ON THE LOEWY STRUCTURE OF THE PROJECTIVE INDECOMPOSABLE MODULES FOR A 3-SOLVABLE GROUP II

Dedicated to Professor Hisao Tominaga on his 60th birthday

YASUSHI NINOMIYA

Let $GF(3^3)$ be the finite field with 3^3 elements, and we define $\Gamma = \Gamma(3^3)$ to be the set of transformations of the form

$$x \to ax^{3i} + b$$
; $a, b \in GF(3^3), a \ne 0, i = 0, 1, 2,$

on $GF(3^3)$ (see [1, Kap II, 1.18(b)]). Then Γ is a solvable group of order $2\cdot 3^4\cdot 13$, and has a normal subgroup $\mathfrak G$ with $[\Gamma:\mathfrak G]=2$. In the previous paper [4], we completely determined the Loewy series of the projective indecomposable modules for $\mathfrak G$ in characteristic 3. In this paper, by making use of the result and methods in [4], we shall determine the Loewy series of the projective indecomposable modules for Γ in characteristic 3.

Theorem. The Loewy series of the projective indecomposable $K\Gamma$ -modules are as follows:

$$P_{K} = \begin{array}{c} K \\ K \ N_{1} \\ K \ L_{2} \ L_{3} \ N_{1} \\ J \ L_{2} \ L_{3} \ N_{1} \ N_{3} \ N_{4} \\ J \ L_{1} \ L_{2} \ L_{3} \ L_{4} \ N_{3} \ N_{4} \\ J \ L_{1} \ L_{4} \ N_{2} \ N_{3} \ N_{4} \\ K \ L_{1} \ L_{4} \ N_{2} \\ K \ N_{2} \\ K \end{array} \qquad P_{J} = \begin{array}{c} K \ L_{1} \ L_{2} \ L_{3} \ L_{4} \ N_{1} \ N_{2} \ N_{3} \ N_{4} \\ K \ L_{2} \ L_{3} \ L_{4} \ N_{1} \ N_{4} \\ J \ L_{2} \ N_{1} \ N_{4} \\ J \ L_{2} \\ J \end{array}$$

Concerning notations and terminology we refer to our previous paper [4].

1. Preliminaries. Let $\mathfrak{U}=\langle a,b,c\rangle,\ \mathfrak{B}=\langle v\rangle$ and $\mathfrak{W}=\langle s\rangle$ be

the subgroups of \mathfrak{G} defined in [4], and let $t \in \Gamma$ denote the transformation defined by

$$t: x \to -x$$
, $x \in GF(3^3)$.

We set $\mathfrak{T} = \langle t \rangle$. Then $\mathfrak{G} = \langle \mathfrak{U}, \mathfrak{B}, \mathfrak{B} \rangle$ and $\Gamma = \langle \mathfrak{U}, \mathfrak{B} \times \mathfrak{T}, \mathfrak{B} \rangle$. Since $\mathfrak T$ is of order 2, $K\mathfrak T$ has two non-isomorphic simple modules Z_0 , Z_1 , where Z_0 is the trivial module. Let $V_0, V_1, ..., V_{12}$ be the simple K.\(\beta\)-modules (\(\beta\) = $(11, \mathfrak{B})$ defined in [4]. Regard these modules V_i as $K\mathfrak{B}$ -modules. Then

$$U_i = V_i \otimes_{\kappa} Z_0, \ W_i = V_i \otimes_{\kappa} Z_1 \qquad (0 \le i \le 12)$$

are all the simple $K\mathfrak{B}\times\mathfrak{T}$ -modules (to within isomorphism). Set $\mathfrak{J}=\langle\mathfrak{U},$ $\mathfrak{B} \times \mathfrak{T}$. As $\mathfrak{J}/\mathfrak{U} \simeq \mathfrak{B} \times \mathfrak{T}$, U_i and W_i induce simple $K\mathfrak{J}$ -modules, also denoted by U_i and W_i , by defining

$$uhx = hx$$
, $uhy = hy$, $u \in \mathbb{1}$, $h \in \mathfrak{B} \times \mathfrak{T}$, $x \in U_i$, $y \in W_i$.

The induced modules U_i^{Γ} , W_i^{Γ} of these K3-modules are simple $K\Gamma$ -modules, and for i = 1, 4, 7, 10,

$$U_{i+k}^{\Gamma} \cong U_i^{\Gamma}, W_{i+k}^{\Gamma} \cong W_i^{\Gamma}, \qquad k=1,2.$$

So we set

$$L_1 = U_1^{\Gamma}, \ L_2 = U_4^{\Gamma}, \ L_3 = U_7^{\Gamma}, \ L_4 = U_{10}^{\Gamma}, \ N_1 = W_1^{\Gamma}, \ N_2 = W_4^{\Gamma}, \ N_3 = W_7^{\Gamma}, \ N_4 = W_{10}^{\Gamma}.$$

Then K, J, L_i, N_i $(1 \le i \le 4)$ represent all types of simple $K\Gamma$ -modules. From the definition of L_i , N_i and M_i , we see at once that $L_i|_{\mathfrak{G}} \cong N_i|_{\mathfrak{G}} \cong M_i$. In what follows we denote by \tilde{P}_{u_i} and \tilde{P}_{w_i} the projective indecomposable $K\mathfrak{F}$ modules for which $\tilde{P}_{v_i}/J(K\mathfrak{J})\tilde{P}_{v_i} \simeq U_i$ and $\tilde{P}_{w_i}/J(K\mathfrak{J})\tilde{P}_{w_i} \simeq W_i$.

Lemma 1.1. (1) $U_i^* \cong U_{i+3}$ and $W_i^* \cong W_{i+3}$ for i = 1, 2, 3, 7, 8, 9.

(2) $L_1^* \simeq L_2$, $L_3^* \simeq L_4$, $N_1^* \simeq N_2$, $N_3^* \simeq N_4$.

 $(3) \quad U_0^T = \overset{K}{K}, \ W_0^T = \overset{J}{J}.$

(4) $\tilde{P}_{v_0}^T \simeq P_K$, $\tilde{P}_{v_1}^T \simeq P_{L_1}$, $\tilde{P}_{v_4}^T \simeq P_{L_2}$, $\tilde{P}_{v_7}^T \simeq P_{L_3}$, $\tilde{P}_{v_{10}}^T \simeq P_{L_4}$, $\tilde{P}_{W_0}^T \cong P_{J}, \ \tilde{P}_{W_1}^T \cong P_{N_1}, \ \tilde{P}_{W_4}^T \cong P_{N_2}, \ \tilde{P}_{W_7}^T \cong P_{N_3}, \ \tilde{P}_{W_{10}}^T \cong P_{N_4}.$

(5) $K|_3 \simeq U_0$, $J|_3 \simeq W_0$ and for every $i, 1 \leq i \leq 4$,

$$L_i|_{\mathfrak{J}} \simeq \bigoplus_{j=0}^2 U_{\mathfrak{J}_{i+j-2}}, \ N_i|_{\mathfrak{J}} \simeq \bigoplus_{j=0}^2 W_{\mathfrak{J}_{i+j-2}}.$$

(6)
$$I^{\Gamma} \simeq K \oplus J, M_i^{\Gamma} \simeq L_i \oplus N_i,$$
 $1 \leq i \leq 4.$

$$(7) \quad P_{I}^{\Gamma} \cong P_{K} \oplus P_{J}, \ P_{M_{I}}^{\Gamma} \cong P_{L_{I}} \oplus P_{N_{I}}. \qquad 1 \leq i \leq 4.$$

(8) For every positive integer k,

$$L_{k}(P_{i})^{\Gamma} \cong L_{k}(\mathbf{P}_{k}) \oplus L_{k}(\mathbf{P}_{J}),$$

$$L_{k}(P_{M_{i}})^{\Gamma} \cong L_{k}(\mathbf{P}_{L_{i}}) \oplus L_{k}(\mathbf{P}_{N_{i}}), \qquad 1 \leq i \leq 4.$$

(9) For every positive integer k,

$$\dim_{\kappa} L_{\kappa}(P_{Mi}) = \dim_{\kappa} L_{\kappa}(P_{Li}) = \dim_{\kappa} L_{\kappa}(P_{Ni}), \quad 1 \leq i \leq 4.$$

Proof. (1) is clear by the definition of the modules U_i and W_i , and (2) follows at once from (1).

(3) Since $J(K\Gamma) = K\Gamma J(K\mathfrak{G})$, by [4, Lemma 3.1] we have

$$J(K\Gamma) = K\Gamma J(K\mathfrak{U}) + K\Gamma \hat{\mathfrak{B}}J(K\mathfrak{W})$$

= $K\Gamma J(K\mathfrak{U}) + K\mathfrak{T}\hat{\mathfrak{B}}J(K\mathfrak{W}).$

Since U_0 is isomorphic to the left ideal $K\hat{\mathfrak{J}}$ of $K\mathfrak{J}$, we have

$$U_0^{\Gamma} \cong \widehat{\mathfrak{J}}K\mathfrak{W}.$$

Hence

$$J(K\Gamma)U_0^{\Gamma} \simeq (K\Gamma J(K\mathfrak{U}) + K\mathfrak{T}\hat{\mathfrak{B}}J(K\mathfrak{W}))\hat{\mathfrak{J}}K\mathfrak{W}$$
$$= K\mathfrak{T}\hat{\mathfrak{B}}J(K\mathfrak{W})\hat{\mathfrak{J}}K\mathfrak{W}.$$

Noting that t commutes with both $\hat{\mathfrak{B}}$ and elements in \mathfrak{W} , we have

$$K\mathfrak{T}\hat{\mathfrak{J}}J(K\mathfrak{W})\hat{\mathfrak{J}}K\mathfrak{W} = \hat{\mathfrak{B}}J(K\mathfrak{W})K\mathfrak{T}\hat{\mathfrak{J}}K\mathfrak{W} = \hat{\mathfrak{B}}J(K\mathfrak{W})\hat{\mathfrak{J}}K\mathfrak{W} = J(K\mathfrak{W})\hat{\mathfrak{J}}K\mathfrak{W}$$
$$= J(K\mathfrak{W})\hat{\mathfrak{J}}K\mathfrak{W} = \hat{\mathfrak{J}}J(K\mathfrak{W}).$$

Thus we have proved that

$$J(K\Gamma)U_0^\Gamma \cong \widehat{\mathfrak{J}}J(K\mathfrak{W}).$$

From this we have

$$J(K\Gamma)^{2}U_{\delta}^{\Gamma} \simeq (K\Gamma J(K\mathfrak{U}) + K\mathfrak{T}\widehat{\mathfrak{D}}J(K\mathfrak{W}))\widehat{\mathfrak{J}}J(K\mathfrak{W})$$

$$= K\mathfrak{T}\widehat{\mathfrak{D}}J(K\mathfrak{W})\widehat{\mathfrak{J}}J(K\mathfrak{W}) = \widehat{\mathfrak{D}}J(K\mathfrak{W})\widehat{\mathfrak{J}}J(K\mathfrak{W})$$

$$= J(K\mathfrak{W})\widehat{\mathfrak{D}}\widehat{\mathfrak{J}}J(K\mathfrak{W}) = J(K\mathfrak{W})\widehat{\mathfrak{J}}J(K\mathfrak{W})$$

$$= \widehat{\mathfrak{J}}J(K\mathfrak{W})^{2} = K\widehat{\Gamma}.$$

Thus we see at once that

$$L_1(U_0^r) \simeq L_2(U_0^r) \simeq L_3(U_0^r) \simeq K.$$

Next, since W_0 is isomorphic to the left ideal $K\widehat{\mathfrak{U}}\widehat{\mathfrak{B}}(t-1)$ of $K\mathfrak{J}$, the

following can be obtained by the method used in the above:

$$W_0^{\Gamma} \simeq \hat{\mathfrak{U}}\hat{\mathfrak{B}}(t-1)K\mathfrak{B},$$

 $J(K\Gamma)W_0^{\Gamma} \simeq \hat{\mathfrak{U}}\hat{\mathfrak{B}}(t-1)J(K\mathfrak{B}),$
 $J(K\Gamma)^2W_0^{\Gamma} \simeq K\hat{\mathfrak{U}}\hat{\mathfrak{B}}(t-1)\hat{\mathfrak{B}}.$

This shows that

$$L_1(W_0^r) \simeq L_2(W_0^r) \simeq L_3(W_0^r) \simeq K\widehat{\mathfrak{G}}(t-1) \simeq J.$$

Thus (3) is proved.

- (5) is clear by the definition of the modules K, J, L_i and N_i .
- (4) Clearly $\tilde{P}_{v_t}^{\Gamma}$ and $\tilde{P}_{w_t}^{\Gamma}$ are projective $K\Gamma$ -modules. Further by (5) and Frobenius reciprocity theorem, we have

$$\begin{split} \tilde{P}_{v_{t}}^{\Gamma}/J(K\Gamma)\tilde{P}_{v_{i}}^{\Gamma} &\simeq \begin{cases} K, & i=0, \\ L_{(t+2)/3}, & i=1,4,7,10, \end{cases} \\ \tilde{P}_{w_{t}}^{\Gamma}/J(K\Gamma)\tilde{P}_{w_{t}}^{\Gamma} &\simeq \begin{cases} J, & i=0, \\ N_{(t+2)/3}, & i=1,4,7,10, \end{cases} \end{split}$$

and so (4) follows at once.

(6) By Frobenius reciprocity theorem,

$$\operatorname{Hom}_{K\Gamma}(K, I^{\Gamma}) \simeq \operatorname{Hom}_{K\Gamma}(J, I^{\Gamma}) \simeq \operatorname{Hom}_{K\mathfrak{G}}(I, I),$$

 $\operatorname{Hom}_{K\Gamma}(L_{i}, M_{i}^{\Gamma}) \simeq \operatorname{Hom}_{K\Gamma}(N_{i}, M_{i}^{\Gamma}) \simeq \operatorname{Hom}_{K\mathfrak{G}}(M_{i}, M_{i}).$

This shows that $K \oplus J$ (resp. $L_i \oplus N_i$) is isomorphic to a submodule of I^{Γ} (resp. M_i^{Γ}). But $\dim_{\kappa} I^{\Gamma} = 2$ and $\dim_{\kappa} M_i^{\Gamma} = 6$. Hence the result follows.

(7) By virtue of Frobenius reciprocity theorm, we can see that

$$P_i^r/J(K\Gamma)P_i^r \simeq K \oplus J, P_{M_i}^r/J(K\Gamma)P_{M_i}^r \simeq L_i \oplus N_i.$$

As P_{t}^{Γ} and P_{Mt}^{Γ} are projective $K\Gamma$ -modules, the result follows from the above.

- (8) Given a KG-module M, we see that M is completely reducible if and only if M^{Γ} is completely reducible, because $[\Gamma: \mathfrak{G}] = 2$. Hence (8) follows at once from (7).
- (9) Let e_i be the primitive idempotent in $K\mathfrak{G}$ corresponding to P_{Mi} . Then $-e_i(t+1)$ and $e_i(t-1)$ are the primitive idempotents in $K\Gamma$ corresponding to P_{Li} and P_{Ni} respectively. Noting that

$$J(K\Gamma) = K\Gamma J(K\mathfrak{G})$$
 and $\Gamma = \langle \mathfrak{G}, \mathfrak{T} \rangle$,

we have

$$L_{k}(P_{L_{i}}) \simeq J(K\Gamma)^{k-1}e_{i}(t+1)/J(K\Gamma)^{k}e_{i}(t+1)$$

$$= J(K\mathfrak{G})^{k-1}e_{i}(t+1)/J(K\mathfrak{G})^{k}e_{i}(t+1),$$

$$L_{k}(P_{N_{i}}) \simeq J(K\Gamma)^{k-1}e_{i}(t-1)/J(K\Gamma)^{k}e_{i}(t-1)$$

$$= J(K\mathfrak{G})^{k-1}e_{i}(t-1)/J(K\mathfrak{G})^{k}e_{i}(t-1).$$

From this it follows at once that

$$\dim_{\kappa} L_{\kappa}(\mathbf{P}_{L_{i}}) = \dim_{\kappa} L_{\kappa}(\mathbf{P}_{N_{i}})
= \dim_{\kappa} J(K\mathfrak{G})^{k-1} e_{i} / J(K\mathfrak{G})^{k} e_{i}
= \dim_{\kappa} L_{\kappa}(\mathbf{P}_{M_{i}}),$$

proving (9).

Remark. If the Loewy series of P_K (resp. P_{L_l}) is known, then by [4, Theorem] and Lemma 1.1, (6), (8), we can obtain the Loewy series of P_J (resp. P_{N_l}). Hence in order to prove our theorem, it suffices to determine the Loewy series of P_K and P_{L_l} .

If a_t and b_t are the primitive idempotents in $K\mathfrak{F}$ corresponding to \tilde{P}_{u_t} and \tilde{P}_{w_t} respectively, then

$$\operatorname{Hom}_{K3}(\tilde{P}_{U_l}, \tilde{P}_{U_J}) \simeq a_l K \mathfrak{U} a_J,$$
 $\operatorname{Hom}_{K3}(\tilde{P}_{U_l}, \tilde{P}_{W_J}) \simeq a_l K \mathfrak{U} b_J,$
 $\operatorname{Hom}_{K3}(\tilde{P}_{W_l}, \tilde{P}_{U_J}) \simeq b_l K \mathfrak{U} a_J,$
 $\operatorname{Hom}_{K3}(\tilde{P}_{W_l}, \tilde{P}_{W_J}) \simeq b_l K \mathfrak{U} b_J.$

But we easily see that

$$a_{i}KUa_{j} = \begin{cases} \langle a_{i}, a_{i}aa_{i} \rangle, & i = j, \\ \langle a_{i}aa_{j} \rangle, & i \neq j, \end{cases}$$

$$a_{i}KUb_{j} = \langle a_{i}ab_{j} \rangle,$$

$$b_{i}KUa_{j} = \langle b_{i}aa_{j} \rangle,$$

$$b_{i}KUb_{j} = \begin{cases} \langle b_{i}, b_{i}ab_{i} \rangle, & i = j, \\ \langle b_{i}ab_{j} \rangle, & i \neq j. \end{cases}$$

Hence we have the following

Lemma 1.2. The Cartan matrix of K3 is given by

$$\begin{pmatrix} 2 & 1 & \cdots & \cdots & 1 \\ 1 & 2 & \cdots & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & \cdots & 2 \end{pmatrix}.$$

The preceding lemma together with Lemma 1.1(3), (4) implies the following

Corollary 1.3. The Cartan matrix of $K\Gamma$ is given by

2. The Loewy structure of the projective indecomposable $K\mathfrak{F}$ -modules. Using an argument similar to the one used in the proof of [4, Proposition 2.3], we shall prove the following

Proposition 2.1. (1) \tilde{P}_{ν_0} has the Loewy and socle series given by

$$\begin{array}{c} U_0 \\ W_1 \ W_2 \ W_3 \\ U_4 \ U_5 \ U_6 \ U_7 \ U_8 \ U_9 \\ W_0 \ W_7 \ W_8 \ W_9 \ W_{10} \ W_{11} \ W_{12} \\ U_1 \ U_2 \ U_3 \ U_{10} \ U_{11} \ U_{12} \\ W_4 \ W_5 \ W_6 \\ U_0 \end{array}$$

- (2) For every i, $1 \leq i \leq 12$, $L_k(\tilde{P}_{U_l}) \simeq S_{8-k}(\tilde{P}_{U_l}) \simeq L_k(\tilde{P}_{U_0}) \otimes_K U_l$ $(1 \leq k \leq 7)$.
- (3) For every i, $0 \le i \le 12$, $L_k(\tilde{P}_{W_l}) \simeq S_{8-k}(\tilde{P}_{W_l}) \simeq L_k(\tilde{P}_{U_0}) \otimes_k W_l$ $(1 \le k \le 7)$.

Proof. We shall identify \tilde{P}_{v_0} with the left ideal $K\mathfrak{U}\,\sigma$ of $K\mathfrak{J}$, where $\sigma = -\hat{\mathfrak{D}}\hat{\mathfrak{T}} = -\sum_{x \in \mathfrak{J} \times \mathfrak{T}} x$ is the primitive idempotent in $K\mathfrak{J}$. As $J(K\mathfrak{J}) = K\mathfrak{J}/(K\mathfrak{U})$, we have $J(K\mathfrak{J})^i \tilde{P}_{v_0} = J(K\mathfrak{U})^i \sigma$. View $K\mathfrak{U}$ as a $K\mathfrak{J}$ -module via conjugation of \mathfrak{J} on \mathfrak{U} . Then the above implies that there exists a $K\mathfrak{J}$ -isomorphism:

$$J(K\mathfrak{J})^{i} \tilde{P}_{v_0} / J(K\mathfrak{J})^{i+1} \tilde{P}_{v_0} = J(K\mathfrak{U})^{i} \sigma / J(K\mathfrak{U})^{i+1} \sigma \cong J(K\mathfrak{U})^{i} / J(K\mathfrak{U})^{i+1}.$$

At first we shall prove that

$$(2.2) L_2(\tilde{P}_{\nu_0}) \simeq W_1 \oplus W_2 \oplus W_3.$$

In order to prove (2.2), it suffices to show that the $K\mathfrak{F}$ -module $J(K\mathfrak{U})/J(K\mathfrak{U})^2$ is isomorphic to $W_1 \oplus W_2 \oplus W_3$. It is easy to see that $J(K\mathfrak{U})/J(K\mathfrak{U})^2$ has a K-basis consisting of the elements:

$$(a-1)+J(K\mathfrak{U})^2$$
, $(b-1)+J(K\mathfrak{U})^2$, $(c-1)+J(K\mathfrak{U})^2$.

Operating v and t on (a-1), (b-1) and (c-1), we obtain the following congruences relative to mod $J(K\mathfrak{U})^2$:

$$(a-1)^{v} \equiv (c-1),$$

$$(b-1)^{v} \equiv -(a-1) + (c-1),$$

$$(c-1)^{v} \equiv -(a-1) - (b-1) + (c-1),$$

$$(a-1)^{t} \equiv -(a-1),$$

$$(b-1)^{t} \equiv -(b-1),$$

$$(c-1)^{t} \equiv -(c-1).$$

This shows that $J(K\mathfrak{U})/J(K\mathfrak{U})^2$ affords the matrix representation

$$S\colon \ v\to S(v)=\begin{pmatrix} 0 & -1 & -1\\ 0 & 0 & -1\\ 1 & 1 & 1 \end{pmatrix},\ t\to S(t)=\begin{pmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{pmatrix}.$$

The characteristic polynomial of the matrix S(v) is X^3-X^2-X-1 , and so (2.2) follows. Next we show that

$$(2.3) L_3(\tilde{P}_{U_0}) \simeq U_4 \oplus U_5 \oplus U_6 \oplus U_7 \oplus U_8 \oplus U_9.$$

By (2.2), we can choose a K-basis $|m_1, m_2, m_3|$ of $J(K\mathfrak{U})/J(K\mathfrak{U})^2$ such that $m_i^v = \zeta^{3^{i-1}}m_i$, $m_i^t = -m_i$, where ζ is a root of the polynomial $X^3 - X^2 - X - 1$. Now we express m_i as

$$m_i = \alpha_i + J(K\mathfrak{U})^2 \quad (\alpha_i \in J(K\mathfrak{U})).$$

Then $|\alpha_i \alpha_j + J(K\mathfrak{U})^3| 1 \le i \le j \le 3$ forms a K-basis of $J(K\mathfrak{U})^2/J(K\mathfrak{U})^3$. Operating v and t on the elements $\alpha_i \alpha_j$, we obtain the following congruences relative to mod $J(K\mathfrak{U})^3$:

$$\begin{array}{lll} (\alpha_{1}^{2})^{v} \equiv \zeta^{2} \alpha_{1}^{2}, & (\alpha_{1}^{2})^{t} \equiv \alpha_{1}^{2}, \\ (\alpha_{2}^{2})^{v} \equiv \zeta^{6} \alpha_{2}^{2}, & (\alpha_{2}^{2})^{t} \equiv \alpha_{2}^{2}, \\ (\alpha_{3}^{2})^{v} \equiv \zeta^{5} \alpha_{3}^{2}, & (\alpha_{3}^{2})^{t} \equiv \alpha_{3}^{2}, \\ (\alpha_{1} \alpha_{2})^{v} \equiv \zeta^{4} \alpha_{1} \alpha_{2}, & (\alpha_{1} \alpha_{2})^{t} \equiv \alpha_{1} \alpha_{2}, \\ (\alpha_{1} \alpha_{3})^{v} \equiv \zeta^{10} \alpha_{1} \alpha_{3}, & (\alpha_{1} \alpha_{3})^{t} \equiv \alpha_{1} \alpha_{3}, \\ (\alpha_{2} \alpha_{3})^{v} \equiv \zeta^{12} \alpha_{2} \alpha_{3}, & (\alpha_{2} \alpha_{3})^{t} \equiv \alpha_{2} \alpha_{3}. \end{array}$$

From this we obtain (2.3)

- By [2, Corollary], the Loewy and socle series of \tilde{P}_{v_0} coincide. Hence noting that the Loewy length of \tilde{P}_{v_0} is 7 and that \tilde{P}_{v_0} is self-dual, we conclude from Lemma 1.1(1), Lemma 1.2 and the above results (2.2), (2.3), that \tilde{P}_{v_0} has the Loewy and socle series given in (1).
 - (2) and (3) are obtained from the following isomorphism:

$$\tilde{P}_{U_i} \cong \tilde{P}_{U_0} \otimes_{\kappa} U_i \ (1 \leq i \leq 12), \ \tilde{P}_{W_i} \cong \tilde{P}_{U_0} \otimes_{\kappa} W_i \ (0 \leq i \leq 12).$$

Thus Proposition 2.1 is proved.

Corollary 2.4. (1) $L_2(P_{L_1}) \simeq N_2 \oplus N_2 \oplus N_3$.

- $(2) \quad L_3(P_{L_1}) \simeq K \oplus L_1 \oplus L_3 \oplus L_3 \oplus L_4 \oplus L_4.$
- $(3) \quad L_2(P_{L_2}) \simeq J \oplus N_3 \oplus N_4.$
- $(4) \quad L_2(P_{L_3}) \simeq N_1 \oplus N_3 \oplus N_4.$
- $(5) L_3(P_{L_2}) \simeq L_1 \oplus L_2 \oplus L_2 \oplus L_3 \oplus L_4 \oplus L_4.$
- (6) $L_4(P_{L_3}) \simeq J \oplus N_1 \oplus N_2 \oplus N_2 \oplus N_3 \oplus N_4 \oplus N_4$.
- $(7) \quad L_2(P_{L_1}) \simeq N_1 \oplus N_2 \oplus N_4.$
- $(8) \quad L_3(P_{L_4}) \simeq K \oplus L_1 \oplus L_2 \oplus L_2 \oplus L_3 \oplus L_4.$

Proof. (1) From the isomorphism:

$$P_{\nu_1}/J(K\mathfrak{J})P_{\nu_1} \simeq \tilde{P}_{\nu_1}^{\Gamma}/J(K\mathfrak{J})\tilde{P}_{\nu_1}^{\Gamma} \simeq \tilde{P}_{\nu_1}^{\Gamma}/(J(K\mathfrak{J})\tilde{P}_{\nu_1})^{\Gamma}$$

$$\simeq (\tilde{P}_{\nu_1}/J(K\mathfrak{J})\tilde{P}_{\nu_2})^{\Gamma} \simeq U_1^{\Gamma} = L_1,$$

it follows that $J(K\Gamma)P_{L_1}=J(K\mathfrak{F})P_{L_1}$. Therefore

$$J(K\Gamma)P_{L_1}/J(K\mathfrak{J})^2P_{L_1} = J(K\mathfrak{J})P_{L_1}/J(K\mathfrak{J})^2P_{L_1}$$

$$\simeq J(K\mathfrak{J})\tilde{P}_{v_1}^{\Gamma}/J(K\mathfrak{J})^2\tilde{P}_{v_1}^{\Gamma} \simeq (J(K\mathfrak{J})\tilde{P}_{v_1})^{\Gamma}/(J(K\mathfrak{J})^2\tilde{P}_{v_1})^{\Gamma}$$

$$\simeq (J(K\mathfrak{J})\tilde{P}_{v_1}/J(K\mathfrak{J})^2\tilde{P}_{v_1})^{\Gamma} \simeq (W_5 \oplus W_6 \oplus W_7)^{\Gamma}$$

$$= N_2 \oplus N_2 \oplus N_3.$$

Hence $J(K\Gamma)P_{L_1}/J(K\mathfrak{J})^2P_{L_1}$ is completely reducible, and so we have

$$J(K\mathfrak{J})^2 P_{L_1} = J(K\Gamma)^2 P_{L_1}$$
 and $L_2(P_{L_1}) \simeq N_2 \oplus N_2 \oplus N_3$,

proving (1).

(2) Since $J(K\Gamma)^2 P_L = J(K\mathfrak{J})^2 P_L$, we have

$$J(K\Gamma)^{2}P_{L_{1}}/J(K\mathfrak{J})^{3}P_{L_{1}} = J(K\mathfrak{J})^{2}P_{L_{1}}/J(K\mathfrak{J})^{3}P_{L_{1}}$$

$$\simeq J(K\mathfrak{J})^{2}\tilde{P}_{v_{1}}^{\Gamma}/J(K\mathfrak{J})^{3}\tilde{P}_{v_{1}}^{\Gamma} \simeq (J(K\mathfrak{J})^{2}\tilde{P}_{v_{1}})^{\Gamma}/(J(K\mathfrak{J})^{3}\tilde{P}_{v_{1}})^{\Gamma}$$

$$\simeq (J(K\mathfrak{J})^{2}\tilde{P}_{v_{1}}/J(K\mathfrak{J})^{3}\tilde{P}_{v_{1}})^{\Gamma}$$

$$\simeq (U_{0} \oplus U_{2} \oplus U_{8} \oplus U_{9} \oplus U_{10} \oplus U_{11})^{\Gamma}$$

$$= K L_1 L_3 L_4 L_4$$

$$= K K.$$

As $J(K\mathfrak{J})^3P_{L_1} \subset J(K\Gamma)^3P_{L_1}$, the above implies that

$$L_3(P_{L_1}) \simeq K \oplus L_1 \oplus L_3 \oplus L_3 \oplus L_4 \oplus L_4$$

proving (2).

- (3) through (8) can be obtained by the method used for the proof of (1) and (2), and we omit the proof.
- 3. The Loewy structure of P_{κ} and P_{J} . In this section, by making use of an argument similar to the one used in $[4, \S 3]$, we shall determine the Loewy series of P_{J} is obtained (see § 1, Remark). We set $\Re = \langle \Re \times \Im, \Re \rangle$, and we let \hat{K} be the trivial simple $K\Re$ -module and $\hat{P}_{\bar{K}}$ the projective indecomposable $K\Re$ -module for which $\hat{P}_{\bar{K}}/J(K\Re)\hat{P}_{\bar{K}} \cong \hat{K}$. As in the proof of Proposition 2.1, we denote by σ the primitive idempoptent $-\Re \Im$ in $K\Im$, and set

$$A = K \mathfrak{U} \sigma \hat{\mathfrak{M}}, B = K \mathfrak{U} \sigma J(K \mathfrak{M}), C = K \mathfrak{U} \sigma K \mathfrak{M}.$$

Since $\hat{P}_{\widehat{K}}^{\Gamma} \cong P_{K}$, $\hat{P}_{\widehat{K}} \cong K \mathfrak{R} \sigma = \sigma K \mathfrak{B}$ and $J(K \mathfrak{R}) = K \mathfrak{T} \hat{\mathfrak{D}} J(K \mathfrak{B})$, we have

$$A \simeq (J(K\mathfrak{R})^2 \hat{P}_{\widehat{k}})^r, \ B \simeq (J(K\mathfrak{R}) \hat{P}_{\widehat{k}})^r, \ C \simeq \hat{P}_{\widehat{k}}^r \simeq P_{\kappa}.$$

At first we determine the Loewy series of A.

Lemma 3.1.

$$A = \begin{array}{c} K \\ N_1 \\ L_2 L_3 \\ A = J N_3 N_4 \\ L_1 L_4 \\ N_2 \\ K \end{array}$$

Proof. Let C_{a^i} (i=1,2) be the conjugate class in UB containing a^i . Then we have

$$\hat{\mathfrak{B}} K\mathfrak{U} \, \sigma = (\hat{\mathfrak{B}} K\mathfrak{U} \hat{\mathfrak{B}}) \, \sigma = \langle \hat{\mathfrak{B}}, \, \hat{C}_a \hat{\mathfrak{B}}, \, \hat{C}_{a^2} \hat{\mathfrak{B}} \rangle \, \sigma = \langle \, \sigma, \, \hat{C}_a \, \sigma, \, \hat{C}_{a^2} \, \sigma \rangle.$$

From this we obtain

$$\hat{\mathfrak{B}}J(K\mathfrak{B})A = \hat{\mathfrak{B}}J(K\mathfrak{B})K\mathfrak{ll}\,\sigma\hat{\mathfrak{B}}
= J(K\mathfrak{B})(\hat{\mathfrak{B}}K\mathfrak{ll}\,\sigma)\hat{\mathfrak{W}}
= J(K\mathfrak{B})\langle\sigma,\hat{C}_{a}\sigma,\hat{C}_{a^{2}}\sigma\rangle\hat{\mathfrak{W}}
= \langle\sigma,\hat{C}_{a}\sigma,\hat{C}_{a^{2}}\sigma\rangle J(K\mathfrak{B})\hat{\mathfrak{W}} = 0.$$

Hence, recalling that $J(K\Gamma)$ is expressed as

$$J(K\Gamma) = K\Gamma J(K\mathfrak{U}) + K\mathfrak{D}J(K\mathfrak{W}),$$

we obtain

$$J(K\Gamma)^i A = K\Gamma J(K\mathfrak{U})^i A = J(K\mathfrak{U})^i \sigma \widehat{\mathfrak{W}}.$$

Thus it holds that

$$J(K\Gamma)^i A |_{\mathfrak{I}} \simeq J(K\mathfrak{I})^i \sigma \simeq J(K\mathfrak{J})^i \tilde{P}_{U_0}$$

and so

$$(J(K\Gamma)^{i}A/J(K\Gamma)^{i+1}A)|_{\mathfrak{F}} \simeq J(K\mathfrak{F})^{i}\tilde{P}_{v_0}/J(K\mathfrak{F})^{i+1}\tilde{P}_{v_0}.$$

Therefore the result follows from Proposition 2.1(1) and Lemma 1.1(5).

Next, we determine the Loewy structure of B.

Lemma 3.2. (1)
$$L_1(B) \simeq L_1(A)$$
.

(2)
$$L_i(B) \simeq L_i(A) \oplus L_{i-1}(A)$$
 for $2 \le i \le 7$.

(3)
$$L_8(B) = L_7(A)$$
.

Proof. At first we shall show, by induction, that

(3.3)
$$J(K\Gamma)^{i}B = J(K\mathfrak{U})^{i}\sigma J(K\mathfrak{W}) + J(K\Gamma)^{i-1}A$$
, where $J(K\Gamma)^{0} = K\Gamma$.

Since
$$J(K\Gamma) = K\Gamma J(K\mathfrak{U}) + K\mathfrak{D}J(K\mathfrak{W})$$
, we have

$$J(K\Gamma)B = J(K\mathfrak{U}) \, \sigma J(K\mathfrak{W}) + K\mathfrak{T} \hat{\mathfrak{Y}} J(K\mathfrak{W}) K\mathfrak{U} \, \sigma J(K\mathfrak{W})$$

$$= J(K\mathfrak{U}) \, \sigma J(K\mathfrak{W}) + K\mathfrak{T} J(K\mathfrak{W}) (\hat{\mathfrak{Y}} K\mathfrak{U} \, \sigma) J(K\mathfrak{W})$$

$$= J(K\mathfrak{U}) \, \sigma J(K\mathfrak{W}) + K\mathfrak{T} J(K\mathfrak{W}) \langle \, \sigma, \, \hat{C}_a \, \sigma, \, \hat{C}_{a^2} \, \sigma \rangle J(K\mathfrak{W})$$

$$= J(K\mathfrak{U}) \, \sigma J(K\mathfrak{W}) + K\mathfrak{T} \langle \, \sigma, \, \hat{C}_a \, \sigma, \, \hat{C}_{a^2} \, \sigma \rangle J(K\mathfrak{W})^2$$

$$= J(K\mathfrak{U}) \, \sigma J(K\mathfrak{W}) + K\mathfrak{T} \langle \, \sigma, \, \hat{C}_a \, \sigma, \, \hat{C}_{a^2} \, \sigma \rangle \, \hat{\mathfrak{W}}.$$

But
$$t \sigma = \sigma$$
, $t \hat{C}_a = \hat{C}_{a^2} t$ and $t \hat{C}_{a^2} = \hat{C}_a t$, and so
$$K\mathfrak{T}\langle \sigma, \hat{C}_a \sigma, \hat{C}_{a^2} \sigma \rangle = \langle \sigma, \hat{C}_a \sigma, \hat{C}_{a^2} \sigma \rangle = \hat{\mathfrak{B}} K \mathfrak{U} \sigma.$$

Thus we have

$$J(K\Gamma)B = J(K\mathfrak{U}) \, \sigma J(K\mathfrak{W}) + (\hat{\mathfrak{B}}K\mathfrak{U} \, \sigma) \, \hat{\mathfrak{W}},$$

which implies that

$$J(K\Gamma)B \subset J(K\mathfrak{U}) \sigma J(K\mathfrak{W}) + A.$$

On the other hand, given $u \in \mathbb{U}$, $u \neq 1$, we have

$$u \, \sigma \hat{\mathfrak{B}} = (1 - \sigma) u \, \sigma \hat{\mathfrak{B}} + \sigma u \, \sigma \hat{\mathfrak{B}}$$

$$= (u + \sum_{x \in \mathfrak{M}} u^x) \, \sigma \hat{\mathfrak{B}} - (1 + t) \hat{\mathfrak{D}} u \, \sigma \hat{\mathfrak{B}}$$

$$= (\hat{\mathfrak{U}} - 1 + u) \, \sigma \hat{\mathfrak{B}} - \hat{\mathfrak{D}} u \, \sigma \hat{\mathfrak{B}} - \hat{\mathfrak{D}} u^t \, \sigma \hat{\mathfrak{B}}$$

$$\in J(K\mathfrak{U}) \, \sigma J(K\mathfrak{W}) + (\hat{\mathfrak{B}} K\mathfrak{U} \, \sigma) \hat{\mathfrak{W}} = J(K\Gamma) B;$$

and

$$\sigma \hat{\mathfrak{B}} = \hat{\mathfrak{B}} \sigma \hat{\mathfrak{B}} \in (\hat{\mathfrak{B}} K \mathfrak{U} \sigma) \hat{\mathfrak{B}} \subset J(K \Gamma) B.$$

This shows that $A \subset J(K\Gamma)B$. Thus (3.3) is proved for i = 1. Next, assume that (3.3) holds for some i. Then

$$\begin{split} J(K\Gamma)^{i+1}B &= J(K\Gamma)(J(K\mathfrak{U})^{i}\sigma J(K\mathfrak{W}) + J(K\Gamma)^{i-1}A) \\ &= J(K\mathfrak{U})^{i+1}\sigma J(K\mathfrak{W}) + K\mathfrak{T}\hat{\mathfrak{B}}J(K\mathfrak{W})J(K\mathfrak{U})^{i}\sigma J(K\mathfrak{W}) + J(K\Gamma)^{i}A \\ &= J(K\mathfrak{U})^{i+1}\sigma J(K\mathfrak{W}) + K\mathfrak{T}J(K\mathfrak{W})(\hat{\mathfrak{B}}J(K\mathfrak{U})^{i}\sigma)J(K\mathfrak{W}) + J(K\Gamma)^{i}A \\ &= J(K\mathfrak{U})^{i+1}\sigma J(K\mathfrak{W}) + K\mathfrak{T}(\hat{\mathfrak{B}}J(K\mathfrak{U})^{i}\sigma)J(K\mathfrak{W})^{2} + J(K\Gamma)^{i}A \\ &= J(K\mathfrak{U})^{i+1}\sigma J(K\mathfrak{W}) + (\hat{\mathfrak{B}}J(K\mathfrak{U})^{i}\sigma)K\mathfrak{T}\hat{\mathfrak{W}} + J(K\Gamma)^{i}A \\ &= J(K\mathfrak{U})^{i+1}\sigma J(K\mathfrak{W}) + (\hat{\mathfrak{B}}J(K\mathfrak{U})^{i}\sigma)\hat{\mathfrak{W}} + J(K\Gamma)^{i}A. \end{split}$$

But $\widehat{\mathfrak{B}}J(K\mathfrak{U})^i\sigma\widehat{\mathfrak{B}}\subset J(K\mathfrak{U})^i\sigma\widehat{\mathfrak{B}}=J(K\Gamma)^iA$. Therefore (3.3) holds for every i.

From (3.3) it follows that

$$\begin{split} L_{\mathfrak{l}}(B) &= B/J(K\Gamma)B = K\mathfrak{U}\,\sigma J(K\mathfrak{B})/(J(K\mathfrak{U})\,\sigma J(K\mathfrak{B}) + A\,) \\ &\simeq (K\mathfrak{U}\,\sigma J(K\mathfrak{B})/K\mathfrak{U}\,\sigma \hat{\mathfrak{B}})/((J(K\mathfrak{U})\,\sigma J(K\mathfrak{B}) + K\mathfrak{U}\,\sigma \hat{\mathfrak{B}})/K\mathfrak{U}\,\sigma \hat{\mathfrak{B}}) \\ &\simeq K\mathfrak{U}\,\sigma \hat{\mathfrak{B}}/J(K\mathfrak{U})\,\sigma \hat{\mathfrak{B}} \simeq K\hat{\Gamma} \simeq L_{\mathfrak{l}}(A\,), \end{split}$$

proving (1).

Because of (3.3), we have the following inclusions:

$$J(K\Gamma)^{i}B \subset J(K\Gamma)^{i}B + J(K\Gamma)^{i-2}A \subset J(K\Gamma)^{i-1}B, \quad 2 \le i \le 7.$$

By replacing, in the proof of [4, (3.5), (3.6)], X, Y, J and ε by A, B,

 $J(K\Gamma)$ and σ respectively, we can prove

$$J(K\Gamma)^{i-1}B/(J(K\Gamma)^{i}B+J(K\Gamma)^{i-2}A) \simeq L_{i}(A),$$

$$(J(K\Gamma)^{i}B+J(K\Gamma)^{i-2}A)/J(K\Gamma)^{i}B \simeq L_{i-1}(A).$$

Hence

$$L_i(B) \simeq L_i(A) \oplus L_{i-1}(A)$$
.

Thus (2) is proved.

Further by (3.3), we have $J(K\Gamma)^7 B = J(K\Gamma)^6 A = L_7(A)$, proving (3).

Finally, we determine the Loewy structure of C.

Lemma 3.4. (1) $L_1(C) \cong L_1(A)$.

- (2) $L_i(C) \simeq L_i(A) \oplus L_{i-1}(B)$ for $2 \le i \le 7$.
- (3) $L_8(C) = L_7(B)$.
- (4) $L_{\mathfrak{g}}(C) = L_{\mathfrak{g}}(B)$.

Proof. First we shall prove, by induction, that

$$(3.5) \quad J(K\Gamma)^{i}C = J(K\mathfrak{U})^{i}\sigma K\mathfrak{W} + J(K\Gamma)^{i-1}B, \qquad \text{where } J(K\Gamma)^{0} = K\Gamma.$$

As $J(K\Gamma) = K\Gamma J(K\mathfrak{U}) + K\mathfrak{D}\hat{\mathfrak{B}}J(K\mathfrak{W})$, we have

$$J(K\Gamma)C = J(K\mathfrak{U}) \, \sigma K\mathfrak{W} + K\mathfrak{D}J(K\mathfrak{W}) K\mathfrak{U} \, \sigma K\mathfrak{W}$$

$$= J(K\mathfrak{U}) \, \sigma K\mathfrak{W} + K\mathfrak{T}J(K\mathfrak{W})(\hat{\mathfrak{B}}K\mathfrak{U} \, \sigma) K\mathfrak{W}$$

$$= J(K\mathfrak{U}) \, \sigma K\mathfrak{W} + K\mathfrak{T}(\hat{\mathfrak{B}}K\mathfrak{U} \, \sigma) J(K\mathfrak{W})$$

$$= J(K\mathfrak{U}) \, \sigma K\mathfrak{W} + (\hat{\mathfrak{B}}K\mathfrak{U} \, \sigma) K\mathfrak{T}J(K\mathfrak{W})$$

$$= J(K\mathfrak{U}) \, \sigma K\mathfrak{W} + (\hat{\mathfrak{B}}K\mathfrak{U} \, \sigma) J(K\mathfrak{W}).$$

Hence $J(K\Gamma)C \subset J(K\mathfrak{U}) \sigma K\mathfrak{W} + B$. But given $u \in \mathfrak{U}$, $u \neq 1$ and $w \in J(K\mathfrak{W})$, we have

$$\begin{split} u\,\sigma w &= (1-\sigma)u\,\sigma w + \sigma u\,\sigma w \\ &= (u+\sum_{x\in\mathfrak{N}}u^x)\,\sigma w - (1+t)\hat{\mathfrak{B}}u\,\sigma w \\ &= (\hat{\mathfrak{U}}-1+u)\,\sigma w - \hat{\mathfrak{B}}u\,\sigma w - \hat{\mathfrak{B}}u^t\sigma w \\ &\in J(K\mathfrak{U})\,\sigma K\mathfrak{W} + (\hat{\mathfrak{B}}K\mathfrak{U}\,\sigma)J(K\mathfrak{W}) = J(K\Gamma)\,C\,; \end{split}$$

and

$$\sigma w = \hat{\mathfrak{B}} \sigma w \in (\hat{\mathfrak{B}} K \mathfrak{U} \sigma) J(K \mathfrak{B}) \subset J(K \Gamma) C.$$

This shows that $B = K\mathfrak{U} \sigma J(K\mathfrak{W}) \subset J(K\Gamma)C$. Thus (3.5) is proved for i = 1. Next, assume that (3.5) holds for some i. Then we have

$$\begin{split} J(K\Gamma)^{i+1}C &= J(K\mathfrak{U})^{i+1}\sigma K\mathfrak{W} + K\mathfrak{T}\hat{\mathfrak{B}}J(K\mathfrak{W})J(K\mathfrak{U})^{i}\sigma K\mathfrak{W} + J(K\Gamma)^{i}B \\ &= J(K\mathfrak{U})^{i+1}\sigma K\mathfrak{W} + K\mathfrak{T}J(K\mathfrak{W})(\hat{\mathfrak{B}}J(K\mathfrak{U})^{i}\sigma)K\mathfrak{W} + J(K\Gamma)^{i}B \\ &= J(K\mathfrak{U})^{i+1}\sigma K\mathfrak{W} + K\mathfrak{T}(\hat{\mathfrak{B}}J(K\mathfrak{U})^{i}\sigma)J(K\mathfrak{W}) + J(K\Gamma)^{i}B \\ &= J(K\mathfrak{U})^{i+1}\sigma K\mathfrak{W} + (\hat{\mathfrak{B}}J(K\mathfrak{U})^{i}\sigma)K\mathfrak{T}J(K\mathfrak{W}) + J(K\Gamma)^{i}B \\ &= J(K\mathfrak{U})^{i+1}\sigma K\mathfrak{W} + (\hat{\mathfrak{B}}J(K\mathfrak{U})^{i}\sigma)J(K\mathfrak{W}) + J(K\Gamma)^{i}B. \end{split}$$

But

$$\widehat{\mathfrak{B}}J(K\mathfrak{U})^{\iota}\sigma J(K\mathfrak{W}) \subset J(K\mathfrak{U})^{\iota}\sigma J(K\mathfrak{W}) \subset J(K\Gamma)^{\iota}B.$$

Hence

$$J(K\Gamma)^{i+1}C = J(K\mathfrak{U})^{i+1}\sigma K\mathfrak{W} + J(K\Gamma)^{i}B.$$

Thus (3.5) holds for every i.

By (3.5), we have

$$L_1(C)$$

 $= C/J(K\Gamma)C = K \mathfrak{U} \sigma K \mathfrak{W}/(J(K\mathfrak{U}) \sigma K \mathfrak{W} + K \mathfrak{U} \sigma J(K \mathfrak{W}))$

 $\simeq (K \mathfrak{U} \sigma K \mathfrak{W} / K \mathfrak{U} \sigma J (K \mathfrak{W})) / ((J (K \mathfrak{U}) \sigma K \mathfrak{W} + K \mathfrak{U} \sigma J (K \mathfrak{W})) / K \mathfrak{U} \sigma J (K \mathfrak{W}))$

$$\simeq K \mathfrak{U}_{\sigma} \hat{\mathfrak{W}} / J(K \mathfrak{U})_{\sigma} \hat{\mathfrak{W}} \simeq K \hat{\Gamma} \simeq L_{\mathfrak{I}}(A),$$

proving (1).

Further, from (3.5), we have the following inclusions:

$$J(K\Gamma)^{i}C \subset J(K\Gamma)^{i}C + J(K\Gamma)^{i-2}B \subset J(K\Gamma)^{i-1}C, \quad 2 \le i \le 7.$$

In the proof of [4, (3.9), (3.10)], replace X, Y, Z, J and ε by A, B, C, $J(K\Gamma)$ and σ respectively. Then we have

$$J(K\Gamma)^{i-1}C/(J(K\Gamma)^{i}C+J(K\Gamma)^{i-2}B) \simeq L_{i}(A),$$

$$(J(K\Gamma)^{i}C+J(K\Gamma)^{i-2}B)/J(K\Gamma)^{i}C \simeq L_{i-1}(B),$$

and so

$$L_i(C) \simeq L_i(A) \oplus L_{i-1}(B).$$

Thus (2) is proved.

By (3.5),
$$J(K\Gamma)^7C = J(K\Gamma)^6B$$
 and $J(K\Gamma)^8C = J(K\Gamma)^7B$, and so

$$L_8(C) = J(K\Gamma)^7 C/J(K\Gamma)^8 C = J(K\Gamma)^6 B/J(K\Gamma)^7 B = L_7(B),$$

$$L_9(C) = J(K\Gamma)^7 B = L_8(B).$$

Thus (3) and (4) are proved.

Since $C \simeq P_K$, combining Lemmas 3.1, 3.2, 3.4, we obtain the Loewy series of P_K , and so also obtain that of P_J . Thus we have proved the following

Proposition 3.6. P_{κ} and P_{J} have the Loewy series given in Theorem.

4. The Loewy structure of P_{L_3} and P_{N_3} . In this section, we shall prove the following

Proposition 4.1. P_{L_3} and P_{N_3} have the Loewy series given in Theorem.

Proof. By Proposition 2.1, $J(K\mathfrak{J})^3 \tilde{P}_{v_7}/J(K\mathfrak{J})^5 \tilde{P}_{v_7}$ has factor modules

$$X = \frac{W_0 \ W_3 \ W_5 \ W_6 \ W_7 \ W_{11} \ W_{12}}{U_0 \ U_5 \ U_9 \ U_{10}}, \ Y = \frac{W_0 \ W_3 \ W_5 \ W_6 \ W_7 \ W_{11} \ W_{12}}{U_2 \ U_3}.$$

Since $[S_2(\tilde{P}_{u_i}), W_0] = 0$ for i = 0, 5, 9, 10 (Proposition 2.1), $[S_2(X), W_0] = 0$, and so we have

$$X = W_0 \oplus \frac{W_3 W_5 W_6 W_7 W_{11} W_{12}}{U_0 U_5 U_9 U_{10}}.$$

From this we obtain

Since X^r is a homomorphic image of $(J(K\mathfrak{J})^3\tilde{P}_{v_7})^r$, noting that $(J(K\mathfrak{J})^3\tilde{P}_{v_7})^r \simeq J(K\Gamma)^3 P_{L_3}$, we obtain

$$L_5(P_{L_3}) \supset L_2(X^r) \simeq K \oplus J \oplus L_2 \oplus L_3 \oplus L_4.$$

But by [4, Theorem] and Lemma 1.1(9), $\dim_{\kappa} L_{\mathfrak{s}}(P_{L_{\mathfrak{s}}}) = 11$. Hence

$$(4.2) L_{5}(P_{L_{3}}) \simeq K \oplus J \oplus L_{2} \oplus L_{3} \oplus L_{4}.$$

Since there exists a $K\mathfrak{F}$ -monomorphism

$$J(K\mathfrak{J})^3 \tilde{P}_{\nu_7}/J(K\mathfrak{J})^5 \tilde{P}_{\nu_7} \to X \oplus Y$$

and $[S_2(J(K\mathfrak{J})^3\tilde{P}_{U_7}/J(K\mathfrak{J})^5\tilde{P}_{U_7})$, $W_0] = 1$, $[S_2(X), W_0] = 0$, it follows that $[S_2(Y), W_0] = 1$, and so the Loewy series of Y^r is one of the following:

If (a) were the Loewy series of Y^{Γ} , Y^{Γ} would have a submodule

$$J$$
 $L_1 L_1$.

This module must be a homomorphic image of P_J . But by Proposition 3.6, P_J does not have such a homomorphic image. This contradiction shows that the Loewy series of Y^{Γ} is (b) or (c). If (c) were the Loewy series of Y^{Γ} , L_1 would appear as a composition factor of $L_5(P_{L_3})$. This contradicts (4.2), and so (b) is the Loewy series of Y^{Γ} . Therefore we have

$$L_6(P_{L_2}) \supset L_1, L_7(P_{L_2}) \supset L_1.$$

Since $L_3^* \cong L_4$, Landrock's lemma (see [4, § 1]) together with Proposition 3.6 implies that

$$L_6(P_{L_3}) \supset K \oplus J, L_7(P_{L_3}) \supset K.$$

Further by [4, Theorem] and Lemma 1.1(9), $\dim_{\kappa} L_{\epsilon}(P_{L_3}) = 5$ and $\dim_{\kappa} L_{\tau}(P_{L_3}) = 4$. Therefore we obtain

$$(4.3) L_6(P_{L_3}) \simeq K \oplus J + L_1, L_7(P_{L_3}) \simeq K \oplus L_1.$$

Thus by Corollaries 1.3, 2.4, and (4.2), (4.3), $L_8(P_{L_3})$ is determined, and so we conclude that P_{L_3} has the Loewy series given in Theorem. Hence P_{N_3} also has the Loewy series given in Theorem.

- 5. The Loewy structure of P_{L_1} and P_{N_1} . Here, we shall determine the Loewy series of P_{L_1} and P_{N_1} . To begin with, we shall prove the following
 - Lemma 5.1. $L_4(P_{L_1}) \simeq K \oplus N_1 \oplus N_2 \oplus N_3 \oplus N_4 \oplus N_4$.

Proof. (1) By Proposition 2.1, $J(K\mathfrak{J})^2\tilde{P}_{v_1}/J(K\mathfrak{J})^4\tilde{P}_{v_1}$ has factor modules

Since $[S_2(\tilde{P}_{w_i}), U_0] = 0$ for i = 4, 8, 11, 12, we have

$$X = U_0 \oplus \frac{U_2 \ U_8 \ U_9 \ U_{10} \ U_{11}}{W_4 \ W_8 \ W_{11} \ W_{12}},$$

and so

$$X^{\Gamma} = {K \atop K} \oplus {L_1 \atop N_2} {L_3 \atop N_4} {L_4 \atop N_4} {L_4}.$$

Since X^{Γ} is a homomorphic image of $(J(K\mathfrak{J})^2\tilde{P}_{\nu_1})^{\Gamma} \simeq J(K\Gamma)^2 P_{\nu_1}$, the above implies that

$$(5.2) L_4(P_{L_1}) \supset L_2(X^r) \simeq K \oplus N_2 \oplus N_3 \oplus N_4 \oplus N_4.$$

There exists a $K\mathfrak{F}$ -monomorphism

$$J(K\mathfrak{J})^2 \tilde{P}_{\nu_1} / J(K\mathfrak{J})^4 \tilde{P}_{\nu_1} \to X \oplus Y.$$

Hence, $[S_2(Y), U_0] = 1$ because $[S_2(X), U_0] = 0$. Therefore the Loewy series of Y^r is one of the following:

But in view of Proposition 3.6, we see that the Loewy series of Y^r is (e) or (f). If (f) were the Loewy series of Y^r , N_1 would appear at least twice as a composition factor of $L_4(P_{L_1})$. This together with (5.2) implies that $\dim_{\kappa} L_4(P_{L_1}) \geq 19$. But by [4, Theorem] and Lemma 1.1(9), $\dim_{\kappa} L_4(P_{L_1}) = 16$. This contradiction shows that the Loewy series of Y^r is (e). Hence $L_4(P_{L_1}) \supset N_1$, and

$$L_{\bullet}(P_{L_1}) \simeq K \oplus N_1 \oplus N_2 \oplus N_3 \oplus N_4 \oplus N_4.$$

Thus Lemma 5.1 is proved.

In the proof of the preceding lemma, we have proved that (e) is the Loewy series of Y^r . Hence it follows that

$$(5.3) L_{5}(P_{L_{1}}) \supset K \oplus N_{1}, L_{6}(P_{L_{1}}) \supset N_{1}.$$

Lemma 5.4. $L_6(P_{L_1}) \simeq J \oplus L_2 \oplus N_1$.

Proof. The preceding lemma together with Corollary 2.4 implies that $[P_{L_1}/J(K\Gamma)^4P_{L_1}, N_2] = 3$. Hence by [4, Theorem], Lemma 1.1(6), (8) and Corollary 1.3, we have

$$[J(K\Gamma)^4 P_{L_1}/J(K\Gamma)^7 P_{L_1}, L_2] = 3.$$

Therefore noting that

$$L_i(P_{L_1}) \supset L_i(P_{M_1})^{\Gamma}, [L_i(P_{M_1}), M_2] = 1, \qquad i = 5, 6, 7,$$

we obtain

$$[L_i(P_{L_1}), L_2] = 1 for i = 5, 6, 7.$$

From (5.3) and (5.5), it follows that

$$L_6(P_{L_1}) \supset L_2 \oplus N_1$$
.

Further, Landrock's lemma together with Proposition 3.6 implies that $L_6(P_{L_1}) \supset J$. On the other hand, by [4, Theorem] and Lemma 1.1(9), we have $\dim_K L_6(P_{L_1}) = 7$. Hence the lemma is proved.

Lemma 5.6. $L_8(P_{L_1}) \simeq J \oplus N_3 \oplus N_4$.

Proof. Since $L_8(P_{L_1}) \subset S_2(P_{L_1})$ and, by [3, Chap. I, Lemma 8.4], $S_2(P_{L_1}) \simeq L_2(P_{L_2})^*$, from Corollary 2.4, we have

$$L_s(P_L) \subset J \oplus N_2 \oplus N_4$$

But $\dim_{\kappa} L_{8}(P_{L_{1}}) = 7$. Hence the result follows:

Lemma 5.7. $L_7(P_{L_1}) \simeq J \oplus L_2 \oplus L_3$.

Proof. We have already shown that

$$[L_{2}(\mathbf{P}_{L_{1}}), N_{3}] = [L_{4}(\mathbf{P}_{L_{1}}), N_{3}] = [L_{8}(\mathbf{P}_{L_{1}}), N_{3}] = 1,$$

$$[L_{3}(\mathbf{P}_{L_{1}}), L_{3}] = 2.$$

Hence by Corollary 1.3 and Lemma 1.1(8), L_3 appears as a composition

factor of $L_7(P_{L_1})$. This together with (5.5) implies that

$$L_7(P_{L_1}) \supset L_2 \oplus L_3$$
.

Further noting that $\dim_K L_7(P_{L_1}) = 7$ and $[L_7(P_{L_1}), K] = 0$, we obtain

$$L_7(P_{L_1}) \simeq J \oplus L_2 \oplus L_3.$$

Thus the lemma is proved.

By Corollaries 1.3, 2.4, and the above lemmas, $L_5(P_{L_1})$ is determined, and so the Loewy series of P_{L_1} is established. Hence we also obtain the Loewy series of P_{N_1} . Thus we have proved the following

Proposition 5.8. P_{L_1} and P_{N_1} have the Loewy series given in Theorem.

6. The Loewy structure of P_{L_4} and P_{N_4} . In this section, we shall determine the Loewy series of P_{L_4} and P_{N_4} .

Lemma 6.1. (1)
$$L_4(P_{L_4}) \simeq K \oplus J \oplus N_2 \oplus N_3 \oplus N_3 \oplus N_4$$
.
(2) $L_5(P_{L_4}) \simeq K \oplus J \oplus L_4 \oplus N_1$.

Proof. (1) By Proposition 2.1, $J(K\mathfrak{J})^2 \tilde{P}_{v_{10}}/J(K\mathfrak{J})^4 \tilde{P}_{v_{10}}$ has a factor module

$$X = \frac{U_0 \ U_2 \ U_5 \ U_6 \ U_7 \ U_{12}}{W_0 \ W_6 \ W_8 \ W_9 \ W_{10}}.$$

Since $[S_2(\tilde{P}_{w_i}), U_0] = 0$ (i = 0, 6, 8, 9, 10), we have

$$X = U_0 \oplus \frac{U_2 \ U_5 \ U_6 \ U_7 \ U_{12}}{W_0 \ W_6 \ W_8 \ W_9 \ W_{10}},$$

and so

Hence, noting that X^{Γ} is a homomorphic image of $(J(K\mathfrak{J})^2 \tilde{P}_{U_{10}})^{\Gamma} \cong J(K\Gamma)^2 P_{L_4}$, we obtain

$$L_4(P_{L_4}) \supset L_2(X^{\Gamma}) \cong K \oplus J \oplus N_2 \oplus N_3 \oplus N_3 \oplus N_4.$$

But $\dim_K L_4(P_{L_4}) = 14$. Hence $L_4(P_{L_4}) \cong L_2(X^r)$, proving (1).

(2) $J(K\mathfrak{J})^2 \tilde{P}_{U_{10}}/J(K\mathfrak{J})^4 \tilde{P}_{U_{10}}$ has another factor module

$$Y = \frac{U_0 \ U_2 \ U_5 \ U_6 \ U_7 \ U_{12}}{W_2 \ W_3}.$$

Since there exists a K3-monomorphism

$$J(K\mathfrak{J})^2 \tilde{P}_{\nu_{10}} / J(K\mathfrak{J})^4 \tilde{P}_{\nu_{10}} \to X \oplus Y$$

and $[S_2(X), U_0] = 0$, we have $[S_2(Y), U_0] = 1$. Hence the Loewy series of Y^r is one of the following:

(a) (b) (c)
$$K L_1 L_2 L_2 L_3 L_4$$
 $K L_1 L_2 L_2 L_3 L_4$ $K L_1 L_2 L_2 L_3 L_4$ $K N_1$ $K N_1 N_1$ N_1 N_2

In view of Proposition 3.6, we see that (a) is not the Loewy series of Y^r . If (c) were the Loewy series of Y^r , N_1 would appear as a composition factor of $L_4(P_{L_4})$. This contradicts (1). Hence (b) is the Loewy series of Y^r . Thus we obtain

$$L_5(\mathbf{P}_{L_4}) \supset K \oplus N_1$$
.

Further Landrock's lemma together with Propositions 3.6, 4.1 implies that

$$L_{\mathfrak{s}}(P_{L_{\bullet}}) \supset J \oplus L_{\bullet}.$$

Hence we obtain (2) because $\dim_K L_5(P_{L_4}) = 8$.

Lemma 6.2. $L_8(P_{L_4}) \simeq N_2 \oplus N_3 \oplus N_4$.

Proof. We have

$$L_8(P_{L_4}) \subset S_2(P_{L_4}) \simeq L_2(P_{L_3})^* \simeq N_2 \oplus N_3 \oplus N_4.$$

Hence the result follows from the fact that $\dim_{\kappa} L_{\epsilon}(P_{L_{\epsilon}}) = 9$.

Lemma 6.3. (1)
$$L_6(P_{L_4}) \simeq J \oplus L_1 \oplus L_3 \oplus N_1$$
.
(2) $L_7(P_{L_4}) \simeq L_1 \oplus L_2 \oplus L_3$.

Proof. From Corollaries 1.3, 2.4, and the above lemmas, it follows that

$$[J(K\Gamma)^5 P_{L_4}/J(K\Gamma)^7 P_{L_4}, L_3] = 2.$$

But by [4, Theorem] and Lemma 1.1(6), (8),

$$[L_6(P_{L_4}), L_3] \leq 1, [L_7(P_{L_4}), L_3] \leq 1.$$

Hence we obtain

$$[L_6(P_{L_4}), L_3] = [L_7(P_{L_4}), L_3] = 1.$$

Further, from Landrock's lemma and Propositions 3.6, 5.8 we obtain

$$L_6(P_{L_4}) \supset J, L_7(P_{L_4}) \supset L_2.$$

On the other hand, in the proof of Lemma 6.1(2), we have proved that the Loewy series of of Y^r is (b), and so

$$L_6(P_{L_4}) \supset N_1$$
.

Thus we obtain

$$L_6(P_{L_4}) \supset J \oplus L_3 \oplus N_1, L_7(P_{L_4}) \supset L_2 \oplus L_3.$$

Further, by Corollaries 1.3, 2.4 and Lemmas 6.1, 6.2, L_1 appears twice as a composition factor of $J(K\Gamma)^5 P_{L_4}/J(K\Gamma)^7 P_{L_4}$. Hence from $\dim_K L_6(P_{L_4}) = 10$ and $\dim_K L_7(P_{L_4}) = 9$, it follows that

$$L_6(P_{L_4}) \simeq J \oplus L_1 \oplus L_3 \oplus N_1, \ L_7(P_{L_4}) \simeq L_1 \oplus L_2 \oplus L_3,$$

and the lemma is proved.

Thus the Loewy series of P_{L_4} is established, and so the Loewy series of P_{N_4} is also obtained.

Proposition 6.4. P_{L_4} and P_{N_4} have the Loewy series given in Theorem.

7. The Loewy structure of P_{L_2} and P_{N_2} . In this section, we shall establish the Loewy series of P_{L_2} and P_{N_2} . At first, we note that the next result follows from Landrock's lemma and Propositions 3.6, 4.1, 5.8, 6.4.

Lemma 7.1. (1) $L_3(P_{L_2}) \supset J \oplus L_2 \oplus L_3 \oplus L_4$.

- $(2) \quad L_4(\mathbf{P}_{L_2}) \supset J \oplus N_2 \oplus N_4.$
- $(3) L_5(\mathbf{P}_{L_2}) \supset K \oplus L_2 \oplus N_2 \oplus N_3.$
- $(4) \quad L_6(P_{L_2}) \supset K \oplus L_3 \oplus L_4 \oplus N_2 \oplus N_3.$
- $(5) L_7(\mathbf{P}_{L_2}) \supset K \oplus L_3 \oplus L_4.$
- (6) $L_8(P_{L_2}) \supset N_4$.

Lemma 7.1(4) together with the fact that $\dim_{\kappa} L_6(P_{L_2}) = 13$ implies the following

Lemma 7.2. $L_6(P_{L_2}) \simeq K \oplus L_3 \oplus L_4 \oplus N_2 \oplus N_3$.

Now we shall prove the following

Lemma 7.3. (1) $L_3(P_{L_2}) \simeq J \oplus L_1 \oplus L_2 \oplus L_3 \oplus L_4$. (2) $L_5(P_{L_2}) \simeq K \oplus L_1 \oplus L_2 \oplus N_2 \oplus N_3$.

Proof. By Proposition 2.1, $J(K\mathfrak{J})\tilde{P}_{\nu_4}/J(K\mathfrak{J})^3\tilde{P}_{\nu_4}$ has factor modules

$$X = \frac{W_0 \ W_7 \ W_{12}}{U_6 \ U_9 \ U_{10}}, \ Y = \frac{W_0 \ W_7 \ W_{12}}{U_1 \ U_2 \ U_3}.$$

Since $[S_2(\tilde{P}_{v_i}), W_0] = 0$ for i = 6, 9, 10, we have $[S_2(X), W_0] = 0$. Therefore from the existence of a $K\mathfrak{F}$ -monomorphism

$$J(K\mathfrak{J})\tilde{P}_{\nu_4}/J(K\mathfrak{J})^3\tilde{P}_{\nu_4} \to X \oplus Y,$$

we obtain $[S_2(Y), W_0] = 1$, and so the Loewy series of Y^r is one of the following

But in view of Proposition 3.6, we can see that the Loewy series of Y^{Γ} is (e) or (f). Since Y^{Γ} is a homomorphic image of $(J(K\mathfrak{F})\tilde{P}_{\nu_4})^{\Gamma} \cong J(K\Gamma)P_{\iota_2}$, we have

$$L_3(\mathbf{P}_{L_2}) \supset L_2(Y^r).$$

From this we may show that (e) is the Loewy series of Y^{Γ} . For otherwise L_1 would appear at least twice as a composition factor of $L_3(P_{L_2})$. Then by Lemma 7.1(1), we have

$$L_3(P_{L_2})\supset J\oplus L_1\oplus L_1\oplus L_2\oplus L_3\oplus L_4.$$

But this contradicts the fact that $\dim_{\kappa} L_3(P_{L_2}) = 13$, and this shows that (e) is the Loewy series of Y^r . Therefore we obtain

$$(7.4) L3(PL2) \supset L1, L5(PL2) \supset L1.$$

Since $\dim_{\kappa} L_3(P_{L_2}) = \dim_{\kappa} L_5(P_{L_2}) = 13$, the result follows from Lemma 7.1(1), (3) and (7.4).

Lemma 7.5. $L_8(P_{L_2}) \simeq N_1 \oplus N_4$.

Proof. We have

$$L_8(P_{L_2}) \subset S_2(P_{L_2}) \simeq L_2(P_{L_1})^* \simeq N_1 \oplus N_1 \oplus N_4.$$

Hence the result follows Lemma 7.1(6) because $\dim_{\kappa} L_{\epsilon}(P_{L_2}) = 6$.

Lemma 7.6. (1)
$$L_4(P_{L_2}) \cong J \oplus L_1 \oplus N_1 \oplus N_2 \oplus N_4$$
.
(2) $L_7(P_{L_2}) \cong K \oplus L_3 \oplus L_4 \oplus N_1$.

Proof. In the proof of Lemma 7.3, we have proved that (e) is the Loewy series of Y^r , and so L_1 appears as a composition factor of $L_4(P_{L_2})$. Hence the result follows at once from Corollaries 1.3, 2.4, Lemma 7.1(2), (5) and Lemmas 7.2, 7.3, 7.5 because $\dim_K L_4(P_{L_2}) = 13$ and $\dim_K L_7(P_{L_2}) = 10$.

Thus we have established the Loewy series of P_{L_2} , and so the Loewy series of P_{N_2} is also obtained.

Proposition 7.7. P_{L_2} and P_{N_2} have the Loewy series given in Theorem.

Thus we complete the proof of Theorem.

REFERENCES

- [1] B. HUPPERT: Endliche Gruppen I, Springer-Verlag, 1967.
- [2] P. LANDROCK: Some remarks on Loewy lengths of projective modules, In Representation Theory II: Lecture Notes in Math. 832, Springer-Verlag, 1980, 369-381.
- [3] P. LANDROCK: Finite Group Algebras and their Modules, London Math. Soc. Lecture Note Series 84, Cambridge Univ. Press, 1983.
- [4] Y. NINOMIYA: On the Loewy structure of the projective indecomposable modules for a 3-solvable group I, Math. J. Okayama Univ. 29 (1987), 11-41

SHINSHU UNIVERSITY
A SAHI, M ATSUM OTO, 390 JAPAN

(Received September 3, 1986)