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ON COMMUTATIVITY CONDITIONS
FOR RINGS

WaLter STREB

Let A be a non-empty subset of a ring R. Many authors studied the
commutativity behavior of R under the conditions :

(i) For each x € R, there exists a polynomial f(A) € Z[A] such that
x—x*flx) € A.

(ii) If x, ye R and x—y e A, then £* = y* or z, y € C(A), the
centralizer of A in R.

Cherubini and Varisco [1] and Tominaga [3] have proved the following
proposition :

(*) If A is commutative and the conditions (i) and (ii) are satisfied,

then R is commutative.

In this paper, we shall prove a generalization of ( *) together with its
variations.

In what follows, R will represent a ring with center Z= Z(R). For
XYCRI[X Y]=Ilxy]l=w—rxlzeX ye Y, Xo ¥ =lxo y=
xy+yxlze X, ye Yl

We define the Engel center EZ= EZ(R) as the set of all x € R with
the property that for each y € R there exists a positive integer n, positive
integers m; not divisible by 3, and operations *, &0, [ ]|, 1 <i< n,
such that (---((x % y™)%,y™)-.-) k9™ = 0.

R is called weakly semiprime if for each ideal I of R with F = 0 there
holds I C EZ.

For XC R, I(X)=lyeR|yX=0}.r(X)=|ye R| Xy=0},C(X) =
{ye R|[y,X] =0}.and C°(X) ={ye€ R|yo X = 0}. Further, Z° = C*(R).
In case I{(R) = 0(or 7(R) = 0), we see that Z° C Z. Actually, ifbe Z°
then, for each x,y € R, bxy = —xyb = xby, and so [b,x]R = 0. Hence b € Z.

Let Z[ A, ] (resp. Z| A, u}) be the polynomial ring with integer coeffi-
cient in the commuting (resp. non-commuting) indeterminates A and s.

In case A is commutative, (i) implies the following condition :

(j) For each x, y € R, there exists a polynomial f(A, x) in the kernel
of the canonical homomorphism Z| A, x| = Z[ A, u] each of whose monomial
is of length = 3 such that [x, y] = f(x, y).
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Obviously, the condition (ii) can be restated as follows :

(ii) For each x€ R and a € A, either acx = a* or x, a € C(A).

Now, we generalize (ii) as follows :

(jj) Given ae€ A, there exists c, € R such that aox = ¢, for all
x € R\C(a).

An immediate consequence from (ii), we have

(iii) o* € Z.

Actually, if [a, x] = 0 then [a®, x] = 0 ; while, if aox = a* then
[a, x] = [@aox. x] = [a. *] = 0 by [3, Lemma 1, p. 729].

In view of (iii), we see that the following strengthening of (jj) is still a
generalization of (ii).

(jii) Given a € A, there exists c, € R such that | a, cal N EZ + @ and
aox = c¢q for all xe R\C(a).

In what follows, we shall prove the following generalization of ( *) :

(**) If(i), (j) and (jij) are satisfied, then R is commutative.

In view of [2], (**) is a direct consequence of the next

Theorem 1. If (j) and (jjj) are satisfied, then A C Z.
We shall prove also the following at the same time.

Theorem 2. Let R be a 2-torsion free ring satisfying (ji). IfI(R) =0
(or (R) = 0), then AC Z.

Theorem 3. If R is a 2-torsion free ring satisfying (i) and (jj), then
AC Z.

Theorem 4. If R is a weakly semiprime ring satisfying (j) and (jj),
then A C Z.
Theorem 5. Let f be a polynomial with integer coefficients in non-

commuting indeterminates such that each of the rings T, = (GF(‘)(Z) GFO(Z)),
0 GF(2 ; . .

T, = (0 GFEZ;)’ T, = 1(3 iz)l X, yE GF(4)] fails to satisfy f = 0.

Let R be a ring satisfying f = 0. If(j) and (jj) are satisfied, then A C Z.

Proof of theorems. We may assume that A is a singleton | a {. Suppose,
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to the contrary, that a & Z.

First, suppose that ¢ =0. Then R= C(a) U C(a), and so R= C(a)
or C°(a). Hence R= C%a). For any x, yc R, we have [a, x]y = 0.
Therefore [a, R]JR = 0, and similarly R[a, R] = 0, which contradicts (j)
and the hypothesis of Theorem 2. Hence, we have seen that ¢+ 0. For any
x, ye R\C(a), ac(x—y) =0, and hence x—y & C(a) by (jj) or (jjj).
This shows that the order of the additive group [a, R] is 2. This contradicts
the hypothesis of Theorems 2 and 3. The rest of the proof will be immediate
by the next

Lemma. Letd=[a,r]+ 0. Assume that [a, R] coincides with{0, d}.

(1) (d)?*=0.

(2) Ifde Cla, r) then there exist x, y € C(d) such that d = [x, y]
and dx = dy* = 0 ; in particular, R does not satisfy (j).

(3) If de¢ Cla, r) then la,d, aor| N EZ=0 and there exists a
homomorphic image T of a subring of R which is isomorphic to Ty, T, or T;.

Proof. (1) Since [a, R]R C [a, R]+R[a. R], it suffices to show
that d*> = 0. If R\C(a) is multiplicatively closed, then it is easy to see
that C(a) is an ideal of R, and also d € C(a). Hence d* = d[a, r] =
[a, dr] = 0. If there exist x, y € R\C(a) such that xy € C(a) then xd =
x[a, y] = [a, xy] —[a, x]y = —dy. Since ad € 10, d}, we obtain d* = axd
—xad = —ady+ady = 0.

(2) Since 2d =0, we have [d’, r] = ao[a, r] = [a, d] =0, and
similarly [a, **] = 0. We put x = a’+a and y = r*+7. Then [x, y] = d
and dxr = 0, since da € |0, d}|. On the other hand, since [a, r*] = [a, 2r]
= 0, we have y* € C(a). If * € C(a) then r°+7r® = r**+r* € C(a). I
r* ¢ Cla) then r*47°* = v*(+*4+r) € C(a). Therefore, we can see that
y¥* € C(a), and hence dy’ = [a. ¥*] = 0.

(3) Weput I=lxe Z({a, r)) |l2d =0}. If x € I, then [xa, r] =
la, xr] = xd = 0, and also xa, xr € I. Hence I is an ideal of {a, 7). Put
T = {a, r)/I, and denote the residue class of x € {a, r) by z. If [a, ] =
0 then [a, x] € I, and hence [a, x] = 0. Since 2a, 2r € I, we get 2T = 0.
Now suppose x € Z({a, r))\l. Then 0 #F xd = [xa, r] = [a, xr] = d, and
hence xa—a, xr—r € I. This shows that X is an identity element of T.

First, we consider the case that d & C(a). Then [d*, r] = [a, d] =
[a, 7], and hence a*—a € I. Sincead, da €10, d} and [a, d] + 0, (@, d)
is isomorphic to T or T,. Furthermore, since EZ(T,) = EZ(T,) = 0, we
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getla, d=aor| N EZ({a, d)) = P, and also |a, d, aor| N EZ= .

Next, we consider the case that d ¢ C(r). Then [a, r*] =[d, r] + 0
implies x = r*—r € Z({a, r)). As was shown above, ¥ = 0 or an identity
element of T. In either case, [t, ¥"] = [t, 7] for any ¢ € T and any natural
number n not divisible by 3. Since [d, r] = [[a, r], ] = [a, ] = [a. 7]
=d, we obtain |a, d = as7| N EZ(T) =0, and so {a, d, aor| N EZ =
p. Furthermore, by making use of [d, r] = d, we can determine the struc-
ture of the ring (7, d). Actually, if #—7 = 1 then 7d = df+d = d7’, and
hence it is easy to see that (7, d) ~ T;. Suppose now that #* = 7. Then
Zd7 and Z7d are ideals of (7, d) with ZdF N Z#d = 0. Hence, if #d % 0
(resp. d7 = 0) then (7, d)/Zd¥ = T, (resp. (7, d)/Z7d = T,).
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