leq (p^{r}-1)\Big[\frac{(p^{r}-p)|M\colon N|+p-1}{p^{r}-1}\Big],$$

where [a] denotes the greatest integer not exceeding a.

Proof. When *d* is a divisor of p-1, $N_{(p^{r}-1)/d} = M$ by [7, Theorem 2(3)], so $\sum_{d \in [p-1)} \phi(d) | M: N_{(p^{r}-1)/d}| = \sum_{d \in [p-1)} \phi(d) = p-1$. Then,

$$\nu = \sum_{d:(\rho^{\tau}-1)} \phi(d) | M: N_{(\rho^{\tau}-1)/d} |
= \phi(p^{\tau}-1) | M: N | + \sum_{d=1}^{\infty} \phi(d) | M: N_{(\rho^{\tau}-1)/d} | + (p-1),$$

where the second term is a sum with respect to all d such that (*) d is a proper divisor of p^r-1 and not a divisor of p-1. Since $M \supseteq N_{(p^r-1)/d} \supseteq N$,

$$\begin{aligned} \phi(p^r-1) \, | \, M \colon & \, N | + \sum_{(*)} \phi(d) + (p-1) \le \nu \le \\ \left(\phi(p^r-1) + \sum_{(*)} \phi(d) \right) | \, M \colon & \, N | + p - 1 \,. \end{aligned}$$

Since

$$\begin{split} \sum_{(*)} \phi(d) &= \sum_{d!(p^{T}-1)} \phi(d) - \sum_{d!(p^{-}1)} \phi(d) - \phi(p^{T}-1) \\ &= p^{T} - p - \phi(p^{T}-1), \\ \phi(p^{T}-1)(|M:|N|-1) + p^{T}-1 &\leq \nu \leq \\ (p^{T}-p)|M:|N| + p - 1. \end{split}$$

By [1, p. 137 Theorem 9.1.2], ν is a multiple of p^r-1 , so we get the inequality of Corollary.

In case R has only one maximal Galois subring, equivalent conditions are given in [7, Theorem 2 (2)].

Let us deal with the case R has a plenty of maximal Galois subrings.

Suppose $r \ge 2$ and $n \ge 2$. Let V be a finite nilpotent ring, and moreover two-sided vector space with dimension n-1 over a finite field $F \cong GF(p^r)$ which satisfies the following (2)-(6) for any $a, b \in F$ and any $x, y \in V$.

- $(2) \quad a(xy) = (ax)y$
- (3) (xy)a = x(ya)
- $(4) \quad (ax)b = a(xb)$
- (5) (xa)y = x(ay)
- (6) If $x \neq 0$, then there exists some $a \in F$ such that $ax \neq xa$. Such V does exist (see [5, Section 1]).

Let F + V denote the Abelian group direct sum $F \oplus V$ with multiplication

$$(a, x)(a', x') = (aa', ax'+xa'+xx').$$

F + V is a finite local ring with radical $V' = \{(0, x) | x \in V\}$ and $(F + V)/V' \cong F$. Let ζ be a multiplicative generator of F, then $\zeta' = (\zeta, 0)$ has multiplicative order $p^r - 1$, and generates a maximal Galois subring of F + V isomorphic to F. Since x = 0 is the only element of V such that $\zeta x = x\zeta$, F + V has $|V| = p^{(n-1)r}$ maximal Galois subrings.

Theorem 3. Suppose $n \geq 2$. If the number of maximal Galois subrings of R is the largest, that is, if R has $p^{(n-1)\tau}$ maximal Galois subrings, then R is isomorphic to F + V.

Proof. Suppose $ch R = p^k$ and $k \ge 2$. As is shown in [5, pp. 200 – 201], $\sum_{i=1}^r Z_{p^k} u^i$ is a direct sum, hence $\sum_{i=1}^r p Z_{p^k} u^i$ is a subset of N consisting of $p^{(k-1)r}$ elements. Then $|M: N| \le p^{(n-1)r}/p^{(k-1)r} \le p^{(n-2)r}$, which contradicts the assumption. So we see ch R = p. As R is an algebra over Z_p and $R/M \cong GF(p^r)$ is a separable extension of Z_p , by Wedderburn-Malcev theorem [2, p. 491 Theorem 72.19], there exists a subfield K' of R isomorphic to K = R/M and $R = K' \oplus M$ as Abelian groups. K' is a maximal Galois subring of R, and M is a two-sided vector space over K'. K' contains an element u' with order p^r-1 , then $Z_p[u]$ and $K' = Z_p[u']$ are both maximal Galois subrings of R. So, the number of elements of $N' = |x \in M|u'x = xu'|$ is equal to |N| = 1, that is, x = 0 is the only element of M satisfying u'x = xu'. $f: R \to K' + M$ defined by f(a+m) = (a, m) ($a \in K'$, $m \in M$) gives an isomorphism of R onto K' + M.

Acknowledgement. The author would like to express his indebtedness and gratitude to Prof. K. Motose for his helpful suggestion and valuable comments.

REFERENCES

- [1] M. HALL: The Theory of Groups, Macmillan, New York, 1959.
- [2] C. W. CURTIS, I. REINER: Representation Theory of Finite Groups and Associative Algebras, Interscience Publishers, New York-London-Sydney, 1962.
- [3] S. S. MACLANE: Homology, Springer-Verlag, Berlin-Heidelberg-New York, 1963.
- [4] B. R. McDonald: Finite Rings with Identity, Pure & Appl. Math. Ser. 28, Marcel Dekker, New York, 1974.
- [5] R. RAGHAVENDRAN: Finite associative rings, Compositio Math. 21 (1969), 195-229.
- 6 T. SUMIYAMA: Note on maximal Galois subrings of finite local rings, Math. J. Okayama Univ. 21 (1979), 31-32.
- [7] T. SUMIYAMA: On unit groups of finite local rings, Math. J. Okayama Univ. 23 (1981), 195-198.

AICHI INSTITUTE OF TECHNOLOGY YAGUSA-CHÔ, TOYOTA 470-03 JAPAN

(Received December 8, 1985)