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ON THE LOEWY STRUCTURE OF THE
PROJECTIVE INDECOMPOSABLE MODULES
FOR A 3-SOLVABLE GROUP 1

Dedicated to Professor Hisao Tominaga on his 60th birthday

YasusHt NINOMIYA

Let P be a prime number and r a positive integer. We set ¢ = p’ and
denote by F the finite field GF(q®) with ¢” elements. Let A be a generator
of the multiplicative group of F. Then the set

Gpr=1F3x>ax"+blaec (A* ), bEF, n=0,1,...,p—1}

of permutations on F forms a p-solvable group of p-length 2, and its order
is p™*'l, where [ = (¢°—1)/(¢—1). The purpose of this paper is to de-
termine the Loewy series of the projective indecomposable modules for a
3-solvable group ®&;, in characteristic 3.

A number of authors have established the Loewy series of the projective
indecomposable modules for various groups. However, we can find very few
examples of p-solvable groups of p-length > 1 for which the Loewy series of
the projective indecomposable modules in characteristic p are determined.
For example, the Loewy series of the projective indecomposable modules for
S.. the symmetric group on four letters, in characteristic 2 are given in [1,
Examples 15.10], and the Loewy series of the projective indecomposable
modules for the group which is the semidirect product of the elementary
abelian group of order 3? by SL(2, 3) in characteristic 3, are given in [2].
These are all the examples that we know. In the meantime, D. A. R. Wallace
[8] proved that if & is a p-solvable group of order p°m, (p, m) =1, and K
is a field of characteristic p, then the Loewy length of the group algebra K@,
namely, the nilpotecy index t(®) of the radical of K& is greater than or equal
to a(p—1)+1. Inregard to this fact, we see that if a Sylow p-subgroup B
of ® is elementary abelian then #(®) = a(p—1)+1 ([7]). But, in [6], K.
Motose proved that #(®,,) = a{p—1)+1, where a = rp+1. This shows
that there exists a p-solvable group ® with ¥ a non abelian group but with
1(®) = a(p—1)+1. Up to the present, the structure of a group & with ¢(®)
= a(p—1)+1 is not quite determined yet. So we wish to find general infor-
mation about the structure of the group algebra of such a group. From these
points of view, it seems meaningful to establish the Loewy series of the
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12 Y. NINOMIYA

projective indecomposable modules for ®;, in characteristic 3. Note: Since
®,, = S,, the Loewy series of the projective indecomposable modules for
®,., in characteristic 2 are known as stated above.

The author is grateful to Prof. T. Obayashi for his kind advice.

1. Result and notation. Throughout this paper, we set & = ®&;; and
let K be an algebraically closed field of characteristic 3. Then A is a primi-
tive 26th root of 1, and so we may assume that A* = A*—1 (see [5, Chap.
10, Table C]). Now we choose the elements a, b, ¢, v, s of & defined by

a: x—>x+1, b x>x+A c: x> x+A%;
v: x> Ax;

st x—x°; x € F(cf. [6]).
Then ® is generated by these elements. We set
U=<ab,c), B=(v) W= (s).

Then U is an elementary abelian group of order 3%, B is a cyclic group of
order 13 and W is a cyclic group of order 3. Further B acts on U1, and W
acts on I and B in the following rule:

vav~! = ¢, vbr" = d’¢, vev ! = a?bic:

- -1 - 2
sas™' = a, sbs™' = d’c, scs™! = bic?;
svs! = v,

We now let ¢ be a primitive 13th root of 1 in K. Since

-1 =X-1)X-X-X-1)(X*+X*+X—1)
(X*—-X-1)(X+X*—-1)

is the factorization of the polynomial X'*—1 into the irreducible polynomials
over GF(3) ([5, Chap. 10, Table C]), we may assume that ¢ is a root of
the polynomial X*—X?*—X—1. Then it is easy to see that { &, &°, &°}, {¢'7,
oo et e Lt el and (£, &7, £8) are the sets of roots of the polynomials
X—X—X—-1, X*+X*+X—1, X*~X—1 and X*®+X’—1 respectively.
We set § = (U, B) = UB. Since H/11 = B, there exist 13 non isomorphic
simple (left) K$-modules, say, Vo, Vi,..., Vi, and they afford inequivalent
one-dimensional representations of B, which we may identify with their char-
acters, say, &, £i,...,&2. We may, and shall assume that these characters
satisfy the following:
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fo(") =1, fl(V) g. fz(V) = §3, 63(1’) = é‘g‘
{'-4(1") = {lze Es(“") = é‘m, EG(V) §41 67(1’) = §2,
58(1’) = §6, SQ(V) = §5, Elo(‘V) ;11, fu('l’) = 57‘
612(1’) = é’s-

Then V,, V; are conjugate under & to V,; Vi, Vi are conjugate under & to
Vi; Vi, V, are conjugate under & to V; and Vi, V), are conjugate under &
to V. Further Vi, Vi, Vi, V. Vi1, Vi, are isomorphic to the dual modules
of Vi, Vi, Vi, Vi, Vi, Vo respectively.

We now let I be the trivial simple K®-module, and we set M, = K&
Rka Vi, My = KG Qs Vi, My = K& ®5 V7 and M, = K& Qg Vie. Then
I, M, M,, M;, M, are all types of simple K®-modules. Further, M, and
M, are isomorphic to the dual modules of M, and M, respectively. Given a
simple K®-module M, we denote by P, the projective indecomposable K®-
module for which P,/J(K®)P,y = M, where J(K®) is the radical of K®.

We are now in a position to state our result.

Theorem. The Loewy series of the projective indecomposable K®&-mod-
ules are as follows :

I M,
IM, lwz M2 M3
IM M. M, IM\M;M; M, M,
IM, M, M; M M, IM, M, M; M, M,
Pi=IM M, M; M, M, M, Puy= IM, M M, M,
IM M, M; M, M, IM\ M,
IMl 1W2M4 IMzMa
1M, IM. M,
I M,
M, M,
IM; M, M, M; M,
IM, M, M, M, M M, M, M; M, M,
IM, M, M, M, IMiM, M. M M, M,
Py,=1IM M, M, M, Py, = IIM, M; M,
IM, M; M, M, ITM,
IM M; M, IM,
M, M, M, M, M,

AM 2 1M3
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M,
M, M, M,
IM M, M, My M,
ITM, My M; M,
Py, = IIM M,
IM, M, M,
M, M, M,
M, M; M,
M,

Throughout this paper, all modules are finitely generated left modules.
The (Jacobson) radical of K& is denoted by J(K®). Let M be a K®-module.
We denote by L, (M) the ith Loewy layer of M, that is

L{M) = J(K®)"'M/J(KG)'M.

Let soc{M) denote the socle of M. We set socsM) =0, soc,(M) =
soc(M) and soc{M)/soc;_ (M) = soc(M/soc;_(M)). Then the ith socle
factor of M is denoted by S, (M), that is

S,(M) = SOC,;(.&M)/SOC;-](M).
If the Loewy length of M is equal to m and
| LiM) = X0 @ ... ® Xir,,

where X,; is a simple module for all j, then as in [4], the Loewy series of
M is denoted by

Xu ...... Xl‘r;
Jw _ Xz] ............ vaz»r2
Xm--Knrn-

Further the dual module of M is denoted by M*. Given a simple K®-module
X, we denote by [M, X] the multiplicity of X as composition factor of M. If
¥ is a subgroup of ® then M| is a KS-module obtained from M by restrict-

ing the domain of operators to KT. Given a KZ-module N, we denote by N®
the induced module K& ®4; N. If A and B are K-subspaces of K®, then AB

is the set of all finite sums of products of elements of A by those in B:
AB = |Z a‘ibilaz (S A, b,; (S B I.
If Q is a subset of ®, define Q in K& by Q= 2xeqx. Given a € K& and
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g € ®, we write a® for gag™'. Let V be a finite dimensional vector space
over K. Then we denote by dim V, the K-dimension of V. Further, if V
has a K-basis {v,,....va}, then we write V = {(v,,..., AN
In § 2, we determine the Loewy structure of the projective indecom-
posable K$-modules ($H = (U, B)), and in § 3, we determine the Loewy
structure of P,. Py, (1 < i < 4) is isomorphic to the induced module of
a certain projective indecomposable K$-module. Accordingly, in § 4, by
making use of the Loewy structure of the projective indecomposable K-
modules obtained in § 2, we determine a part of the Loewy layers of P,,.
Further, if e; is a primitive idempotent in K& corresponding to P,,, then
as is well known, it holds that

dim e;J(K®)*e, = [J(K®)*P,,. M,].

So, in § 5, we determine the structure of powers of J(K®), and in §§ 6—9,
calculating dim e;J(K®)”*e;, we completely determine the Loewy structure
of Py,.

Throughout this paper, we frequently use the next result, due to Land-
rock, and we cite this as Landrock’s lemma.

Lemma ([4, Chap. I, Lemma 9.10]). Let T be an arbitrary finite
group and let k be a splitting field for T. If M and N are simple kT-mod-

ules then for arbitrary s,
[LS(PM)7 N] = I:LS(PN‘)a AM*],

where Py, Py are the projective indecomposable kT-modules for which

PM/J(ki)PM = A”I, P‘\lc/J(ki)PA\" — IV*.

2. The Loewy structure of the projective indecomposable K$-modules.
Since $/11 = B, each V, may be regarded as a simple KB-module. Now we
set ¢ = e, = B and denote by e; the primitive idempotent in KB correspond-
ing to V, for each i, 1 < i £ 12. Then Kll¢, (0 < i < 12) represent all
types of the projective indecomposable K$-modules. To begin with we shall
prove the following lemma which is useful for the caluculation in §§ 6 —9.

Lemma 2.1. 1, a and a® are the representatives of the conjugate class-
es of 3-elements in 9, and forn =1, 2,

eda™ e, = (E4v)E,v) V¥eia,, 0 =<ij k=<12.
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Proof. The former half of the lemma is clear. Since
g = 21t Ev) W,
we have

e e, = (X &(v) ) (aM e,
= 2k E(v) (aM) " vie,
= Z]l'iu Si(V)"l(a")"H'E;(V)ZSJ
= 220 (Edv) e (v ) (@™ e,

Setting k+/ = h, we obtain

eda”)"e; = Lo (§v) € ))*HaM) e,

= (£:v) €)oo (£v) T E(v ) (@) "e)).
Thus in particular,
eiae; = Xm0 (£4v)7'E,(v) (@),
Hence for every k, we have
eda™) e, = (Edv)€(v) ) e,
as required.

By the preceding lemma, we see that if u (€ 11) is conjugate to a”, then
eme; is a scalar multiple of e,a";. Therefore, we see that

e K1 <€i» €iAE;, Eiaze,;> ifi = j,
Kle, = ifi=j
' ! (ewae;, e0’e,) if { = j.

Now we denote by P,, the projective indecomposable K$-module for which
P./J(K9)P,, = V;(0 < i <12). Then by the above we have the following

Corollary 2.2. The Cartan matrix of K9 is given by

Pro(3 2. 2
By |2 3. 2
P2 2. 3

Now we shall prove the following

Proposition 2.3. The Loewy and socle series of the projective indecom-

posable K $-modules are as follows :
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Vo
ViV, V,
Vi Vs Ve Vi Vi W,
pVo =V, Vi Vo Vo Vip Viy Vi
V‘I V2 V3 VIO Vll VIZ
Vi Vs Ve
Vo

V,
V. Vi Vs
V(] V3 V7 V9 V!l VIZ
Pv; =ViV, Va Vi Vy Vi Vi
Vi Vi Vi Vi Vi Voo
VO V’l VH
V,

V.
Vo Vi Vie
VivoVy VsV, Vi
Pn =WV ViV Ve Vs Vo Vi
Vo Vs Vo Ve Vi Vi
Ve Vs Vi
Vi

Vs
Vo Vo Vi
Viva Vi Vi Vg Vi
Pre =V, Vi Vs Vo V; Vi Vo
Vo Vi Vi Vy Voo Vi
Vi Vo Vi,
Ve

Vs
Vi V; Vi
Vo Ve Vs Vs Vi Vi
ﬁvs =WV V-: Vs Vs Vm V12
Vo i Vi Vs V; Vi
Ve Vs Ve
Vs

Vi
Vs Vo V
Vo Vo Vs Vs Vi Vi

Pv. == V1 Vz Va V4 Va Vn VIZ

V3 V4 V5 Vﬁ V7 V12
Vo Vo Vio
Vi

Vs
V4 Vs V9
Vo Vi V2 Vs Vio Vi,

Pv; = V] Vz V3 Vs V? Vw Vn

Vz V4 V5 Vs VQ Vll
VO VB VIZ
Vs

Vs
VO VB VID
V) Vz V3 V4 V7 Vll

Pv,-, = Vz V4 Vs Vs V7 Ve V12

VO VG V& V!I VIO VIZ
Vi Vo Vi
Vs

v
V2 V9 VIO
V] V4 Vs VB Vll VIZ

P\r7 = Vo V3 Vs Vs V7 Vll VIZ

Vo Vo Vo Vi VsV

Vi VeV
Vi
Vy

Vi Vs Vi,

Vi Vs Vs Vi Vie Vi
ﬁvg =V V., Vi V; V9 Vlo Vn
Vo Vi Vo Vi Vi Vi
Vo Ve V5
V,
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Vie Vi
Vi Vi Vi Vo Vs Vie
Vo Vo Vs Vo Vi Vi, Vo Vi Vi Vi Vi Vi
Pl"[n: Vi Vz Vs Vs Vs V9 Vll) 13v“ =V, Vi Vs V., V7 Ve Vu
Vi Vi Vi Vg Vy Vi Wi, Vi Vi Vo Vi,
Vi Vo Vi Ve Vs Vio
Vll) V]l
sz
Vi Vs Vi

Vo Vi Vi Vs Ve Vi
PV;: = Vo Vl Vz Vs V7 VB Vlz
Vo Vs Ve Vi Vi Vi
Vi Vo Vi
Vi,

Proof. We may, and shall assume that P,, = Klle. Then we have
J(K$):Py, = J(KW)'e for every i, because J(KH) = J(K)KH. View KU
as a K$-module via conjugation of & on . Then, by the above, we have a
K$-isomorphism

JKD)'Po/J(KD)*' Py, = J(KW)'e/J(KW)**' e = J(KN)/J(KI),

for every i. Now we set M = J(KW)/J(K1)*>. Then the following elements
form a K-basis of M:

(a—1)+J(KW)?, (b—1)+J(KW)?, (c—1)+J(K1)2
Operating v on these elements, we obtain

(a—1)"+J(KU)? = (c—1) +J(KW)?,
(b—1)*"+J(KW)? = (a’c—1)+J(KW)?,
(c—1)*+J(KW)* = (a*b’c—1)+J(K1)".

Hence by the congruences :

afc—1 = —(a—1)+(c—1) modJ(K11)?,
a’b’c—1 = —(a—1)—(b—1)4+(c—1) modJ(K1)?

we see that M affords the matrix representation

0 —1 -1
T: v>T(v)=]|0 0 —11.

11 1
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The characteristic polynomial of the matrix T(v) is X*—X*—X—1. There-
fore we see that

(2.4) Lz(pvo) =M=V.eV,@ V..

From this we can choose a K-basis | m,, m,, ms| of M such that m? = §3i_lmi.
For each i, 1 = i < 3, m, can be expressed in the form

m; = ai—i—J(Ku)Z, a; € J(Kll)
We set N = J(K1)?/J(KN)®. Then N is spanned by
aa;+J(K1)?, 1573,

But dim N = 6. Hence these six elements form a K-basis of N. Operating
v on these elements, we obtain

(a))?+J(K1)® = £l +J(K1)?),
(ed)*+J(KN)* = (a2 +J(KN)?),
(ed)?+J(KN)® = £3(ai+J (K1),
(alaz)v+J(K11)3 = §4(010’2+J(Ku)3),
(@ras)*+J(KW)* = £"aras+J(KN)?),
(@ra3) *+J(KW)® = ¥ (@0 +J(K1)?).

This shows that
(2-5) L3(pvo) ==N=V,eVieoV,o V.oV, V,.

Now, it is easy to see that J(KI)" = 0, and so the Loewy length of P,
is 7. Further by [3, Corollary], the Loewy and socle series of P, coincide.
Hence, noting that P, is self-dual, we conclude, from Corollary 2.2 and
the above facts (2.4), (2.5), that P,, has the Loewy and socle series given
in the proposition. It is easy to see that

P,,=P, @ V. L{P,) =L (P.,) &V, 1=<i<l12,1<j<7.

From this, we see immediately that P, has the Loewy and socle series given
in the proposition. Thus the proposition is proved

We can easily see that P,~ P}, P,, = P¢ P, = P¢, P,, = P2
and Py, = P¥,. Therefore the next corollary follows at once from Corollary
2.2.

Corollary 2.6. The Cartan matrix of K& is given by



20 Y. NINOMIYA

P, (9
Py 6
PMz 6 .
6
6

PM3
PM4

OO NN

6 6
6 6
76
6 7
6 6

~N OO

3. The Loewy structure of P;. In this section, we shall determine
the Loewy series of P;. We set & = BW = (B, W), and we let I be the
trivial simple K&-module and P; the projective indecomposable K&-module
for which Pi/J(K&)P; = I. Then it is easy to see that P, = P¢. Hence to
determine the Loewy series of P, it suffices to determine that of Py We

now set
X = (J(K®)'P)", Y = (J(KS)P)®, Z = P}
Then identifying P; with KBe, we may set
X = KUef, Y = KUeJ(KW), Z = KUeKB.
Throughout this section, we set J = J(K®), Jy = J(KW) and Jy = J(KT).

At first, we have at once the following, because /1l is a Frobenius group
(see the proof of [6, Proposition 3]).

Lemma 3.1. J = K&J,+eJg.

Now we determine the Loewy series of X.

Lemma 3.2.
I
M,
M, M,
X=IM;M,.
M M,
M,
I

Proof. Since X = KT8, we have
eJaX = EJ_w,;Kua?ﬁi = JmsKlle?fB.

Now let C,: (i = 1. 2) be the conjugate class in § containing a’. Then eKlle
= {¢, Cqe, Cne). and so we can see that each element of ¢Klle commutes
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with s. Therefore
eJuX = eKleJg B = 0.

This together with Lemma 3.1 implies that J'X = J £edB for every 7. Hence
we have

JiX|g = Jie = J(KD)'P,,.
Thus we conclude that
(J' X/ X) | 5 = J(KD)'Pr/J(KD)™*' P,
Therefore the result follows from Proposition 2.3.
Next, we determine the Loewy structure of Y.
Lemma 3.3. (1) L(Y) = L(X).

(2) L{Y)=L{X)® L,.\(X)fr2<i<T.
(3) L{Y) = LAX).

Proof. At first we shall show, by induction, that
(3.4) JY = Jiedg+J X, where J' = K@,
By Lemma 3.1, we have

JY = J[}sJﬁﬂ_*—EJmKllngﬂ = JuEJm"‘J@(EK}IG)J@
= JueJa+{(eKUe}JE = JuedJg+ e KUeW.

Hence JY CJyedJws+X. On the other hand, for any u € U, we have

uel® = (1 —e)ue‘l%vLeAueiB = (u—pes u?) e B+ cuel®
S J\\EJE“"EKHEQB = JY.

Hence X = Kl1e®® C JY. Thus (3.4) is proved for i = 1. Next, assume
that (3.4) holds for some i. Then

JHY = Ji edu+eJulicJs+J X
= JiMeJa+Juledie)n+J X
= JH eJu+(eJie)Ja+JX.

Hence, observing that
eJiedh = eJieB C JEeB = JiX,

we have
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JY = JiteJu+J X

Thus (3.4) holds for every i.
Because of (3.4), we have

L(Y) = Y/JY = KlleJo/Uyedat X)
= KUeW/JyeB= KG = L,(X).

Thus we obtain (1).
From (3.4), we have the following inclusions :

JY CJ'Y+ITEX C IR, 2=<is7.

To prove (2), it suffices then to show that

(3.5) JTY/(JY+J X)) = LX),
(3.6) (JEY+J72X) /Y = L ((X).
In fact,

JTY/(JY4+JX) = (JEeda+d 2 X) /(T ed g+ 2X)
=Jiedw/(JieJa N (JieJa+J7 X))
= JieJn/(Jheu+Ji e B) X
=~ (Ji e Ja/ T eB) /(Jiedu+TE e W) /T e B)
= Jﬁ_leQAB/JﬁeQAB
= JX/JX = LX),

and

(JY4+J7 X)) /Y = I X/(JY N X))
=J"7X/J'X = L (X).

Thus we obtain (3.5) and (3.6), and complete the proof of (2).
(3) s clear because J'Y = J°X = L,(X) by (3.4).
Finally, we determine the Loewy structure of Z,

Lemma 3.7. (1) L,(Z) = L,(X).

(3) Li(Z) = Ls(Y).
(4) Lo(Z) = Lo(Y).

Proof. First we shall prove, by induction, that
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(3.8) J'Z = JieKB+JU'Y, where J* = K®.
By Lemma 3.1, we have

JZ = JuEKQB"’EJQgKUEK% = J[]EKQB'I‘JE(EKHE)KQB
= JueKQB+(£K11£)Jgg - JuEKgB"' Y.

On the other hand, given« € Il and w € Jg, we have

uew = (1 —luew+cuew = (u—2 pe g u”) ew—+cuew

S JuEKQB'*‘ EKuEJgg = JZ.

Hence Y = KleJy C JZ, and so (3.8) is proved for i = 1. Next, assume
that (3.8) holds for some i. Then

JHMZ = JE e KB+ eJuJie KB+JY
= JiNe KB+ JaleJie ) KB+JY
= JiI e KB+ (eJie)Jg+JY.

Hence, noting that

ediedw C JieJa C J'Y,
we have

JHZ = Jit e KB+J'Y.

Thus (3.8) holds for every i.
By (3.8), we have

L(Z)=2Z/JZ = KleK®R/(Jye KB+ KUeJy)
= (KIIE!(QB/K}I&J»&)/(A(JHeKQB-I—KlleJm)/Kung)
= KlleﬂB/JneiB =~ K@ = LI(X)1

proving (1).
Further, from (3.8), we have the following inclusions :

J'ZCJiZ+JITtY € Z, 2<is<7.
Hence, in order to prove (2), it suffices to show that

(3.9) JZNIPZ+IY) = L(X),
(3.10) (JZ4+J7Y)/JPZ = L,_\(Y).

Indeed we have
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JTZNIZHI Y ) = (T KB 7MY ) /(JheKB+T Y
= JiT'eKB/ (I eKB N (J1eKB+I*Y))
Ji e KB/ (Jie KB+J i edw)
= (J Ve KB/ I edu) /((Jie KB+ edw)/Ji el w)
= Ji e/ JieB® = LX),

and

(S ZH+JIEY) /I Z = J72Y/(JPZ N JY)
=J7?Y/J 'Y = L, (V).

Thus we have proved (3.9) and (3.10), and complete the proof of (2).
Because of (3.8), we have J7Z = J*Y and J*Z = J’Y. Hence we have

L(Z)=JZ/J*Z =J°Y/J'Y = L,(Y),
L(Z) =JY = Ly(Y).

Thus (3) and (4) are proved.

Since Z = P,, combining the preceding lemma with Lemmas 3.2 and
3.3, we obtain

Proposition 3.11. P, has the Loewy series given in Theorem.

4. A partial proof of Theorem. In this section, by making use of Prop-
osition 2.3, we determine the upper part of the Loewy series of each P,,.
From now on, we set J = J(K®) and J = J(K).

At first we prove the following

Lemma 4.1. (1) L(Pul)—Mz@Mz@ﬂ'h

(2) L(Py)=IoM &M, dM; M, & M,

(3) L(PM2)~I@M3€BM4

(4) Ly(Py) =M, ® M; & M,.

(5) (Pua): M. oM, M M, ® M,.
(6) L(Py) =1 @MleM,@Mz@M3®M4@M4
(7) LPw) =M &M, ® M,.

(8) (Pu,)—IEBM]@Mz@Mz@MaeBM.,

Proof. (1) Since it holds that
PM,/fP.M, = ]391/.]"]3%-’1 = ﬁ?;/(fpv,)w = (ﬁ\«',/fpv,)()j = Vi“ = M,,

we obtain JP,, = fP_u,. Therefore we have
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JP.u,/jsz. = jPﬁl|/j2P.w| = jﬁg./fz ~?}, = (jﬁ‘v_l)m/(jzpvl)m
=(JPu/J'P.)" = (Vi & Vi ® V)"
= Mz @ Mz @ MS'

Hence JPy,/J*Py, is completely reducible, and so noting that JPy, C J*Py,,
we obtain

J2Py, = J?Py, and L(Py,) =M, ® M, & M,,

proving (1).
(2) Since J?Py, = J*Py,, we have

szul/jspu. = jzpu./fsp.u, = j’z ~$$|/f313(l?,
= (J*Py)*/(J*P,)® = (J*Py,/J°P)"
:(Vu eV.o stB Vo ® Vie ® Vn)“
IM\M;M; M M,
=1
I

This implies that
L(Py,)=IoM oM. oM oM &M,

because J*P,, C J*Py,, proving (2).
(3) through (8) are obtained in the same manner as in the proof of (1)
and (2), and hence we omit the proof.

Further, concerning the Loewy layers of P,,, we have the following

Lemma 4.2. (1) L.PywoOIeM oM, &M, &M, M,.
(2) Ls(Py)D1® M,
(3) LG(PAh) oM,

Proof. (1) In view of Proposition 2.3, we see that J:P,/J'P,, has
a factor module

X _ VD Vz Vs V9 V]O Vll
B V4 V8 Vll VIZ

Since Sy(Py,) = Ls(P,,) for i = 4,8,11,12, from Proposition 2.3, it fol-
lows that [S(P,,), Vo] = 0. Hence we conclude that [S(X), Vo] =1, and

so we have
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Ve Ve Vs Vio Vi

X= Vu
® viv, v, v,

Hence we obtain

M| 1"13 M3 AM¢ M4

I
(L} — I
X M, M, M, M,

I

Since X® is a homomorphic image of (J*P,,)® recalling that (J*P,,)® =
J*Py,, we have

(4-3) LI(PM|) 2 Lz(Xm) =IeM o MieM o M,.

Further J?P,,/J*P,, has another factor module

_ Vo Vg Vs Vg Vlo Vll
- Vl V2 V3 '

Y
It is easy to see that the mapping
JB, /P, > XY
given by
a=(at(Vi@Vi® Vi, @ Vio), a+(V, ® Vo @ Vi) (a € J'P,./ TP ),

is a K$-monomorphism. Therefore from the fact that [S,(J*P,/J'P,), Vo
=1, it follows that [S,(X & Y), V;] 0. Hence, recalling that [S.(X),
Vo] =0, we have [S,(Y), V,] = 1. Thus we see that the Loewy series of
Y® is one of the following:

(a) (b) (c¢)
IMiMs My M M, IM MMM M, ITM, MM, M, M,
I I IM,

I IM, I
M, M, M, M, M, M, M,

(d) (e) (f)
IM\M M, M M, IM M; M M M, ITM, M, My M, M,
I IM, IM, M,

IM, M, IM, 1
M, M, M,

If (a) (resp. (b), (c), (d)) were the Loewy series of Y® then we could
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choose a module

I I I d
resp. IM,, , IM\ M,
M]M]M] MlMl MlMl M1

among the submodules of Y®. Each of these modules is a homomorphic image
of P, because its head is isomorphic to I. But by Proposition 3.11, we see
that P, does not have such a homomorphic image. This contradiction shows
that the Loewy series of Y® is (e) or (f), so that we have [L,(Y®), M,] #0.
Since Y® is a homomorphic image of (J*P,,)® and (J*P,)® = J?P,,, the
above yields

(4.4) [L(Py), M\] +0.

Thus (1) follows from (4.3) and (4.4).

(2) From the proof of (1), it follows that [L;(X®), I] =1, and so
[Ly(Py,), I] #+ 0. Since L,(JI*) = M, (Lemma 3.2), we see that JI® is a
homomorphic image of Pu, and so Ls(Py,) D L(JI% =~ M,. Thus we have
Ls(Py) DI @& M,, proving (2).

(3) In the proof of (1), we have shown that [L,(Y"), M,] = 1. Hence,
clearly [Ls(Py,), M,] #+ 0, and (3) is proved.

Now, by making use of an argument similar to the one used in the proof
of the preceding lemma, we shall prove the following lemmas.

Lemma 4.5. (1) L{Py,)DI®eM &M, ®dM,® M.,.
(2) L«(Py,) D M.

Proof. In view of Proposition 2.3, we see that JP,,/J*P,, has a factor
module

X=y v
Noting that [S2(P,,). Vo] =0 fori =6, 9, 10, we have
Vi Ve T u,m,
X=V® y oy, vy andszm:';EBMzMaM.'

Since (JP,,)® = JPy,, the above implies that
(4-6) LI!(PMz) o Lz(XS) =]IoM oM oM,
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JP,/J*P,, has another factor module

Vo V2 Vi,
Y= .
Vi V, V,
As in the proof of Lemma 4.2, we see that there exists a K $H-monomorphism
JP,/J*P,, - X ® Y.

Hence [S:(Y), V,] =1 because [Sy(X), V,] = 0. Therefore the Loewy
series of Y® is one of the following:

(a) (b) (c) (d) (e) (f)
IM:M, IM;M, IM;M, IMM, IM;M, IM,M,

I I 1M, I IM, IM, M,
I 1M, I IM\M, IM, I
M M\M, M\ M, M, M, M, M, M,

But in view of Proposition 3.11, we can see that the Loewy series of Y®
must be (e) or (f). Hence we obtain

(4.7) Li(Py,) D Li(Y®) D M,.

Thus (1) follows from (4.6) and (4.7). Further we have Ls(P,,) D L(Y®%
= M,, proving (2).

Lemma 4.8. (1) LS(-P.MQ) D I $ I @ lwz @ M3 @ M4.
(2) LiPu) DM,

Proof. By Proposition 2.3, J*P,,/J°P,, has a factor module

X— Vo V3 V5 Vs V7 V]l VIZ
B Vo Vs Vo Vi )

Since [Sy(Py,), Vo] =0 fori = 0,5, 9, 10, we have

V3 Vs VG V’I Vll V12

X=Vo v

and so

I M M, M, M; M, M,
X®=1IM, M, M,
I I
I
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Hence noting that (J*P,,)® = J*P,,, we obtain
Ls(P.\{a) = Lz(X(“) Il M,®oM;® M4,.

proving (1).
(2) By Proposition 2.3, J°P,,/J*P,, has another factor module

VWV VeV VLV,

Y V. Vs

Since there exists a K $-monomorphism
J*P./J°P,, 5 X ® Y,

we see that [S,(Y), V,] = 1. Therefore the Loewy series of Y* is one of
the following :

(a) (b) (e)
IM\M, Mo MsM My IM M, M. MMM, IM, My My, My M, M,
I I IM,

I IM, I
M, M, M, M,

Hence L.(Py,) D L(Y®) D M,, proving (2). (Note: By Proposition 3.11,
we see that (a) is not the Loewy series of Y® But we do not need this fact
for our proof.)

Lemma 4.9. (1) L(Py)DIeoleoM, oM, &M, d M,
(2) Le¢(Pu) DM,

Proof. By Proposition 2.3, J*P,,,/J'P,,, has factor modules

X — Vo Vo Vi Vo V2 Vi, and ¥ = Vo Vo, Vs Vs V, Vi,
Ve VeV Wy V.V, )

From the fact that [S,(Py,), Vo] =0 (i =0,6,8,9,10), it follows that

V2 V5 VG V’n‘ V12

X=Ve® o v vy vy

and so we obtain

I MMM, M: M,
X®=I®IM, M;M; M, .
I I
I
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Further from the existence of a K$-monomorphism
fzjjvm/j413vm - X @ Y,

it follows that [S,(Y), Vo] = 1. Hence the Loewy series of Y® is one of
the following :

(a) (b) (c¢)
IM M, M, M; M, IMi M, M, M, M, IM M, M, M M,
I I IM,
I M, 1
M, M, M, M,

Hence, observing that (J*P,,,)® = J*P,,, we obtain

L4(PM4) D LZ(Xm) = I @ 1 @ Mz @ M3 @ M3 EB Afh
LG(P.m) D) Lq(Y@) oM.

Thus the result follows. (Note: By Proposotion 3.11, we see that (a) is
not the Loewy series of Y", But we do not need this fact for our proof.)

Since M, = M¥ and M, = M¥ Landrock’'s lemma (éee § 1) together
with Proposition 3.11 and Lemmas 4.1, 4.2, 4.5, 4.8, 4.9 implies the
following

Corollary 4.10. (1) Ly{(Py)DI@®M,® M,, Li(Py) DI® M, and
L{Py)DIfori=17,8.

(2) L{Pw)DI®M, &M, L(P,,) DI®M, LPy,) DI® M,
® M; and L7(PM2) ole M,

(3) LG(PMs> e I1®Iand L7(PM3) D) e M.

(4) Li(Py)DI®I®M,and L{(Py,) DI ® M,.

5. The structure of powers of the radical. As in § 2, we set ¢ = B
and denote by ¢, the primitive idempotent in K®B corresponding to the simple
K®B-module V; for every i, 1 <i £12. Then K&, K&e,, K&e,, K&e, and
K®e,, are the projective indecomposable K®-modules for which K&e/J(K®) e
~I K&, /J(K®) e, =M, KGe,/J(K&) e, =M,, K&e,/J(K®)e, =M, and
K®e,o/J(K®)e1o = M, respectively. So in the remainder of this paper, we
sete, = ¢,, €2 = ¢4, €3 = g7 and e, = €3,. [hen there holds the following :

__ s _ 8 . 8 — S
€2 — €1, €3 — €, €5 — €32, €5 = €y,

— 9 — 8 __ 82 _ 8
€3 — €3, E9g — €3, €11 — €4, &2 — €4.
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In the subsequent sections, by making use of the fact that
dim e_;J(K@) ker—-dim ejJ(K@)k+]e[ = [Lk-y-l(PMi)y Mj]‘

we shall determine the remaining part of the Loewy series of P,,. As pre-
liminary to the proof, in this section, we give the structure of powers of
J(K®), and state a few remarks which are helpful for the calculation of
dime;J(K®)*e;. From now on, we set J = J(K®), M = J(KWKEG and
N = eJ(KW). Then we have J = M+ N by Lemma 3.1. To begin with we
shall prove the following

Lemma 5.1. (1) eJ(KWe = eJ(KW)’e = (ela—1)e, ela®*—1)e) and
eJ(K)'e = eJ(K1)% = Klle.

(2) MMN = NMN = {e(a—1)e, e(a’—1)e)TW and NM*N = NIMN
= K@,

(3) NMN = NMN? = 0.

(4) MMRMN = 0.

Proof. Since dim eJ(KW)’e is the multiplicity of V, as composition
factor of J(K§)P,,, (1) follows immediately from Proposition 2.3. Recall-
ing that each element of ¢Klle commutes with s, by (1), we have

NMN = J(KW)J(KW) eJ(KB) = J(KBW)(eJ(KWe)J(K)
= (eJ(KW) e)J(KW)? = (eJ(K1)’e) T
= {ela—1)e, e(az—l)e:)‘ﬁ},

RN = eJ(KW)J(KN)*eJ(KB) = J(KB)(eJ(KW)*e)J(KB)
= (eJ(K)?e)J(KW)? = (ela—1)e, ela’—1)e) .

Hence, it follows that
NMR = NN = (e(a—1)e, ela®—1)e) .
Further, we have

NN = eJ(KW)J(KN)*eJ(KB) = J(KB)(eJ(KW)*e)J(KW)
= (eJ(KW)*e)J(KW)? = (eJ(KM)%e) B,

NIMN = eJ(KW)J(KW)°eJ(KB) = J(KBW)(eJ(KW)*e)J(KB)
= (eJ(KW)®)J(KW)? = (eJ(KW)°) B,

Since J(K11)¢ = K1, the above implies that
NM'N = NMR = KG.
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Thus (2) is proved. Further, (3) follows immediately from (2) because
JK®e(a'—1)eBW = e(a~1)eWI(KW) =0 fori=1,2.
Because of (2) and (3), we have

NRMAMRN = (e(a—1)e, e(a’—1)e) BMRN
= (e(a—1)e, e(a®*—1)e) e BWMN
= (ela—1)e, e(a®*=1)e) WMN = 0.

proving (4). Thus we complete the proof of the lemma.

Using the preceding lemma, we can easily obtain the following

Lemma 5.2. (1) J? = M+ MN+NM+N°.

(2) J* = MW+IN+MRDM + MN2+ NWM2+ N*IM.

(3) J'= M +DEN+MNM + MR+ MNRME + MRN*M + NI
+ I,

(4) J° = M+ MR+ DERIM + MR 4+ DENM? + MERM + MNIN?
+ MAIEM? + NIM* + NMEN+ R2Me.

(5) J® = M+ DN+ WM NM + MR+ MENM? + MERNTM + PENRME
+ MR+ MRIM?! + MNRZM® + NME + NI

(6) J" = MEN+DERNM+ MR+ MR + M REM + VENM?
+ MR + MR + MM2IME + MRM® + MRZM* + NI,

(7) J* = DERM+ DM+ MR + MREM* + MRPME.

(8) J*=0.

We close this section with two lemmas which are helpful for the cal-
culation in the remainder of this paper.

Lemma 5.3. Forn =1, 2, it holds that
ekanE = ek(zlzio fsk—z(v)_‘(an)v'), 1<k=4.

Proof. Since e, = e3x-2, we have

exae = exa™(120 v) = D12, exvi(a™?
=21k fak—z(v)lek(an)v-‘

= eic(Z}io fsx—z(v)l(an)v_‘)

= ex(Z}io fsk-z(*’)_l(an)w)-

Thus the lemma is proved.
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Lemma 5.4. Let k be a positive integer. Then for every i, 1 < i<
4, there holds that

(1) dime;J(K)*e < 2 and dim eJ(KW) %e; < 2.

(2) Ifdim e J(KW)*e = 2 then e;J(KW)*e = (e;ac, e;a’e).

(3) Ifdim eJ(K)*e; = 2 then eJ(KW)*e; = {cae;, ca’e;).

Proof. (1) is a direct consequence of Corollary 2.2. If dim e, J(KW)*¢
= 2, then e J(KW)*e = ¢;Klle, and so {2) follows from Lemma 2.1. (3)

is also obtained similarly.

We use the last lemma without any citation in our subsequent study.

6. The Loewy structure of Py,. In this section, we shall determine
the Loewy structure of P,,. The following lemmas are obtained directly
from Proposition 2.3.

Lemma 6.1. (1) e, J(KW)’e = e,J(K11)'c, e, J(KW)®c = 0.
(2) e J(Kl)e = e, J(KW)?e, e, J(KN)*e = e,J(KN)%.

(3) el J(KWe = e;J(KM)%e, e, J(KW)*e = 0.

(4) e J(KW)e = e J(KW)e, e, J(KI)°c = 0.

Lemma 6.2. ¢J(KWe, = e¢J(KW)%e,, eJ(KW)’e, = eJ(K1)®e,.

Using Lemmas 5.2, 6.1 and 6.2, we prove the following

Lemma 6.3. (1) e J'e; = e;Me,+ e, MNM2e,.
(2) e’ = e, Mee,+ e, MN*Me,.

(3) eJ%er = €, M%e, + e, M NM2e,.

(4) eJbe = e M2 M2e,.

(5) e = e;MNM2e,+ . MN*M2e,.

(6) esJ7er = e, M M2e,.

(7) eJ7er = e, MWN*M2e,.

Proof. (1) Since e;e = ce; = 0, we have e, = Ne, = 0. Hence,
from Lemma 5.2, it follows that

e'l:]‘el = eﬁl’?‘el + e, 5)]}29?.93291“}_ 819.729293?281.

Therefore, observing that
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e, MNMe, = e, J(K)2eJ(KW)J(KWe,
= (e, J(KI)?e)J(KB)(eJ (KW)e,)
= (e, J(KW)*e)J(KW)(eJ (K1) 2e,)
= e, J(KN)*eJ(KW)J (K1) e,
= e, M'NMe, C e, Me,,

we obtain e, J'e, = e,M'e, + e, MNM?e,, proving (1).
(2), (3), (6) and (7) are also obtained similarly, and we omit the poof.
Further, for i = 2. 3, we have

eMe, = e, 1KGe, = lle,KWe,
= WKe,e,+KeseSs+Keess?) = 0.

Noting this fact, we also obtain (4) and (5) from Lemmas 5.2, 6.1 and 6.2.

Lemma 6.4. [Ls(Py), M\] = 2.

Proof. To our end, it suffices to prove that dim e, J'e¢, =4 and
dim e,J%e, = 2. At first we prove dim e,J%¢, = 2. By Lemma 6.3,

e)J%e, = e, Me + e, MR MEe,.
Since e, J(KIN)%e$' =0 for i = 1, 2 (Proposition 2.3), we have

e Mee, = e, J(KN)*KBe, = e, J(KU)*KWe,
= e, J(KW)’e,+ e, J(KU)’efs 4+ e, J(KW)*ef's®
= e, J(K1)%e,.

Thus we obtain ¢, M°e, = Kﬁe], because dim e,J(K11)*e, = 1 by Proposition
2.3. _Further, from the equality

e MM M2e, = e, J(KW) e WJ(K1)?e,
= (e, J(K) &) W(eJ (K1) 2e,)

= {e,ae, evate) W {cae,, ca’e,),

it follows that the vector space e, MN*M’e, over K is spanned by the
elements :

- A, )
x, = e,aeWeae,, x, = e,acWea’e,, x; = e,a’eWeae,,
x, = e,a’eWed'e,.

Therefore e,J%e, is spanned by the elements ﬁe,, Xy, X2, X3, and x,. Since
£ = ¢*4+¢+1, calculating by taking advantage of Lemmas 2.1 and 5.3, we
have
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e\acae, = —e,a’ca’e, = —e,ae,+e,a’e,,

eiaca’e, = e;—e a’e,

e.a’cae, = e,—e, e,

(6.5) e,acae; = e,aca’e; = —e a’ecael = —e,ated’e’
= e ae;—e,d’e?,

e;acael = ejaca’e = —e a’cael = —e a’cale’

2 2
= e,ae; —ead’el.
Hence, noting that

: o r 2 " 2 . : k
ea'eWea'e, = e;a’e Wa'e, = X%, ea‘ea’e s, 1

IA

L, J=2,
and
el+elael+ela‘2el = (1 +Ca+éa2)el = ﬁels

we obtain e,J%e, = (ﬁe,, x,), and so dim e;J%, = 2. Next, we prove
dim e,J%, = 4. By Lemma 6.3,

eiJle; = e;Me,+e, MNM’e,.
We now claim that
eMe, = (e, (e,ae¥ +e,a’e)s?).
Indeed,

e|m4e] - e,J(KlI)‘elK:’IBe]
= e,J(KW)'e, + e J(KI)'efs +e,J(K) e f’s?
= e, J(KI)'e,+ e, J(KW)‘ef’s?,

because e, J(KU)'e] = 0 by Proposition 2.3. Further as dim e,J(Kl)‘e, =
1 (Proposition 2.3), we have e,J(KUW)'e, = Klle,. Calculating with the aid
of Lemma 2.1, we see that

eila—1)b—1)%ey = (=& +¢+1)(e aef +era’ed)

is a non zero element of e,J(K11)*e;". Hence, noting that dim e,J(KU)%e{’
= 1 (Proposition 2.3), we obtain

e J(KM)'ef's? = ((e aef’+ e ae)s?).
Thus we conclude
e Mie, = (ﬁe,, (eraef+ e a’e)s?).

Now observing that
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enJe; D ey MNMre,
= (e, J(KW) e) J(KW)(eJ(KW)?e,)
= {ejae, e;a’e)J(KB) (eae,, ca’e,),

we see that e,J'e, contains the following two elements :

s
y1 = e;ae(l —s)eae, = eyacae,—e acaels,
2 2
v, = e;ae(l —s%) eae, = e;acae,—e acael s’.

From (6.5), it follows that ﬁe,, (eraef + e aef)s?, v, and y, are linearly
independent, and so we have dim e,J‘e; = 4. Since L,(Py,) = M,, we have
[Pu/J*Py,, M{] = 3 by Lemmas 4.1 and 4.2. Therefore, by Corollary
2.6, we obtain dim e,J'e; = 4, and the lemma is established.

Landrock’s lemma together with the preceding lemma implies the following
(joro"ary 6.6- [Ls(sz), 1112] = 2.

Lemma 6.7. [LG(PMl).- Mz] = [-L7(PM|)7 MZ] = 1'

Proof. At first we prove that [Ls(Py,), M,] = 1. To prove this it
suffices to show that dim e,J/°e; = 2 and dim e,J%¢, = 1. By Lemma 6.3,
we have

erd %, = e, M N M2e, = (e, J(KW)2e) W eJ (K1) 2e,)

= {esae, ezaze)@(eael, ea’e).
Calculating by taking advantage of Lemmas 2.1 and 5.3, we have

e;a‘ca’e, = —ej,ae,—e,d’e,,
(6.8) e;a'ca’el = eaei+ e a’el, (1=ij=2)
i i 2 2 2
esa‘ca’el = e,aei +e.a’ef.
Hence from the equality
J_ sk _k

" P \ )
era'eWea'e, = e.a’ceWa'e, = Y 5oy era‘ca’el”s

we obtain e,J%e, = (ezaE}fBﬂ€1>, and so dim e,J%e; = 1. Now we prove that
dim e,J’e, = 2. By Lemma 6.3,

ezJ581 - 32w561+92m2mw281.
Noting that e,J(KW)®e* = 0 for i = 0, 1, 2 (Proposition 2.3), we have
ezm?sex = ezJ(Ku)sel+92J(Ku)sefs+92J(K11)5€.|9252 = 0.
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Hence it follows that

e J%e, = e, M*NM?e,
= (e, J(KN)?e) J(KW)eJ (K1) %e,)
= (ejae, e,a’e)J(KW) {cae,, ca’e,).

Since
era’e(l —s¥ea’e, = e,a’ca’e, —eralea’es”, 1<i j, k=<2,
from (6.8), it follows that
e.J%e; = (e,ae(l —s)ecae,, e,ae(l—s?eae,),

and so dim e;J%, = 2. Thus we obtain [L¢(P,,), M,] = 1. Next, recalling
that Lg(Py,) D I (Corollary 4.10) and J° = 0, we see that the Loewy length
of Py, is 9. Hence we have

LB(PMl) (——» SZ(PMl)
= L,(Py,)* ([4, Chap. I, Lemma 8.4])
=~ M oM, (Lemma 4.1).

Since Lo(Py,) = M,, the above implies that [J'P,,, M,] = 0. Thus we
obtain {L,(Py,), M,] = 1 from the fact that dim e,J®, = 1, and the lemma
is proved.

Lemma 6.9. [L.(Py). M;] = [Lo(Pw,), Ms] = 1.

Proof. Since the Loewy length of Py, is 9, and L(Py,) = M,, in
order to prove the lemma, it suffices to show that dim e;J®¢, = 2 and
dim eyJ7e, = 1. At first we prove that dim e;J%;, = 2. By Lemma 6.3,

33J691 = eam‘tamwzel"‘eagnzmzmze].
Noting that dim e;J(KW)%¢ = 1 (Proposition 2.3) and

e;J(KW)3e 2 es(a—1)4(b—1)e
= ({*+1)(esae —esa’e) + 0,

we obtain
(6.10) esJ(KM)3e = (es(a—a%)e).
Hence we have

e;s TN M2e, = (e J (K3 e) J(KB)(eJ (K1) %e,)
= {esla—a?)e)J(KB){cae,, ea’e,).
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This implies that e; M*NIM*e, contains an element
esla—a?)e(l —s?)eae,.
Since e;J(K11)*e, = 0 (Proposition 2.3), we have

(esla—a®)e)(eae;) € (e J(KM)3e)(eJ(KN)%e))
C e J(Kll)®e, = 0.

From this it follows that

esla—a))e(l —s®eae, = —esla—a)es’cae,
= (—esacae’ +esa’cae’) s

Further calculating with the aid of Lemmas 2.1 and 5.3, we obtain
(6.11) e;aeae’ = —eja’cael = ejaet —eate’ + 0.
Accordingly we have

es(a—a®)e(l —s%) eae, = esacaels?,
and so
(6.12) esJe, D ejacaet’s’.
Since

e M M2e, = (esJ(KN)2e) W(eJ(K)%e,)

= {e;ae, em%)ﬁi(eae,, ca’e,),

we see that ejacTBeae, is an element of e;TM2N*Me,. Noting that
esJ(KW)'es = 0 (Proposition 2.3), we have

esacBeae, = e;ae Wae, = esacae, +esacael’s’.
We see, by calculation, that
esacae, = —(esae,+eza’e,) + 0.
Hence, from the above and (6.12), it follows that
esJ%e D {ejacae,, e;acaets?).
On the other hand, from Lemmas 4.1 and 4.2, it follows that
[Pu,/J*Py,, Ms] = 4.

Hence we conclude that dim e;J%e;, = 2 by Corollary 2.6. Next we prove
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dim e;J7e;, = 1. By Lemma 6.3 and (6.10), we have

93J7€1 - egwgngﬁzel)\
= (esJ(K1)*e) W(eJ (KU)%ey)

= {es(a—a)e) T {cae,, ea’e).

Hence ey(a—a?) e Weae, is an element of esJe,. Since esJ(K)®e$' = 0 for
i = 0. 1 (Proposition 2.3), by (6.11), we have

es(a—a?) e Weae, = (esacaes —esateae’)s?

= —ezacael’s® + 0.
Hence e;J e, == 0. On the other hand, we have
Ls(PM,) (@ Sz(P.u,) = LZ(PMz)*:: I M, @ M,.

This shows that dim esJ’e; < 1, because Lo(Py,) = M,. Thus we conclude
that dim e;J’e; = 1, and the result follows.

Landrock’s lemma together with the preceding lemma implies the following
Corolla.ry 6.13. [L7(PM‘), Mz] = [LK(P/\“), IWZ] = ]..

Lemma 6.14. [Ly(Py,), M,] =1.
Proof. By Lemma 6.3, we have
ed e, = e, MM Me, = (e J(KN)*e) W(eJ (K1) 2%e,)

= {e,ac, ma%)@(eaeh ed’e)).

Hence e.aeWeae, is an element of e,J’e,. By Proposition 2.3, we have for

k=1, 2,

eiacaes’ = (ejae)(eaef”) € (e (K1) e)(eJ(KN)2e$™)
C e J(K1)*ef™ = 0.

Hence
ecaeWeae, = e;ac Wae, = e,acae,.
Further, by calculation, we have
ejacae, = e,ae,—e.a’e, + 0.
Thus it follows that e,J7e, = 0. Therefore, from the fact that

LB(PMl) CI @ 1M3 e A“"Iq,
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we obtain dim e,J’e, = 1, because Lo(Py,) = M,. Thus we conclude that
[LB(P-M])7 M4] = 1'

We have the following by Landrock’s lemma and the preceding lemma.

Corollary 6.15. [Ls(Py,), M,] = 1.

Combining Corollary 2.6, Lemmas 4.1, 4.2, Corollary 4.10 and Lemmas
6.4, 6.7, 6.9, 6.14, we obtain the following

Proposition 6.16. P, has the Loewy series given in Theorem.

7. The Loewy structure of Py,. In the remainder of this paper, by
making use of an argument similar to the one used in the preceding section,
we shall determine the Loewy structure of Py,, Py, and P,,, and consequent-
ly we complete the proof of Theorem. To begin with, in this section, we
determine the Loewy structure of Py,. The following is a direct consequence
of Proposition 2.3.

Lemma 7.1. &J(KW)%e, = eJ(KW)*e, and eJ(KW)%e, = 0.

By Lemmas 5.2, 6.1 and 7.1, we have the following

Lemma 7.2. (1) eJ%; = e, Mes+ e; MNMe,.
(2) ed'e, = exMie;+ e, MNMe,.

(3) e, = et M'NMey+ e, MNMe,.

4) elJe; = et MR Me,+ e, MN*Me,.

5) esJ'e; = esMies+e; MNMe,.

6) eiJ’e; = e; MENMe,+ e M2 Me,.

7) esJe; = e; TN Me,.

8) eJ'es = esMiey+ e, M NMe,.

(9) eJfer = e, M*NMe,+ e, MR Me,.

(10) esJ7e; = e, M' N*Me,.

(
(
(
(
(

Calculating by taking advantage of Lemmas 2.1 and 5.3, we obtain the
following

2 2 2 2
Lemma 7.3. (1) ejacae, = ea’ca’e; = —eaca’e; = —e,a’cae,
2
= eyae;+e a’e;.
2 2 2
(2) ejacaes = ejaes, e;aca’el = eia’cae; = e aei+eid’es, eia’ca’ad
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=e ad’e;.
32 32 2 2 2 2 2 2
(3) ejacae; = eiaes, eiaca’e; = e a’cae; = eae; +ed’es,
2 2 _8? 2 2
e.a’edle; = ejd’es .

(4) esacae, = esa’ca’e, = —ejaca’e, = —eza’eae, = —(esae,
+esa’e,).

(5) esoecael = —esjaca’e; = e;a’es, e;a’cae; = e;a’ea’e; = ejae;.

(6) esacaes = eja’caes = —ejaca’e; = —eza’ea’ey = —ejaes
+63aze§2.

(7) esacae; = e,a’cae, = —eaca’e, = —e,a’ca’e, = —e,ae,
+esa’e,.

(8) ejacae; = ea’ca’e; = —eacd’e; = —eja’cae; = e,ael
+eja’es.

(9) ejacaes’ = e.a’ca’es’ = —eiaca’e; = —eia’caes’ = —(e,aes
+e.a’es).

At first, we shall prove the following

Lemma 7.4. (1) [L.(Py,), M] = 2.
(2) [LiPy,). Mi] =1.
(3) [Ls(PMz), lwl] =1.

Proof. (1) To our end, it suffices to prove that dim e,J%¢, =5 and
dim e;J'e, = 3. By Lemma 7.2,

eid’e; = e Mer+ e MNMe..
We set
x; = e{a—1)b—1)es € e J(KUl)’e?', 0=sig2.
Then by Lemma 2.1, we have

x = e{la—1)"(b—1)e, = (£*+1)(esae;—eia’es) + 0,
x = ela—1)(b—1)e; = (£*—t+1)(eiaei—eia’es) + 0,
x, = e(a—1)(b—1)ef =(—¢+1) e aes’ —eiaes’) + 0.

Since dim e, J(KW)%es* =1 for i = 0, 1, 2, from the above, it follows that
eleez D elg.naez - <I05 Xy, x2>-
Further, since

e]Jaez D) 619]3%93}62 = (elJ(Ku)E)J(K%)(EJ(Ku)ez)
= {eae, e;a’e)J(KW) (cae,, ea’e,),
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we see that e,J%e, contains the elements :

vy, = eyae(l —s)ecae, = e acae,;—e acaess,
2 2 2
v, = eyae(l —s)ea’e, = eiaca’e,—e aca’ess.

Now by Lemma 7.3, we see at once that x,, x,, x2, ¥, and y, are linearly
independent, and so dim e,J%e; = 5. Therefore we obtain dim e,J%e, = 5 by
Lemma 4.5 and Corollary 2.6. Next, by Lemma 7.2,

91J462 = 91m432+81mm2w92,
and by Proposition 2.3,

e Mie, = ey J(KM)'ess +e, J(K1)es’s?
= e, J(KW)’ess + e, J(KN)3ef's?

= <x1, -132>o
Further, observing that
e MNMe, = (e, J(KWe)B(eJ(K1)e,)

= {eiae, ea’c) W (cae,, ea’e;)
and
era'eBea’e, = eia’e Wa'e, = 2., era’ea’es”s”, =i, j=2,
we obtain
erde; = (x1, x2, e;ae Wae,)

by Lemma 7.3. Hence dim e;J'e, = 3. Thus (1) is proved.
(2) and (3) It suffices to prove that dim e,J%; = 2 and dim e,J7e, =
1, because Lo(Py,) = M,. At first, by Lemma 7.2,

eleez = 2191?49293232"'91%‘28}9]2‘22.
Since dim e;,J(K11)*e =1 and

e J(K)'e 2 e;(a—1)%b—1)%
= (¢ —¢+1)eiae+ea’e) # 0,

we have
(7.5) e J(KW)*e = (ei{a+a%)e).

Therefore e,J®e, contains the elements :
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i = ei(a+a®)e(l1—s)eae,

= e{a+a*) cae;—e{a+a’)caess,
vy, = efa+a®)e(1—s%)eae,

= e(a+a) cae;—e(a+a?)caes s,

because

erJe; D ey M NMe,
= (e, J(KW)*e)J(KW)(eJ(KW)e,)
= (e\(a+a") e) J(K) (cae,, ea’e,).

By Lemma 7.3, we see that y, and y. are linearly independent, and so it fol-
lows that dim e,J%e, = 2, because dim e,J%e; < 2 by Corollary 2.6, Lemma
4.5, and (1).- Next, we prove that dim e;J’e; = 1. Since dim eJ(KW)'e, =
1 and

eJ(KW)'e, 3 e(a—1)3b—1)%e,
= (£*—¢+1)(cae.+ed’e;) #+ 0,

we have
(7.6) eJ(KM)'e, = (e(a+a’)e,).
Hence, from (7.5) and (7.6), it follows that

erJe; = es M PWMe, + e, MN*Me,
= (e J(KW)*e)B(eJ(KW)ez) +(eJ(K1) &) W(eJ(K ) 'e,)
= (e,(a+a2)e>52§3(saez, ea’ey)
+{esae, elazsﬂAB(e(a-l-az)ez).

Therefore e,J"e; is spanned by the following four elements :

ela+a?) eWea'e, = Tt er(ata)ea‘ess™ (i =1, 2),
evateBela+ae, =D ks era’elat+adess* (i =1, 2).

But Lemma 7.3 asserts that

e;(a-l—az)eifBeaeg = e;acWela+ad)e,
= —e(a+a?)eWea’e,
= —e;d’eWe(a+a?)e..

Thus we obtain dim e;J7e; = 1, and so (2) and (3) are proved.

Lemma 7.7. (1) [Ls(PMz), M;;:I == 1.
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(2) [Lo(Pw), M;] =2.
(3) [L+(Pw,), Ms] = 1.

Proof. To prove the lemma, it suffices to show that dim e;J'e, = 4,
dim e;J%e;, = 3 and dim e;J%;, = 1, because

Ly(Py,) C Sy(Py,) = Ly(Py)*=M, ® M, & M,
and Lo(Py,) = M,. At first, we prove dim e;J'e; = 4. By Lemma 7.2,
exJ'e; = e;M'es+ e, M NMe,.
Since e;J(K1)‘e$” = 0, it holds that
esMe, = e J(KM) e, +e;J(KN)'ess.
Hence, noting that

esJ(KWW'e;, 2 x, = es(a—1)%b—1)%,

= (_§+1)(€3aez+esazez) * 01
esJ(KI)'es 2 x, = es(a—1)%b—1)%;

= (=" +¢+1)(esaes +esa’es) + 0,

we obtain
63J482 ) 935m492 = <xh 152):
because dim e;J(KW)‘e;, = dim e;J(KW)*e§ = 1. Further, from the equality :

es M NMe, = (e, J(KN)?2e)J(KBW)(eJ(KWN)e.)
= (esae, e;a’e)J(KW) {cae,, ea’e,),

we see that e; M NIMe, contains the elements :

¥1 = esae(l —s)eae, = e;acae,—ezacaess,
2 2
y, = esae(l —s?)cae, = e;acae,—esacaes s’.

By Lemma 7.3, we see immediately that x,, x;, y, and y, are linearly inde-
pendent. Thus it follows that dim e;J‘e, = 4 from Corollary 2.6, because
[Py,/J*Py,, Ms] = 2 by Lemmas 4.1 and 4.5. Next, by (6.10), we have

ei’e; = e; PENMe, + e, M N Me,
= (e J(K1)?e) J(KB) (eJ(KW)e,) +(esJ (K1) 2e) W(eJ (K1) e,)
= {es(a—a®) e)J(KB) {cae,, ea’e,)

+{esae, e;a’e) T {cae,, ca’e,y).
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Hence, from Lemma 7.3 and the equalities:

es(a—a?)e(1—sYea’e, = es(a—a®)(1 —s')ea’e,

= esla—a?)ea’e,—es(a—a’) ea’es's’,

A

-~ i 2 X
e;a‘eWea’e, = esa’cWa'e, = X ko esa‘ca’es s”,

where1 < i, j, | < 2, it follows that e;J®%e, has a K-basis consisting of the
elements :

es(la—a®)(1 —s)eaey, es(a—a®)(1 —s?)eae,, esac Wae,.
Thus we obtain dim e;J%e, = 3. In final, since

e;qJGez = eswamzmez
= (e;J(KlI)’s)EI%(eJ(KII)eZ)
= (ei{la—a) e) W{ecae,, ca’e,)

and
es(a—a?) e Weae, = —eg(a—az)e”IABsazez (Lemma 7.3),
we obtain
esd%, = (esla—a?) e Wae, ),
proving dim e;J%e, = 1. Thus we complete the proof of the lemma.
By Landrock’s lemma and the preceding lemma, we have the following
Corollary 7.8. (1) [Ls(Py), M,] =1.
(2) [Le(Pu), Mi] = 2.
(3) [LiPu), M\] =1.
Lemma 7.9. [Ls(Py,), M.] = [Ls(Py,), M] = 1.

Proof. We prove that dim e,J°¢; = 3, dim e,J°%¢, = 2 and dim e,J e,
= 1. Then the result follows. By Lemma 7.2,

34']562 = e4m592+€4m3mm€2.
Since

e MENMe, = (e J(KU) ) J(KWY) eJ(KW)e,)
= {eqae, ea’e)J(KW){cae,, ca’e,),

we see that e, M NMe, contains the elements :
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ecae(l—s)cae, = eacae,—e,acaess,

eale(l —s)eae, = e,a’cae,—e,a’caess,
2

e,ae{l —s? eae, = eqacae,—e acae; si.

Further, by Lemma 7.3, we see that these elements are linearly independent,
and so, by Corollary 2.6, Lemmas 4.1, 4.5 and Corollary 4.10, we obtain

dim e,J%e, = 3. Next, we have

e e = e, M NMe, + e, PN Me, .
= (e, J(KW) &) J(KW)(eJ(KW)e,) + (e J (KNP e) W(eJ(KW)ey).

Since dim e, J(KW)*e =1 and

e J(KW)'e o efa—1)%(b—1)%¢
=(—¢’+¢+1)(esac+esa’e) +0,

we have e, J(KW)*e = (e,(a+a®)e). Noting that e, J(KW)%es* = 0 for k =
1, 2, we obtain

edat+a®e(l —s®ea’e, = ea+a’)ea’e,, j=1, 2.
Hence, by Lemma 7.3, we obtain
(7.10) e M NMe, = (es(a+a?) ecae,).
Further, from the equality:
edeBea'e, = ea'eWa'e, = Yo,y esa’ea’ess”, 1<i,j2
and Lemma 7.3, it follows that

(7.11) e N Me, = (e, J(KW)2e)W(eJ(KW)e,)
= (e.,a.s,Aegaze)?IB(eaez, ca’es)
= {(e,acWae,, esa’eWa'e,).

Thus, by Lemma 7.3, (7.10) and (7.11), we obtain
e = e, M NMe,+ e, MN Me, = (eaeBae,, ea’eWale,),
proving dim e,J%e, = 2. Finally, from the equalities:

ede; = e, M N Me, = (e J(KW) ) W(eJ(KU)e,)
= {es(a+a’)e) W {cae,. ea’ey)

and

ea+a?) e Weae, = e(a+a?)cae, = ejaes—e a’es,
elat+a®) eWea’e, = e(a+a’) ed’e, = —(ejae.—esd’e,),



ON THE LOEWY STRUCTURE OF THE PROJECTIVE INDECOMPOSABLE MODULES 47

we obtain dim e,J’e; = 1. Thus the lemma is proved.

Landrock’s lemma together with the preceding lemma implies the following

Corollary 7.12. [Ls(Py,), M\] = [Ls(Py,), M\] = 1.
Combining Corollary 2.6, Lemmas 4.1, 4.5, Corollaries 4.10, 6.6 and
Lemmas 7.4, 7.7, 7.9 we obtain the following

Proposition 7.13. P, has the Loewy series given in Theorem.

8. The Loewy structure of Py,. Here, we determine the Loewy struc-
ture of Py,. For this we need only prove the following
Lemma 8.1. [L.(P,,). M;] = 1.

Proof. Because L,(Py,) = Mj, it suffices to prove that dim e;Je; =
2. Since eJ(KWe; = eJ(KW)%e; and ¢J(KW)°e; = 0, by Lemmas 5.2 and

6.1, we obtain

e3JBe3 = 9391?39?29]?3@3"‘93%?2%29]2463
(@ ezmsf?a = €3J(Igu)6KslBea
== lIe;;KQBe;; = Kr[e:;.

Hence e;J%e; = Klle;, because dim e;J%e; = 1. Thus we see that e;J'e;
contains le;. Further, we have

e es DO ea M M3e; = (e J(KI)2e) W(eJ (K1) 2ey)

= {esae. esa’e) W (caes, ca’ey),

and so esJ'e; contains an element x = (esae)W(cae;). Noting that

esJ(K)*es® = 0, we have
x = esacae;+esacaess.
Calculating with the aid of Lemmas 2.1 and 5.3, we find
esacae; = —esae;+esa’e; + 0.
Further,

esacae; € eylJ(KW)eJ(KW)2e; C e J(KN) e,
= e;J(KH)6e3 - Kllea.



48 Y. NINOMIYA

Therefore we obtain
e3J793 D (ﬁe3, x).
Hence dim e;J7e; = 2. On the other hand, it holds that

Lo(Py;) G S2(Py,) = Lo(Py)*=M, & M, & M;,
LQ(PJ{g) =~ M,.

Hence dim e;J7e; < 2, and so dim e;J7e; = 2. Thus the lemma is proved.

Landrock’s lemma together with the preceding lemma implies the following

Corl)“a.ry 8.2. [LH(PM‘), Mg] = ]..

By Corollary 2.6, Lemmas 4.1, 4.8, Corollaries 4.10, 6.15, 7.12 and
Lemma 8.1, we obtain the following

Proposition 8.3. Py, has the Loewy series given in Theorem.

9. The Loewy structure of Py,. Finally, in this section, we deter-
mine the Loewy structure of P,,, and complete the proof of Theorem. The
following is a direct consequence of Proposition 2.3.

Lemma 9.1. &J(KWe, = eJ(KW)’e, and eJ(KU)'e, = 0.

This together with Lemmas 5.2 and 6.1 yields the following

Lemma 9.2. (1) e3J%e = e;Me+e; MNMe,.
(2) es’ei = e MENMe,+ e, MWNMes+ ;M N*Me,.
(3) eid7e, = e PN MPey+ e; TN DWe,.

Calculating with the aid of Lemmas 2.1 and 5.3, we have the following

Lemma 9.3. (1) eiacae, = —esa’ca’e, = e;ae,—esa’es, esaca’e,
= esa’eae, = 0.

(2) ejacael = esaca’el = e;a’cael = esa’eca’el = —(esae;
+esa’ed).

(3) esacaed = e;aca’el = esa’cael = e;a’ea’el = —(esaef
+esated).

Now we prove the following
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Lemma 9.4. [LG(PM,), Ma] = [L1(P.u.), AM:!] = [LB(PM.)s 1’W3:| =1.

Proof. To prove the lemma, it suffices to show that dim e;J%e, = 3,
dim e;J%, = 2 and dim e;J7e, = 1, because Lo(Py,) = M,. By Lemma 9.2,

we have

esJ’es DO e; MNMe,
= (esJ(KW)2e)J(KW)(eJ (K1) %e,)
= {(esae, esa’e)J(KB) (cae., ea’e,),

and so e;J’e, contains the elements:

x, = es;ae(l —s)cae; = e;acae,—esacaess,
2 2
x, = esa’e(l —s)ed’e, = esa’ea’e,—eza’ea’ess,
_ (1—s?) _ _ sz 2
X3 = ejac s?)eae, = e;acae;—esacael st

By Lemma 9.3, we see that these three elements are linearly independent.
On the other hand, by Lemmas 4.1 and 4.9,

(P,,/J®Py,, M;] = 3.

Thus we obtain dim e;J°e; = 3 by Corollary 2.6. Next, by Lemma 9.2, we
have

e;Jes = ey MENM2e+ e MENMPe, + e, PN M e,
= (esJ(KU)%e) J(KBW)(eJ (K1) 2e,)
+(es J(KM) e )J(KW)(eJ(KW)3e,)
+(esJ(K1)? &) W(eJ(K1D)%e,).

Further, since dim eJ(KW)%e, =1 and
eJ(K)’e, 2 e(a—1)(b—1)e, = (£*+1)(cae,—ca’e,) + 0,
it follows that
(9.5) eJ(KW'e, = (c(a—ade,).
Hence, by (6.10) and (9.5), we have

ey ey = {es{la—a?) ) J(KW) {cae,. cda’e,)
+ (esae, esa’e) J(KW) (e(a—a)e,)

+{esac, em’e)@ (eaes, ea’e,).

By Lemma 9.3, for every i, k, 1 =i, k< 2, it holds that
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esla—a?)e(l—s*) ea’e, = esa‘e(l —s*)e(a—a’)e,
= e;ae,—eza’e,.

Therefore noting that

esale Wea'e, = esateWa'e, = Yoy esa‘ea’ed™s®, 1=<i j<2,
from Lemma 9.3, we obtain

esJe, = (esae(l —s)e(a—a®)es, esaeWae,),

and so dim e;J%e, = 2. Finally, by Lemma 9.2, (6.10) and (9.5), we have

esJ e, = e; MENMPe i+ e MW Me,
= {(es(a—a®) e)W(cae,, ca’e,)
+ {esae, e;a’e)W{e(a—a)e,).

Since e;J(KW)®es* = 0 for k = 1, 2, there holds that

(eg(a—az)e)?fﬁ(ea"e4) = es(a—a*) edes, i=1,2,
1,2

(esa'e) W(e(a—ad)e,) = esa‘e(a—a)es, i=
Further Lemma 9.3 yields the following:
es{la—a?) ea’e, = esa‘e(a—a’)e, = e;ae,—esa’e,.

Hence we see at once that dim e;J’e; = 1. Thus we complete the proof of
the lemma.

Combining Corollary 2.6, Lemmas 4.1, 4.9, Corollaries 4.10, 6.13,
7.8, 8.2 and Lemma 9.4, we obtain the following
Proposition 9.6. Py, has the Loewy series given in Theorem.

Thus we complete the proof of Theorem.
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