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AN O THEOREM FOR A CLASS
OF DIRICHLET SERIES

Don REDMOND

1. Introduction and statement of the result. In this paper we give an
O estimate for the error term of the summatory function of the coefficients of
a certain class of Dirichlet series. While Chandrasekharan and Narasimhan
[1. Theorem 4.1] have given such a theorem for a wider class of Dirichlet
series, we feel that our proof is much simpler than theirs, for the case we
consider. By modifying our argument we could prove the more general
theorem of Chandrasekharan and Narasimhan, though at the expense of more
detail.

Let

[1.1] f(s) = Z_valn)n®and g(s) = 232..b(n)n~°

be two Dirichlet series with finite abcissas of absolute convergence ou(f)
and o.(g), respectively. Let

(1.2) A(S) = H;\:\ F(OjS'f‘ﬁJ)

where a; > 0 and £; complex, 1 < j < N. Assume there exist real numbers
C, 6 and r, with C > 0, and a complex number & such that f(s) and g(s)

satisfy the functional equation
(1.3) A(s)f(s) = C®*°A(r—s)glr—s).

By Hilfssatz 10 of [6] we have o4(f) =7/2 = r—o,(g). We assume that
f(s) can be continued to the entire complex plane as a meromorphic function,

whose only singularities are poles lying in the strip r— a4(g) < 0 < oo(f).
If

(1.4) Q(x)——l— M.rsds,

T 27 Je s
where C is a curve enclosing all the singularities of the integrand, let

(1.5) E(x) = 7,g,xcz(vz)—(\)(ac).

E(x) is called the error term for the summatory function of the coefficients
of the Dirichlet series f(s).
We shall prove the following theorem.
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Theorem. Let A= 3}, a;. Suppose that for all n =1 there is a
positive absolute constant ¢, such that

(1.6) a(n)| < ¢in® log® n,

where a = 0 and b is a nonnegative integer. Suppose that, as c— (a+1)~,
we have

(1.7) i la(n) |n=7 = 0((,,_:—_”:*)-

Then, as x— oo, we have

E(l‘) << x1+a—(a+1+aa(s“)—r)/l2.4aa£ejn—Ar+1/2) logdx+xa logb:r

The method of proof of this theorem follows that used by Titchmarsh in
[7], section [2.2] for dealing with the divisor problem.

It should be noted that by comparison with the (b+41)st derivative of the
Riemann zeta function we can take d = b+1. Conversely, we have b <d—1,

Also in (1.6) we can take a = a4(f)—1.

2. Lemmas. In the sequel we will denote by

C+iT

f the integral

€, T) C—-iT

Lemma 1. Assume (1.6) and (1.7) for a+1 < ¢ < a+2. Then for
a+l < o< a+2, T>0 and x> 2 we have

n<x
[ ()]

(2.1)
xa xan logb+1 x

¢ | Tlo—a—1)¢ " T

< +x% logbx |,

where c, is a positive constant independent of x, o and T.

The proof of this lemma is almost identical to that of Hilfssatz 3 of [2]
so we do not give it.

Lemma 2. Let F(x) be a real function, twice differentiable and let
Flx)=r>0 or F'x) < —r <0 throughout the interval {(a, b). Let
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G(x)/F'(x) be monotonic and |G(x)| < M throughout the interval (a, b).
Then

b 8M
itFLx) .
fa G(x)e dx‘ < ——r

This is Lemma 4. 5 of [7].

Lemma 3. Let A(s) be as in(1.2). Then, uniformly for o < 0 < o0,

we have, as t —» + oo,

A(T_s) —DOjAT—240, — LEIOE t—24 D‘( ( 1 ))
LNt o0 ozAT-240 of +0i 1 2t
A(s) Ae t e +0 ; ,

where A is a certain constant and D= 22}, a; log a;.

This follows easily from Stirling’s formula for the gamma function and
details can be found in [6, Hilfssatz 8].

Lemma 4. Let f(s) and g(s) be defined by (1.1) and satisfy the func-
tional equation (1.3). Let ¢ > olf) and —h < min (0, r—o(g)). If
—h < Res < c, then we have as't » + oo,

(22) f(s) L OO ATHIRV/IC+RIC= 01

Proof. For o = ¢ we have that f(s) is bounded since it is an absolute-
ly convergent Dirichlet series. Similarly for ¢ < —h g(r—s) is bounded.
Thus for ¢ = ¢ we have f(o+it) € ° and for 0 = —h we have flo+it) <
t*"+*" by Lemma 3 and the functional equation (1.3). The result, (2.2),
follows by the Phragmén-Lindelof principle and this completes the proof.

3. Proof of Theorem. Let A(x) = Xlncraln). If x> 2, then by
Lemma 1 and the hypotheses of the theorem we *have

X

1 S
Alx) :m(;_.[,,,f(” . ds

(3.1) (o4 a+11 b+1
x x ogbt' x a1 b
+0[ T(c—a—l)d+ T +x% log® x |.

Let R, be the rectangle with vertices —h—iT, ¢—iT, ¢+ iT and
—h+iT, where T is now large enough so that all the poles of f(s) are in
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the interior of R;. By the residue theorem and (1.4) the integral around
R, gives Q(x). We have, by Lemma 4,

C+iT

f(S )I_S dS << '/_-:iceﬂ'TAiT+2h)(C—a‘\/lC—Fh)—lxo’dU

-h+iT s

1

2ri

(3.2)

<< TAir+2h)—1x—h+T—lxc

since the maximum of the integrand on the right hand side of (3.2) occurs
at one end of the other of the integration interval. Similarly

c—iT

(3 3 .T?'l__ f f(s)%ds(( T.—ur+2hv—1x—h+T—1x
-h-

iT

Thus, by (1.5) and (3.1)—(3.3), we have

Lo}

x5 x
_ ) -
(3.4) (=h,T) T(c—a—l)
N £t ];ng x +Ia logbx+T_1Ic+Tmr+2m—1x—h .

Since —h < r—o4(g), we have

x5 A('r—s)
Als)

{(~h,T) (—h,T)

(3.5) =:§b(n)f Axs_)” LT

n S
(—h,T)

— ir-"C- 6h+0‘2 b(n) [T Alr+h—it) .(Cenx)"
B nh ) Ah+it)  —h+it

dt.

By Lemma 3, we have, for + >0, as t » + 0,

Alr+h—it) Dh JA(T+2h) = (24 108 1= 24 +D)
vt - [ O3 7+2m=1
AT ) At +0( ).

Also, as t - oo,

1 1 1
—h+it F"LO(? )

-1 1 T
Write the integral on the right hand side of (3.5) as [7_ +_/_-]+[ .
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Then the integral over the interval (—1, 1) is bounded. We have

T A(r+h—it) (Conx)*
\ Alh+it) —h+it

— _iAl thA(Zh-fT)—le—MlZA lOEt—ZA—D}(CGm)itdt+O(fT tA{’I'+2h)—2 dt),
1 1

di

where A, = Ae”™.

If A(r+2h) > 1, then the O-term in (3.6) is O(T*""**"). If A(r+2h)
< 1, then the O-term is O(log T').

Let F(31) = —t(2A log t—2A+D)+1t log (C°nx). Then
F'(t) = =24/t < —2A/T
for t € (1, T). Thus, by Lemma 2, we have

T Alr+h—it) (Cnx)"
v Alh+it) —h+1it

(3.7) dt ¢ TA7+2m=172,

We get a similar result for the integral over (—T, —1).
Thus, by (3.5)—(3.7), we have

b(n) TAT+2h1-1/2

x* -n 5 ATH2RI-1/2
(3.8) (_[ﬂf(s) s < x5 T <—

Thus, by (3.4) and (3.8), we have

c xa+1 logb“ x TA(7'+2h)—l/z

d a b
< T(c—a—l)d+ T + Ih +x lOg X.

E(x)

If we choose ¢ = a+1+41/logx and h = o,{g)—7+1/log x, we have

x" log?x

E(x) € T

T—O0al&T 1 /24008 -AT+2A/10E X
+x (o T/ al /108

+x°% log® x.
Choosing T = @1+ 0a&- /(- AT41/242406®)  iyeg

E(.I) <& O+ -G+ 1+ 0a8- T/(1/2+24A0a(8)—AT) logd x4+ x° log" x.
This completes the proof of the theorem.
4. Comparison of results and examples. In [3] Landau considered the

problem of the O-estimate for a class of Dirichlet series whose functional
equations involve more general gamma factors, which the method used here
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could easily be modified to handle‘. Also, he considered the case where, in
our notation, o= o4(g). If we specialize Landau’s result [3, p. 214] to
our functional equation, then we get the same result.

In [6] Richert considered a functional equation similar to ours, but with
the more general gamma factors of Landau. Our result is a little better than
his Satz 2. Again we could adapt the method used here to cover the form of
the functional equation as used by Richert.

In [1] Chandrasekharan and Narasimhan used more general Dirichlet
series, though the same functional equation. In some cases their result [1,
Theorem 4.1] is better than the one obtained here, though in the case of
positive coefficients we get the same result. Even for some cases where
the coefficients are not positive (see example 2 below) we get the result
obtainable from their theorem.

Example 1. Let K be an algebraic number field of degree n. Let a(m)
be the number of integral ideals in K of norm exactly m. For Re s > 1, let

¢(s) = Zaovalm)m™°
be the Dedekind zeta function of K. Then it is known that &(s) satisfies
the functional equation [4, p. 27]
&(s)I™(s/2)I™(s) = B**'T'™((1—5)/2)I'"™(1—s)&(1—s),

where B is a certain constant depending only on the field K, r, is the
number of real conjugates and 27, the number of imaginary conjugates of K.
Here r =1, g4 &) =1, A= n/2 and &(s) has a simple pole at s = 1.
Thus we have, if E(x) is the error term associated with &(s) by (1.5),

E(x) € 2™ '™ Jog x,
which is a result of Landau [4, p. 135].

Example 2. Let A be a nonprincipal Gréssencharacter on ideals mod f,
where f is an integral ideal of K, where K is as in Example 1. for Re s > 1
let

¢«s) =B°¢s, A) =B 25 A(A)N(A) ™7,
where the sum is over all nonzero integral ideals of K. Let

1 ISQS’I‘,

€a = 2 T]"‘lsqs T|‘|_’rz.
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Then ¢@.(s) can be continued to an entire function and there exist real
numbers e.,..., €r+r, and nonnegative do, dg, 1 < g < r,+r,, such that
$a(s) satisfies the functional equation

$u(s)Ti(s) = LTA(1—s)¢x(1—s),
where L is a certain constant depending on A and

1+

[is) = I Tileals+(detrdy)/2)+ied /2],

g=1

Here A =n/2, r=1 and o) ¢,) = 1. Thus, if E(x) is the error term
associated with ¢,(s) by (1.5), we have

E(I) <<xm—ll/(n+12-’
which is the result obtained by Chandrasekharan and Narasimhan [1, p. 128].
Example 3. Let di(n) be the number of ways of writing n as a product
of k factors. Then, for Re s > 1, we have
S di(n)n™® = £X(s).

Here r =1, 04¢) =1, A=k/2 and d = k. Thus, if Ax) is the error
term associated to ¢*(s) by (1.5), we have

Ak(x) << xlk—l)/(k+l]logk x,
which is Theorem 12.2 of [7].

Example 4. Let |a(n)| be the coefficients of a cusp form of weight k.
For Re s > k, let

fls) = a1 a®(n)n™°
and
gls) = L25s—2k+2)f(s).
Then in [5, Theorem 3] it is shown that g(s) satisfies the functional equation

I'(s)I'(s—k+1)g(s)
=(2m)* " (2k—1—5)I(k—s)g(2k—1—5).

Thus A= 2, r = 2k—1, o4(g) = k and d =1 since f(s) is analytic except
for a simple pole at s = k. Thus, if E(x) is the associated error term,
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we have

E(x) « x*** log x,

which is the result of Rankin [5].
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