## EQUIVALENCE OF MODULE CATEGORIES

To the memory of Professor Tadao Tannaka

## SHOJI KYUNO

Morita contexts and gamma rings are equivalent concepts ([2]). Therefore, the duality theory obtained in Morita contexts is interpreted in the terms of gamma rings and vice versa. Nobusawa [2] proved directly that when R and L contain the unities the categories of all R-modules and L-modules are equivalent, where R and L are the right operator ring and the left operator ring of a gamma ring of homomorphisms respectively. Furthermore, in [3] he obtained a generalization of one of Morita duality theorems, that is, if  $R^2 = R$  and  $L^2 = L$ , then the categories of properly generated R-modules and L-modules are equivalent.

In this note, without the assumption  $R^2=R$  and  $L^2=L$ , we shall prove the following theorem :

**Theorem.** Let  $(R, L, M, \Gamma, \tau, \mu)$  be a Morita context, in which  $\tau$  and  $\mu$  are surjective. It is not assumed that the rings R, L have unities nor that the modules are unitary. The categories of properly generated R-modules and L-modules are equivalent.

We refer to Jacobson [1, p. 166] for the definition of a Morita context  $(R, L, M, \Gamma, \tau, \mu)$ , where R, L are rings,  $M = {}_L M_R$  is an L-R-bimodule,  $\Gamma = {}_R \Gamma_L$  is an R-L-bimodule. We shall use his notations, except that the products  $\Gamma \times M$  to R and  $M \times \Gamma$  to L will be denoted by  $\gamma x$  and  $x\gamma$  ( $x \in M$  and  $\gamma \in \Gamma$ ), since all relevant associative laws hold. It is not assumed that the rings have unities nor that the modules are unitary. But, we assume that  $\tau$  and  $\mu$  are surjective.

Let R be a ring and M be a right R-module. If it satisfies (1) MR = M, (2)  $|x \in M| xR = 0| = \{0\}$ , then according to Nobusawa [3] we say M is properly generated over R.

Let PGM(R) be a category of properly generated right modules over R where the morphisms are R-module homomorphisms. Similarly, PGM(L) denotes a category of properly generated right modules over L where the morphisms are L-module homomorphisms.

*Proof of the theorem.* Let  $G \in \text{ob } PGM(R)$ . Let A be a free additive

148 S. KYUNO

abelian group generated by the set of ordered pairs  $(g, \gamma)$ , where  $g \in G$ ,  $\gamma \in \Gamma$ , and let B be the subgroup of elements  $\sum_i m_i(g_i, \gamma_i) \in A$ , where  $m_i$  are integers such that  $\sum_i m_i g_i(\gamma_i x) = 0$  for all  $x \in M$ . Denote by  $[G, \Gamma]$  the factor group A/B and, without causing any ambiguity, by  $[g, \gamma]$  the coset  $(g, \gamma) + B$ . Every element in  $[G, \Gamma]$  therefore can be expressed as a finite sum  $\sum_i [g_i, \gamma_i]$ .  $[G, \Gamma]$  forms a right L-module with definition

$$\sum_{i} [g_{i}, \gamma_{i}] \sum_{j} x_{j} \beta_{j} = \sum_{i,j} [g_{i}(\gamma_{i} x_{j}), \beta_{j}]$$

for  $\sum_{i} [g_{i}, \gamma_{i}] \in [G, \Gamma]$  and  $\sum_{j} x_{j} \beta_{j} \in L$ . It is well-defined, because  $\sum_{i} [g_{i}, \gamma_{i}] = \sum_{j} [g'_{j}, \gamma'_{j}]$  means  $\sum_{i} g_{i}(\gamma_{i}x) = \sum_{j} g'_{j}(\gamma'_{j}x)$  for any  $x \in M$ .

To see  $[G, \Gamma] \in \text{ob } \mathrm{PGM}(L)$ , let  $\sum_i [g_i, \gamma_i]$  be an element in  $[G, \Gamma]$  such that  $(\sum_i [g_i, \gamma_i])L = 0$ , that is,  $(\sum_i [g_i, \gamma_i])M\Gamma = 0$ . By the definition,  $\sum_i [g_i(\gamma_i M), \Gamma] = 0$ , which implies  $(\sum_i g_i(\gamma_i M))\Gamma M = 0$ , that is,  $(\sum_i g_i(\gamma_i M))R = 0$ . Since  $G \in \mathrm{ob} \mathrm{PGM}(R)$ ,  $\sum_i g_i(\gamma_i M) = 0$ . Hence,  $\sum_i [g_i, \gamma_i] = 0$ .

In addition,  $[G, \Gamma]L = [G, \Gamma]M\Gamma = [G\Gamma M, \Gamma] = [GR, \Gamma] = [G, \Gamma]$ . Therefore,  $[G, \Gamma] \in \text{ob PGM}(L)$ . Similarly, for  $U \in \text{ob PGM}(L)$  we can define a right R-module [U, M] and show that  $[U, M] \in \text{ob PGM}(R)$ .

An R-module homomorphism  $f: A_R \to B_R$  determines an L-module homomorphism  $g: [A, \Gamma]_L \to [B, \Gamma]_L$  by

$$g(\sum_{i} [a_i, \gamma_i]) = \sum_{i} [f(a_i), \gamma_i].$$

To see that g is well-defined, let  $\sum_{i} [a_{i}, \gamma_{i}] = 0$ . Then for any  $\sum_{j} x_{j} \omega_{j} \in L$ ,  $\sum_{i} [f(a_{i}), \gamma_{i}] \sum_{j} x_{j} \omega_{j} = \sum_{i,j} [f(a_{i})(\gamma_{i}x_{j}), \omega_{j}] = \sum_{i,j} [f(a_{i}(\gamma_{i}x_{j})), \omega_{j}] = \sum_{j} [f(\sum_{i} a_{i}(\gamma_{i}x_{j})), \omega_{j}] = 0$ . Hence,  $\sum_{i} [f(a_{i}), \gamma_{i}] = 0$ .

It is easy to see that g is an L-module homomorphism.

Similarly, an L-module homomorphism  $h: U_L \to V_L$  determines an R-module homomorphism  $k: [U,M]_R \to [V,M]_R$  by  $k(\sum_j [u_j,x_j]) = \sum_j [h(u_j),x_j]$ .

Let  $f_1$  and  $f_2$  be R-module homomorphisms such that  $f_1: A \to B$  and  $f_2: B \to C$ . Let  $g_1$  and  $g_2$  be L-module homomorphisms determined by  $f_1$  and  $f_2$  respectively. Then,  $f_2f_1: A \to C$  determines an L-module homomorphism  $p: [A, \Gamma] \to [C, \Gamma]$  such that  $p = g_2g_1$ . Indeed, for any  $\sum_i [a_i, \gamma_i] \in [A, \Gamma]$  we have  $p(\sum_i [a_i, \gamma_i]) = \sum_i [f_2f_1(a_i), \gamma_i] = \sum_i [f_2(f_1(a_i)), \gamma_i] = g_2(\sum_i [f_1(a_i), \gamma_i]) = g_2g_1(\sum_i [a_i, \gamma_i])$ .

Clearly,  $1_A: A \to A$  determines  $1_{[A, \Gamma]}: [A, \Gamma] \to [A, \Gamma]$ . Thus, we have functors  $F: \mathrm{PGM}(R) \to \mathrm{PGM}(L)$  and  $H: \mathrm{PGM}(L) \to \mathrm{PGM}(R)$ , where for  $A \in \mathrm{ob}\ \mathrm{PGM}(R)$   $F(A) = [A, \Gamma]$  and for  $U \in \mathrm{ob}\ \mathrm{PGM}(L)$  H(U)

$$= [U,M].$$

For any  $A \in \text{ob PGM}(R)$  and  $U \in \text{ob PGM}(L)$ ,

$$HF(A) = H([A, \Gamma]) = [[A, \Gamma], M]$$
  
and  $FH(U) = F([U, M]) = [[U, M], \Gamma]$ .

Define the mapping  $\eta_A: A = A(\Gamma M) \to [[A, \Gamma], M]$  by

$$a = \sum_{i} a_{i}(\gamma_{i}x_{i}) \mapsto \sum_{i} [[a_{i}, \gamma_{i}], x_{i}].$$

We show that  $\eta_A$  is an isomorphism.

$$a = \sum_{i} a_{i}(\gamma_{i}x_{i}) = 0 \iff (\sum_{i} a_{i}(\gamma_{i}x_{i}))R = 0$$

$$(\text{By } A \in \text{ob PGM}(R).)$$

$$\iff (\sum_{i} a_{i}(\gamma_{i}x_{i}))\Gamma M = 0$$

$$(\text{By } R = \Gamma M.)$$

$$\iff [\sum_{i} a_{i}(\gamma_{i}x_{i}), \Gamma] = 0$$

$$(\text{By the definition that a coset is 0.})$$

$$\iff \sum_{i} [a_{i}, \gamma_{i}](x_{i}\Gamma) = 0$$

$$(\text{By the definition of an $L$-module imposed on } [A, \Gamma].)$$

$$\iff \sum_{i} [[a_{i}, \gamma_{i}], x_{i}] = 0$$

$$(\text{By the definition that a coset is 0.})$$

Hence,  $\eta_A$  is a bijection of A onto HF(A). It is easy to see that  $\eta_A$  is an R-module homomorphism.

For an R-module homomorphism  $f: A_R \to B_R$  and for  $a = \sum_i a_i(\gamma_i x_i) \in A$ , we have

$$HF(f)\eta_{A}(a) = HF(f)\eta_{A}(\sum_{i} a_{i}(\gamma_{i}x_{i})) = HF(f)\sum_{i} [[a_{i}, \gamma_{i}], x_{i}]$$

$$= \sum_{i} [F(f)([a_{i}, \gamma_{i}]), x_{i}] = \sum_{i} [[f(a_{i}), \gamma_{i}], x_{i}]$$

$$= \eta_{B}f(a).$$

Therefore, we have the following commutative diagram:



Thus,  $HF \cong 1_{PGM(R)}$ .

150 S. KYUNO

Similarly, we have  $FH \cong 1_{PGM(L)}$ . This completes the proof.

## REFERENCES

- [1] N. JACOBSON: Basic Algebra II, Freeman, San Francisco, 1980.
- [2] N. NOBUSAWA: On duality in  $\Gamma$ -rings, Math. J. Okayama Univ. 25 (1983), 69-73.
- [3] N. NOBUSAWA: Γ-rings and Morita equivalence of rings, Math. J. Okayama Univ. 26 (1984), 151-156.

DEPARTMENT OF MATHEMATICS
TOHOKU GAKUIN UNIVERSITY
TAGAJO, MIYAGI 985, JAPAN

(Received October 28, 1985)