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1. Introduction. Let ES'— BS' be a universal S'-bundle where S' is
the circle group. Let us denote X the total space ES' Xy X of the associat-
ed bundle with a fiber X. The cohomology ring of X is called the equivari-
ant cohomology ring of a S'-space X. We assume the following condition

(1.1) HXX, Q) = Q[xy,....xal/(¢i(x),..., galx)),

where ¢,(x) is a homogeneous polynomial in x,,...,x, and degx; = 2. Let
7: Xe—>BS' and i : X— X, be the projection and the inclusion of a fiber
respectively. Since i* is a surjection by (1.1), we can take multiplicative
generators xi,...,xn and ' such that i*(x;) = x; and ' = 7*(¢), wheret is a
generator of H*(BS', Q). In order to abbreviate the notations let us also
use x; and ¢ in the meaning of x; and ¢' respectively. Then we have

(1.2) H*(Xsl, Q) = Q[xlv'“’x‘lh t]/(fl(Is i)nn:fﬂ(l', t))s

where f{x, t) is a homogeneous polynomial and f{x, 0) = ¢{x).

In [4] we have shown that there is a bijective correspondense between
the set of connected components of the fixed point set X*' and the solutions of
the simultaneous equations fi(x, t) = 0,...,fa(x, ) = 0. Any solutions & =
(&....,&r, 1) are rational i.e. & is a rational number. The ideal (f,,.... fn)
satisfise a local condition concerning the multiplicity of &€ and the cohomology
of the connected component F' of X corresponding to £ at each £. Converse-
ly, if homogeneous polynomials f(x, t) (1 < i < n) are given which satisfy
the conditions, then by V. Puppe’s theorem ([8]) there is a S'-space such
that (1.1) and (1.2) hold.

This paper consists of an observation and its consequences. Let F be a
connected component of X*' corresponding to £. We observe that there are
homogeneous polynomials y(x) and A,,(x, #) (1 < i, j < n) such that f,(x,+
Ety Xyt Ent, t) = g'. A (x, t) x{x). This is equivalent to the local con-
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dition stated in the above. Y{x) discribes the cohomology of F and det
(Ay(x, t)) is considered as the image of 1 € H'(Fs:,, Q) by the equivariant
Gysin homomorphism. If the action is smooth, and F' is an isolated fixed
point, then the tangential representation of S' at F' is determined up to finite
possibilities by fi,....fn». We say that a connected component F of X°' is
‘generic’ if F has the rational cohomology of a point or a sphere S®. Then,
as an consequence we have the following : if the u-resultant of ¢,(x),...,
¢n_1(x) is irreducible over @ and deg ¢.(x) is very large, then there exist
sufficiently many generic connected components however the number of non
generic connected components is bounded from the above by a constant de-
pending only on deg ¢,,...,beg ¢n_,.

2. A local condition concerning equivariant cohomology ring. Let us
denote Q[x,,...,xs) (or Q[x]) the polynomial ring with rational coefficients
in n variables x,,...,x,. Consider a homogeneous ideal (@,,..., ¢n) of Q[x],
where deg ¢{x) = r,. We assume

(2.1) dimg Q[axy, ..., xn] /{h(x),..., pux)) < o0,

This is equivalent to the condition that the simultaneous equations ¢,(x) =0,
..., ¢x{x) = 0 do not have non-trivial solutions in the field C of complex num-

bers. Then dimg Q[x]/(¢) = ﬁl r; and the Jacobian det (3(¢,, ..., ¢n)/O(x1,
...,Xn)) is a generator of the graded ring Q[x]/(#)(deg x; = 2) in the highest
degree Zé(r,—l) (see [6, Th. 18]).

Let us consider an homogeneous ideal (f(x, t),...,fu(x, 1)) of the poly-
nomial ring Q[x,,...,x,, t] where

(2.2) fdx, 0) = ¢fx).
Then, by (2.1), the number of solutions of the equations fi(x, ¢) =0,...,

fox, 1) = 0 is finite. Let us denote £@ = (£/*,...,6" 1), 1 < a < o the
set of the solutions. We assume the following

(2.3) e, 1<i<nl1<e¢e<ow

For each &9, let us denote I, the homogeneous ideal of Q[x] generated
by the coefficients of powers of t in f{x,+ &%, ..., xp+ &7 1) (1 < i < n).
I, contains the ideal (¢) and ((f),....(fa)e(e) < dimg Q[x]/I, where ((f.),
e, (el @) is the multiplicity of £ (cf. [9. p. 183] for notation). We as-
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sume the following local condition holds at each &'?.

(2.4)  ((f)s....(f)) g = dimg Q[x]/ L

In this situation, we can state the equivariant realization theorem of
V. Puppe as follows.

Theorem (V. Puppe [8]). Let ¢{x) and f{x, t) (1 < i <n) be homo-
geneous polynomials that satisfy (2.1),...,(2.4). Then there is a finite S'-
CW complex X such that (1.1) and (1.2) hold.

Remark. This suggests a problem: Is there non-trivial (f) satisfying
(2.2),...,(2.4) for any (¢) ?

(2.3) and (2.4) mean the following ([4]). Let j be the inclusion of a
connected component F, of X*' into X. Then there is a bijective correspon-
dence between £ and F, as follows.

J¥x) = x| Fot €%, 1 < i < n,

where x| F, is the restriction of x; € H¥(X, @). Let us also use x; as
meaning of x;| F,. Then, in this notations we have

(2.5) HX(Fo, Q) = Q[z]/L.

In this paper we always use the notations ¢,, f;, £, X etc. in the mean-
ing stated heretofore, even if anything is not stated. Let be a solution of f, =
-+ = fp = 0. Without loss of generality we may suppose £ = (0,...,0,1).

Proposition 2.1. The condition (1.4) at ¢ = (0,...,0,1) is equivalent
to the following : There are homogeneous polynomials y(x) and A,(x, i)
(deg i = s, deg Ay = ri—s;, 1 <14, j<n) such that

(i) dimg Q[x]/(x(x)) < oo,

(ii) det(ay) % 0, where A;{x, t) = ayi™ ' +the lower terms in ¢
and a;; € Q, and

(iii) flx, t) = ;AU(J:, ) xi(x) mod (xi,...,2,) %", 1 < ; < n, where

s = Zi}(s,-—l).

Proof. Let us denote J the ideal of Q[x] generated by

flx) = flx, 1) = ¢ x)++ i x), 1 <i<n
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where deg ¢7 = d and ¢7" = ¢,. We may assume that ¢\',..., #% are linearly
independent over Q and ¢} = ; a;9;'j >k and a;€ Q. We replace f; by

- A - -
JS—E a.f;, then we may J = (f,....f») and ¢’ = 0(j > k). Now assume

1, .ees Py, are linearly independent mod | Ly @'+ -+ Lg¥ | L{x) a linear

form!} and
. k !
8= L Lgl+ D badtin ba€Q j> ktl.

Replacingf,- (> k+1) byfj— 2L fi— Zh‘, bsfrin, we can suppose farther

that ¢@ = 0 for j > k+ 1. Iterating at most n—1 times, we obtain generators
Siseoofoof J. Let us denote Y, the lowest term of f; From the choice of y; we
get for any polynomials B(x) and1 < i< n

(2.6) xdz) $J-§- By(x)fi(x) mod(x,,...x,) ‘CEX*,

Let us consider the primary decomposition J = () q; of the ideal J. We may
J

assume that the radical of ¢, is the maximal ideal m = (x,,...,x,), because of
£ =1(0,...,0). Let I be the ideal corresponding to £&. By [4], (2.4) implies
g1 = I. In the localized ring Q[x]m we have ¢,Q[x]im = (fi,.... /2) R[x](m
and hence ¥, = 2_ h,f; where h; € Q[x]m since y;€I. Now consider
Q[x]m as a subring naturally imbedded in the formal power series ring
Qix,,...,xnl. If we can write as an element of Q{x}: h; = c,+the higher
terms, ¢; € Q, then we have (1 —cy) ¥ = g, By(x)f; mod (x,,...,x,) e85

with some polynomials B;(x). This implies ¢;; = 1 by (2.6). On the other
hand by the choice of Xi,..., ¥» we have c¢;; = 0 for i < j and hence det (k)
is a unit in Q|xz}. Moreover, there are polynomials p,(x) such that f; =
;pufj(x, 1) and det(py) is also an unit in Qlx}. Thus we can write

filx, 1) = ;', A, X where the matrix (A}) is equal to ((hy)(py))~'. Let us

denote A, the sum of the terms in Aj; of degrees equal or less than deg f;—
deg ¥; and consider as a homogeneous polynomial by introducing the variable
t. If we set A, 17 +the lower terms in ¢, ay; € @ and s; = deg ¥;, then
det(ay) % 0. Since f{x, t) is a polynomial and yi,..., ¥» are homogeneous,
we have ffx, t) = ;‘, Ai(x, t) X from the equality stated in the above. In

particular this implies that ¢; € (%,...¥») and hence (i) holds for x,..., Y.
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Next we show the converse. By (i) we can r~eplace A,; so that the con-
gruence in (iii) becomes an epuality. Then (f;,.... /) Qlxl =(x,..., x2) Qx|
where f(x) = fi(x, 1). By the definition of the multiplicity,

() oo () e = dime QI /(i ... /) Qlx |
= dim,g Q’x’/( Kiseoos Xn)Qix'
= dimQ Q[I]/( XI,--" Xn)-

Since (Y1, ..., Xa) is the ideal corresponding to £ in (2.4), this completes the
proof,

Assume 7, < .-+ < 7, and s, < .- < 5, where deg ¢, = 7, and deg ¥;
= 5;. Then we have the following
Proposition 2.2. s;<r, 1 <i<n.

Proof. Suppose s; > r; for some i. Then ¢,,..., ¢, are represented by
Xis.-es X1 S0 that (¢, ..., #,) are contained in the ideal( i, ..., Xi-1, Gir1senr
$n). Since the simultaneous equations Y, = -+ = Y,y = @1 = -+ = ¢ =0
have a non-trivial solution, by [11, p.11], the equation ¢, = - = ¢, = 0
have a non-trivial solution. This contradicts to (2.1) and completes the
proof.

Remark. The ideal I in (2.4) is generated by # polynomials by Propo-
sition 2.1, however this follows also from [1].
3. Bredon’s orientation for connected components of X°'. Correspond-

ing to the maps (X*') & —>Xsu<—X we have the ring homomorphisms
-k *
QL=1/($)~—Qlz, 1)/() (D al=1/(x)) @ Ql1],

where i*(x) = x, i*(t) =0, j*¥(t) =t and j*(x) = Z(x+§-“°’t). Let us
denote [ = ;(r,—l) and I, = Z(s‘“’—l) where s = deg 1. Then 2/ and

21, are the formal dimensions of the graded ring Q[x]/(¢) and Q[x]/( ¥'®)
respectively. Let £'“ be a solution of the equations f; = --- = f, = 0. Then
we have by Proposition 2.1

(3.1) flw+€%, 1) = 25 AG(x, t) ),
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(a)
where A = a{¥t"~5i +the lower terms in ¢, &} € Q and det(a!?) = 0. We
put AY = det(Ai(x— 9%, t)).

Lemma 3.1. j*(AY) is 0 in Q[x]/Ax®) ® Q[t] if B % a, and det
(a9t o4 the lower terms in Q[x]/(x*) ® Q[1].

Proof. The second formula is clear from (3.1) and definitions. We
need to show the first. From 0 = j*(f(x, t)) = f{x+ £“t), we have in
Qx]/Ax*) ® Q[1]

(3.2) T AS+(EI— £ AP HED—EN) = 0.
J
Since £Y & £, we have Y(x+(£®—£&Nt) = ditsl‘a)+the lower terms in

t, d; % 0 for some i. Multiplying the matrix of cofactors of the matrix (A$(x
+(EP—£9)¢) to (2.2), we have

det (AP +(£9— £)1,)(dit* + ) = 0.
From this we hav j*(A") = 0 in Q[x]/(¥*®) ® Q[¢].

Lemma 3.2. If ¢(x) = ; Bi(x)¥,, 1 < i< n where B;;(x) is ho-

mogeneous of degree r;—s;, then we have

11 (s/r) det (2¢/ 3x)) = det (Bu) det (33/8z.) mod (..., $u).

Proof. If we define C,; by the matrix equation
(3.3) (Bu)((1/s)ox/ox) = ((1/r) 3./ ax,) +(Cu),
then we have 2 C,;x; = 0 by using Euler’s formula ; (9¢:/0x;)x; = 7.

Then Lemma 3.2 follows from (3.3) and the following : Let (D;;) be a (n-n)-
matrix where D;; is a polynomial in x,,...,x,. If ; D,;x; = 0 and };‘, D,;x;

= 0 mod (¢, ..., ¢n) for i = 2,...,n then det (D,;) = 0 mod (¢1,..., n).

In order to show this we may assume that D,, = d,x,...%x,...,Di1x = dxx,
ko, Dy, =0 > k) andd+ ... +dr = 0, since det (D) is linear in Dy,
veesDin. Then we have

0, dzrl:r;...xk,...,dk.r,...xk_,, 0‘ . |O, dz.rg....'lfk,...,dkxz...xk_‘, 0
*

anl , *
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dsz...xk,o, vee

, 0
0’ % mOd(¢ls veey ¢7l)1
and hence det (D,;) = 0 mod (¢, ..., ¢n).

Now we consider det(38f;/3x;) as an element & of degree 2/ in the
graded ring Q[x, t]/(f). Let us denote P{x) = det (oy{®/ox;). Then we
have the following

Lemma 3.3. = GZ::‘A‘QEPG(JC—S'I%).

Proof. By Lemma 3.1 we have
(3 AUz —g) = T det @it~ det (3147 2x.)
= Za] det (a)det (OX{®/ Ox;)t' e,

On the other hand, by (3.1)
7*(@) = 2 det (A%(x, 1))det (9x/*/ Ox,)
= Y det (a¥)det (o)) Bx;)t' e,

Since j* is injective this implies 2= 2 AP(x— £9).
a

By the fact stated in § 1, we can take det (3¢,/ 9x;,) as an orientation x
of the graded ring Q[x]/(¢). Then we define the Bredon’s orientation y, of
the graded ring Q[x]/(¥') as follows : There is an element 6 € Q[x, ¢]/(f)
of degree 2 such that j*(8) = ut' ' and i*(8) = u. Since such a 4 is
unique, g, is uniquely determined.

Proposition 3.4. u, = _I_ri] (ri/s;)det (a\5)det (Ox/ dx;).

-Proof. If we set § = I¢I (ri/ s )A“Pylx— £“t), then, by Lemma 3.2,
i*(8) = pand by Lemma 3.1,
j*8) = IT (ri/ s)det (aif) det (3.7 Dx,) 1~ "o,

This completes the proof.
Let M be a closed oriented smooth S'-manifold such that H*¥*(M, Q) =
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.Q[x]/(qi) and H*(Ms, Q) = Q[x, t]/(f). We assume the following
(3.4) (det(d¢./3x;),[M]) =1,

where {, ) means the Kronecker product. Let F, be a connected component
of M*" and N(Fq, M) be the normal bundle of F, in M. We may regard
N(Fa, M) as a complex vector bundle such that the representation ¢, of S’
in a fiber is given as follows,

(3.5) o= za(‘a]+---+z“('a-)lu, ay > 0,

in the complex representation ring R(S') = Z[z, 27']. By this orientation
of the nomral bundle, F'; can be naturally oriented. The inclusion j of F, into
M induces the equivariant Gysin homomorphism j, : H*(F s, Q)—>H*(Ms,
@®). Let us denote 1, the unity in H% Fas, Q). Then by a property of j, we
have

0 in Fﬁ if ﬁ :%: a,
QSI(N(Fm M)) in Fo,
where eS'(N(F,, M)) is the equivariant Euler class of N(F,, M) (see [7])

In this notations, we have the following and (iii) in that is a generalization of

[2, Th. 5.5, p.397].

]*(]'(la)) =

-1,

Theorem 3.5. (i) j(la) = cA?, where ¢ = El a®/det (a2), (ii) the

equivariant Euler class of M is equal to Y(M) det (3f;/3x,), and (iii)
(1/ I;I d®) g is the cohomology orientation of Fy i. e.

-1,
X(M) det (ai) {det (8xi"/ Ba,), [Fal) = x(Fo) II a.
Proof. Since e*'(N(Fq, M)) = IiI a@'-'e4 the lower terms in ¢,

together with Lemma 3.1 and the property of j, we have j*(j (15 —cA'®) =
at‘+the lower terms in ¢ where a € H¥(F,, @), dega > 0. Let y, be the
cohomology orientation of Fg i.e. {ua, [Fol) = 1. Ifa = 0, then we can
take an element b = ¢(x) of H*(F,, Q) such that ab = u,. Then,

j*(q,(x _Em’t) (j!(la)_CA(a))) = #ati-

This implies, by [3, Lemma 3.4], i > [—I,. However this is impossible
since deg @ > 0, and hence we have shown (i). On the other hand
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(i*(j (1) dlx— £t), [M]) = (*(j(la)idx). [M])
= {fia, [Fd) = 1.

Therefore by the assumption (3.4), i*(j,(14)dx— 1)) = p. Since j*
(j(1a) dlx— L)) = I£I adPhigt' ', we have II @®a = pa. Then we obtain

(iii) by Proposition 3.4. Moreover we have j.(1g)iqlx—¢t) = (x(M)/
X(F))A®Px—¢®t). Since j*(e®(M)) = ;j*(X(Fa)jx(la))ﬁav we get

eSM) =2 X(Fojllaadx—&t). From this and Lemma 2.7 we have
(i1). This completes the proof.

In particular, if F, is an isolated fixed point, then det (9Y\"/x,) is a
rational number and hence (iii) in Theorem 3.5 becomes to

-1,
(3.6) :I—Ix a® = + x(M) det (a}) det (8yi®/ 3x;).

Especially, this implies that if the equivariant cohomology ring is given, then
there are finite possibilities for the representation of S' at an isolated fixed
point. The analogous fact holds for the tangential representation of S' at
any fixed points if we know a number L such that LH*(M, Z) is contained in
the subring of H*(M, Q) generated by x,,...,x, over Z.

Corollary 3.6. Let ¢,(x) and flx, t) (1 < i < n) be homogeneous
polynomials satisfying (2.1),...,(2.4). Assume that the simultaneous equa-
tions fy = -+ = fo = 0 have distinct I] r; solutions. If ¢, and f; are real-

ized by smooth S'-actions on closed oriented manifolds such that (3.4) holds,
then the number of rational total Pontrjagin classes of S'-manifolds which
realize ¢; and f; are finite.

Proof. Let P¥(M) be the equivariant Pontrjagin class of S'-manifold
M which realizes ¢; and f; and satisfies (3.4). Then as stated in the above,
the tangential representation at each isolated fixed point has only finitely
many possibility and hence the image of P¥'(M ) is determined by f,....f, up
to finite ambiguity at each fixed point. This shows that the possible values of
P (M) in Q[x, t]/(f) are finite. This completes the proof.

4. A condition on the ideal (¢,...., #,) and the fixed point set. It may
be combinient to distinguish the connected components of X*' into two types,
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that is, ‘generic’ if they have the cohomology of a point or a sphere S? and
non-generic otherwise. In this section we shal estimate the formal dimen-
stons of non-generic connected components and the number of generic con-
nected components of the fixed point set X*' under a condition on the ideal
(Bryeenr Br).

We assume r, < -.. <7, where r, = deg ¢;. Let us consider the u-
resultant R(u) of ¢,(x),..., ¢n_1(x). Let u,,...,u, be variable. Then R(u)
is obtained by eliminating x,,...,x, from the equations ¢,(x;,...,x,) = 0, ...,
¢nr(x1,...,x,) = 0 and u,x,+... +unx, = 0 and an homogeneous polynomial

in uy,...,u, of degree ii: rfcf. [11]). Let (»®,....,74) be a solution of the

equations ¢,(x) = 0,...,¢n_(x) = 0. Then R(u) decomposes into the linear
factors :

n-1
R(u) =c¢ I;I (i) +--- +nu,)®, where 2] p, = ]:_[l Ti.

In this section we assume the following

(4.1) R(u) has no multiple factors (i.e. o, = 1) and is irreducible
over the field Q of rational numbers.

Let X be a compact S'-space such that H¥*(X, Q) = Q[x]/(¢). Then
we say the S'-action on X is cohomologically trivial if the inclusion of X*'
into X induces an isomorphism between the rational cohomology rings of X*'
and X. This is equivalent to that X*' is connected i.e. fy = --- =f, =0
have a unique solution.

Proposition 4.1. Let X be a compact S'-space such that H*(X, Q) =
Q[x]/(¢) and (4.1) holds. If the S'-action on X is cohomologically non-

trivial, then the formal dimension of any connected components of X°' is equal

-1

or less than 2( 121 (ri—1)+rn_1—2).
Proof. Let F be a connected component of X*'. Then by (2.5), H*(F,
Q) = Q[x]/(x) and the formal dimension of F'is 2 3. (s;—1) where s; =

deg x;. We may assume that s, < -.- < s, and show s, < r,_,. Let us sup-
pose sp > Tn_; contrary. Then the ideal (g,..., #n-1) is contained in (Y,...,
¥n-1). Let R'(z) be the u-resultant of Y,,..., ¥»—, and Q(u) an irreducible
factor of R'(u). Then Q(u) divides a power of R(u). Since R(u) is irreduc-
ible by the assumption, we have R(z) = Q(z). On the other hand deg R'(x)
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< deg R(u) by Proposition 2.2. and hence R'(u) = R(u). Since this means
(Xis.oos Xno1) = (P1y.... $n_1) and together with Proposition 2.1, we may as-
sume that f; = ¢y,....,fnc1 = Pn_1. Then the equations fi = 0,...,f, = 0
have a unique solution (0,...,0,1). This contradicts to the cohomological
non-triviality of the S'-action and hence we have s, < r,_,.

If s, < rpey Or 54 = 74_; and s; < 7; for some i < n, then formal dim F

n-1
< 2(2 (n—l)—}—'rn_l—2). Now suppose s, = r;, i < n and s, = 7,_,. In
i=1
this case we may assume Y, = @,,.... ¥n_1 = Pn_, and moreover f, = ¢,...,
Jaei = @n-. This also implies a contradiction and completes the proof.

Let M be a closed connected manifold such that (M) % 0 and m(M) be
the maximal dimension of the connected components of M*®' for all non-trivial
S'-actions on M.

Lemma 4.2. If a torus T acts effectively on a closed connected mani-
fold M such that y(M ) % 0, then dimT < m(M)/2+1.

Proof. This follows immediately from ([5, Th. (IV.7), p.58]).

Now from Proposition 4.1 and Lemma 4.2 we have the following

Theorem 4.3. Let M be a clesed manifold such that H¥(M, Q) =

Q[x]/(¢) and (4.1) holds. If a compact connected Lie group G acts continu-
ously and effectively on M, then

-1
rank G < t_z; (ri—=1)+715.—1.

Remark. If the formal dimension of Q[x]/(¢) is not devided by 4, then
there exists a closed smooth manifold M such that H*(M, Q) = Q[x]/(¢)
(cf. [10]). Hence we see that there exist closed smooth manifolds with com-
paratively small degree of symmetry with respect to the dimensions.

In the rest of this section we shall estimate the number of generic con-
nected components of the fixed point set of a compact S'-space X such that
H*X, Q) = Q[x]/(¢). We assume (4.1) together with

(42) (‘Tl"'Tn—l)'rn—l < Tn.

Let the S'-action on X be cohomologically non-trivial and H*(Xs, Q) =
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Q[x, t]/(f). The homogeneous equations f; = 0,...,fn.1 = 0 define a sub-
variety C of a complex projective space CP", let C = Lj} C, be the decom-

position of C into irreducible components, E the hyperplane defined by ¢ = 0
and 7" a solution of the equations ¢, = 0,...,¢n_, = 0. In this notations we
have the following

Lemma 4.4. (i) dimC; = 1. (ii) For any 5", there is a unique C;
that intersects transversally with E at n"*'. The degree of C, is equal to the
number of points in C;(E. (iii) The multiplicity of C; in C, (f,....fa-1) e,
=1.

Proof. 1t is clear that dimC; = 1 (cf. [9, Cor.5, p.57]). Since the
hypersurface f, = 0 and C, intersect in finite points, we see dimC, = 1. If
C,NE = ¢, i.e. C,;C A" = CP"—E, then C, must be a point because C; is
projective )cf. [9, Cor.2, p.47]). This is impossible and hence C; contains
a point n”. Since each 7" is a point of C, there is a C; which contains 7.
The divisors (f),...,(fa1), () on CP™ are in general position since the
solution of f; = 0,...,fn.y, = 0, t = 0 are finite. Then by Bezout’s theorem
(cf. [9, p.198]),

I r= (B focds 1) = SR, ooy (D)

Now we have ((f}),...,(fn_1), ())ne =1 for each ' since the numder of
n" is equal to :i:[: r; by the assumption (4.1). On the other hand by [9, Prop.
1, p. 190],

(ool (D) = T2 (oo focr) 0ok ED)

ant)
From this formula, noting the integers (f;,...,/fn_1)¢, and (oc,(E ) if ¥ €
C; are positive, we see that for each »'" there is a unique C; and its multi-
plicity in C, (fi,..../fu-1)c; = 1 and moreover (pc(E)),» = 1. The last
equation means that C; and E intersect transversally at 2" and 7% is a sim-
ple point of C;. Hence the degree of C; is equal to the number of the points

in C, E. This completes the proof.

Lemma 4.5. Each component C; of C is not a line.

Proof. Suppose contrary that C; is a line. If C, and the hypersurface
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f, = 0 meet in distinct points (&,....64, 1) and (&1,....&n, 1), then &, &
€ Q by (2.3). Then C, N E contains a rational point (§,—¢§1,...,Ex—&n,0).
This contradicts to {4.1) and hence C; and the hypersurface f, = 0 inter-
sect in a unique point £&. Then we have

((fi)s e () e =C§E((ﬁ),---,(ﬁ._l))ck(pck(fn))e
= (PCj(fn))e = Tn.

Now let Q[x]/(x) (deg ¥: = s;,. 1 < i< n) be the cohomology ring of the
connected component of X*' corresponding to £. Then s; < 7, and s, < 7,_,
(see the Proof of Proposition 4.1). Therefore by (2.5) and (4.2), we have
((f)ses(f))e = I;I s; < 7. This contradicts the above inequality and com-

pletes the proof.

Let x be a simple point of C and x € C;. Let us consider all hyperplane
H that contain the tangent line L of C, at x. We define a number s(x) as
follows :

s(x) = min(C,, H),—1.
HDOL

Then 1 < s(x) < deg C;—1. If C; is a plane curve, then s(x) is a class of
x and x is a flex of C; provided s(x) = 2.

Proposition 4.6. Let £ be a solution of the equations f;, = 0,...,f, =0
and assume that £ is a simple point of C. If F is the connected component of
X corresponding to &, then

H*(F, Q) = H*(CP*, Q), where k < s(x).

Proof. We can assume &€ = (0,...,0,1) by a parallel translation. Since
£ is a simple point of C and C contains no multiple component by Lemma 4.4,
¢ is also a simple point of the hypersurface f; = 0 and the tangent spaces of
fi= 0, 1 <i<n—1, intersect transversally. Then by making use of a
linear transformation with rational coefficient if necessary, we can assume
that the tangent spaces of the hypersurface f;, = 0 at £ is defined by x; = 0
(1 <i<n-—1). Now applying on f{x, 1) a process in the proof of Propo-
sition 2.1, we obtain a generators of the ideal J,

f: = ...—{—x,,...,ji-, = ... 4x, andj;;= v xh,
This shows that H*(F, Q) = Q[x]/(x,,....%a_, xx*') = H*(CP*, Q). On
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the other hand, by Lemma 4.5, there is a f; (i < n) which contains a power
of x;. Assume f, contains xj where ¢ is the least. Then we have ¢ = k+1
since xf € (xy,...,%n_y, xn*'). It is clear that x, is a local parameter at £ of
the curve C;, C,; 2 &, that is, the maximal ideal m, of the local ring of C, at
£ is generated by x,. Since any hyperplane H that contains the tangent line

L of C; at & is defined by an equationrgaixt = 0, we have (C,, H), =

veH) = m‘in veS{x) and hence s(¢) = mtin vex) —1 (cf. [9, p. 128]). Since

d; = vc,(x;) means x; € m* but x, & m**', we have x\,...,xp_, € m**'. Then
x5 € m®*' since fi = 0 contains x,. Therefore a« = s(£)+1. If a > S(¢§)
+1, then we have x; € m®*? for i <n by fi = ---+x, = 0 on C;. However

this is impossible and hence o = s(§)+1. Together with ¢ = k41, this
completes the proof.

Let £ be a solution of f; = 0,...,f, = 0. If £ is not a singular point or
a point such that s(¢) = 2 of the curve C, then the connected component of
X*' corresponding to £ is generic, that is, has the rational cohomology of a
point or a sphere S®. The number of singular points or points such that s =
2 of C is bounded from the above by a constant C(r,,...,7,_,) depending on
TiyeeeyTn1, see Lemma 4.8. Then by making use of Proposition 4.6 and [2,
Th. 1.6, p. 374] we have

Theorem 4.7. Let X be a compact S'-space such that H*(X, Q) =
Q[x]/(p) where (4.1) and (4.2) hold. If the S'-action on X is cohomologi-

cally non-trivial, then the number of generic connected components of X*' is

greater than [ﬁl ri——rn_l(lﬁ: ri)C(rl,...,rn_,)]/Z.

As an estimation of C(r,,...,7,_1) we have the following

Lemma 4.8. C(n,...,rn,) = (jI;I: r;)(rn_|—2+2 g(n-U)-

Proof. Letx € C be a simple point in A" = CP"—E. We put filx) =
flx, 1Y(1 < k< n—1). Then the equation

F{X,,...X,) = Zi'. o/ Bxfx ) (X,—x) =0

defines a hyperplane H, that contains the tangent line L of C at x. Let u be
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a local parameter of C at x. Then we can express x; as a power series in u,
(4.3) xi=at+butca’+....1<i<n,
where x,(x) = a; and (b,,...,b,) % 0. Since on the curve C; 3 x,

0= ; Ofe/ Bxfa)x—a)+1/2 g 9%/ 0xPxs(a)(xi—a)xs;—ay)) +...,

we have by (3.12), F(x) = —1/2 g 2%/ 0x:9x,(a)bbu® mod m%k. This
shows that the condition (C;, Hy)x = ve,(Filx)) = 3 is equivalent to Z,,: 2./

ox;0x;(a)bb; = 0. Therefore for a simple point x€ C N A", s(x) = 2 if
and only if there is (b,.....b,) = such that

2. Ofi/0x{x )b, = 0 and 3, 9°fx/0x:0x(x)bib; = 0, 1<k < n—1.

i %]
Let us denote g; the determinant of the matrix obtained from the matrix 3(f,
veirSao1)/ 3y, ..., x) deleting the i-th column. Then because of b, : b, : -+ :

a=(—)""g, : (—=1)"%g,: ---: gn, we see that x € C is a singular point
or a point such that s(x) = 2 if

Gilx) = § (=1)*'3*f/ox,0xx)g{x)gx) = 0,1 <k <n—1.

n-1
Gx(x) is a polynomial of degree less than r,—2 +2 Z,l (r;—1). Since each

C; is not a line by Lemma 4.5, there is a Gx %= 0 on C;. Therefore we can
take a polynomial G = le' dyGy (dx € C) such that G = 0 on any C;. Since

—1

deg G < 71p,—2+42 E(n—l) the number of the solutions of the simulta-
-1

neous equations f; = 0,...,for_, = 0and G = 0 is at most (1:[_[l ri)(r,,_l—2+

2 72:(1',—1 ) by Bezout’s theorem. This completes the proof.
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