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IDENTIFICATION OF THE RATIO ERGODIC LIMIT
FOR AN INVERTIBLE POSITIVE ISOMETRY ON L,

Ryotaro SATO

1. Introduction. Let T be an invertible positive isometry on L, of a o-
finite measure space. It is proved that if f and p are in L, and p is

n n
nonnegative, then the ratios (iz T‘f) / ( 2 T‘p) converge almost everywhere
=m t=m

+o
on the set {2 T > O] as m— —oo and n — + oo, independently ; and

the identification of the limit is obtained.

Let (X, #, 1) be a g-finite measure space and T a linear operator from
L, = L(X, # p) into itself. T is called positive if f = 0 implies Tf = 0,
a contraction if |Tf|, < |f|, for all f&€ L,, and an isometry if |Tf],
= |f|: for all f€ L,. For fand p in L,, with p = 0, we write

L i 2 )
R )@ = (5 T )/ 3 Tol).
It follows from the Chacon-Ornstein theorem [2] that if T is a positive con-

traction on L, then the pointwise limit

im RY(f, p)(x)
exists and is finite a.e. on the set {x: i, Tp(x) > 0] ; furthermore if C

denotes the conservative part of T (i.e. C = [x: X:_', T'g(x) = +oo} for

some g € L, with g > 0 a.e. on X), then the identification of the limit can
be done, on C, by the Chacon identification theorem [1]. However, in this
paper, we assume T to be an invertible positive isometry on L, and consider
the ratios Rp(f, p)(x), with m < 0 < n. Noticing that the conservative
parts of T and T~' coincide, we may apply these two theorems to infer that
the pointwise limit

CRIZ(Up)x) = | lim  Ra(f p)(x)

+ o
exists and is finite a.e. on the set {x: > T(x) > 0}. But the Chacon
identification theorem can be applied only on the conservative part C, not on
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the whole set X. This is the starting point for the study in this paper. We
shall obtain the identification of the limit R*2(f, p)(x) on the whole set X.
In the process of doing this, the almost everywhere existence of the limit
R*2(f, p)(x) is proved as a by-product ; we do not use the Chacon-Ornstein
theorem. The method is chiefly dependent upon the argument given in Garsia
([4], pp. 39-41) for the identification of the limit function in the Chacon-
Ornstein theorem.

2. Identification of the ratio ergodic limit. Let T be an invertible pos-
itive isometry on L,. Since |T~'f|, = |f|, for any f€ L,, if f= 0 then
we must have T-'f > 0. Thus T' is also a positive isometry on L,. For
any nonnegative function h on (X, &, u), we define Th = linm Tf,, where

fr€ L, and 0 < f1h. Clearly, this definition is independent of the choice
of the sequence. Similarly, T 'h is defined.
A € is called invariant if

A=supp T1l, = {x: Tl x) + 0},

where 1, denotes the indicator function of A. It is easy to check that
A € & is invariant if and only if TL,(A) = L,(A), where L,(A) ={f€ L,:

supp f C Al. Therefore, if 0 < p € L, then the set E(p) = {x: :i Tp(x)

> 0] is invariant. The class of all invariant sets is denoted by 4. Since T

is invertible, # is a sub-o-field of &
We are now in a position to state the theorem.

Theorem. If T is an invertible positive isometry on L., then for any f
and p in L,, with p = 0, the pointwise limit

lim  Ri(f, p)(x) = R*2(f, p)(x)

M- —00,7l—~ +co

exists and is finite a.e. on the set E(p) = [x: Jf: Tp(x) > 0} ; further-

more, the limit function R*2(f, p) is measurable with respect to & and
satisfies

j;Rt:(f, p)p du=£fdﬂ

Jor all A € & with A C E(p).



IDENTIFICATION OF THE RATIO ERGODIC LIMIT 167

To prove the theorem, we need some lemmas.

Lemma 1. Let h € L. = Lo(X, &, y). Then T*h = h if and only if
h is measurable with respect to 4.

Proof. Suppose h is measurable with respect to 4. An easy approxima-
tion argument shows that for the proof of T*h = h, it suffices to prove that
T*1,=1,for all Ac 4. But, A€ &implies T*1,= 0 on X\A, because

F.T*1)) = (Tf.1,) = ﬁ Tf du= 0 for all f€ L(X\A). Similarly, T*1.,

=0 on A. Thus T*1, = 1,, since T*1 = 1.

Conversely, suppose T*h = h. (Here we may and will assume without
loss of generality that 0 < h < 1.) Given an ¢ > 0, write 4 = {x: h(x)
> al, h(x) = min{h(x), a} and h(x) = h(x)—h(x). Then h = h,+h,
=T*h = (T7")*h = (T ")*h+(T"")*h,. Since (T"')*h; < a and & > «a
on A, it follows that (T~')*h, > 0 on A. Since supp h, = A, we then have

(T7")*1,> 0 on A.
By this and the fact that T*(7T7')*1, = 1,, we see that
T*1, = 0 on X\A.
Hence T*1, < 1,, and by a similar argument, (T-')*1, < 1,. Consequently,
2 =THT')*1,<T*1, < 1,,

which implies 1, = T*1, and hence A € 4. The proof is complete.

Lemma 2. Ifh € L. satisfies T*h = h, then for any f € L,
T(hf) = A(Tf).

Proof. If A€ & then, clearly, T(1,f) = 1.(Tf) for all fe L,. This,
together with I.emma 1 and an easy approximation argument, completes
the proof.

Lemma 3. If fand p arein L, and p > 0 a.e. on X, define
M(f.p)(x) = su |Ralf. p)(x)l.
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Then, for any A > 0, f pdu< %Ilfllu.

| MU, 01> A

Proof. Put
M, (f p)x) = sup |R3(f. p)(x)]

and

M_(f, p)(x) = sup | Ra(f, p)(x)].

Then we have M(f, p) < M.(f, p)+M_(f, p), and so

IM(f,p) > A1 C [Mfp) > 5| U (M) > ).

sup }:', T (lfl——p)> 0] the Hopf maximal ergo-

o<n i=

Since {M.(f, p) > /; ]
dic theorem (see e.g. [4], p. 23) gives

2
pdu< | fl.

fMatr o> |

Similarly, f pdu< %I]f I, and hence the proof is completed.

{M-_tr o> 5|

Proof of the Theorem. We can easily show that we need only check
the validity of the Theorem when p > 0 a.e. on X. Thus in the following
proof we will assume that p > 0 a.e. on X.

Let M be the class of all functions f of the form

f=hp+g—Tg, where he L., g€ L, and T*h = h.
Making use of Lemma 2, if f = hp+g—Tg € M then
Tmg(x) — T 'g(x)

RA(f, p)(x) = h(x)+ 0
Py Tp(x)

Since p > 0 a.e. on X, the Chacon-Ornstein lemma (see e.g. Theorem
2.4.2 in [4]) shows that

lim Rp(f.p) =ha.e. on X.

M—+—0,MN-+0
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Next, to prove that M is dense in L,, let k € L.. be such that (f, k)
=0 for all f& M. Then we have (g— Tg, k) = (g, k— T*k) = 0 for all
g€ Ly Thus k= T*k and bp, k) = [ K%p du= 0. It follows that k = 0
a.e. on X, which proves the denseness of M in L,.
For f=hp+g—Tg € M, put
Hf = hp = R*2(f. p) - p.

Then

7, = [ (sam VAo du= [ (sgn 1)/~ g+ T] o

where sgn A(x) = h(x)/|h(x)| if h(x) #+ 0, and is O if h(x) = 0. Since
T*(sgnh) = sgnh by Lemma 1, it follows that

[isam ) —g+Te) du= [(sgnhif du< 1 1h.

Thus |Hf |, < | f], (f€ M). Since M is dense in L,, H can be uniquely
extended to a contraction operator on L,. We will denote this extension by
the same letter H. Clearly, if A € 4 then

[ Hf du= {1 d

for all f € M and thus for all f € L,.
Now, to finish the proof of the Theorem, it suffices to show that

lim Rx(f.p)=(1/p)Hf a.e. on X

m-»—oco,1—+co

for all fe L,. To do this, we notice that if f € L, and e € M then

|RA(f, p)—(1/p)Hf|
< |Ra(f—e,p)—(1/p)H(f—e)|+|Rn(e, p)—(1/p)He|
< M(f—e,p)+|(1/p)H(f—e)|+|R7(e, p)—(1/p)He|.

Since Rn(e,p)—(1/p)He a.e. on X as m > —oo and n - + oo, independ-
ently, if we let
f*@) = lim  sw |Ra(f p)x)—TAEL

No+m m<s—Nn=! p(l’:)
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then, for any ¢ > 0,
[ f¥ > 2e1CIM(f—e,p) > et Ut|(1/p)H(f—e)| > ¢l.
By Lemma 3,

4
pdu< ?"f—e"h

|Mtr—e,p)>ef

On the other hand,

pdu<TIHS= ol < LTl/—el.

{KL/PMH(f—ep> e}

Here | f—e]; can be arbitrarily small. Thus f pdu=0. Since ¢ > 0
| r*>2¢e}
is arbitrary, it follows that f* = 0 a.e. on X, and this completes the proof.

Remark. If{T": —o0 < n < 4o} is a group of positive linear oper-
ators on L, satisfying sup | T"| = K < + o0, then the convergence result in
n

the Theorem holds. In fact, if L denotes a Banach limit (cf. [3]) and if we
define A(A) = L(fT"lA d)u) for Ae & with 4(A) < +00 and A(A) = sup

{A(B) : Be & with BC Aand u(B) < +} for A € & with ;{A) = + o,
then, as is easily seen, (X, & A) is a o-finite measure space such that K~ '
< A< Ky and T is an invertible positive isometry on L,(X, &, A). Since
fe L(X & p if and only if f € L,(X, #, A), the convergence result follows
from the Theorem.
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