ON PERIODIC RINGS AND RELATED RINGS

HOWARD E. BELL* and HISAO TOMINAGA

Throughout, R will represent a ring. Let E be the set of idempotents in R, N the set of nilpotent elements in R, and N^* the subset of N consisting of all x with $x^2=0$. R is called normal if E is central. An element x in R is called a right (resp. left) p. p. element if there exists an $e \in E$ such that xe=x and r(x)=r(e) (resp. ex=x and l(x)=l(e)), where r(*) (resp. l(*)) denotes the right (resp. left) annihilator of * in R. Obviously, every (von Neumann) regular element is a right and left p. p. element. We denote by P_0 the set of right p. p. elements in R. Also, we denote by S the set of strongly regular elements in R, and by P the set of potent elements in R. A ring R is called a generalized right p. p. ring if for each $x \in R$ there exists a positive integer n such that $x^n \in P_0$. Needless to say, every periodic ring is a strongly n-regular ring, and every n-regular ring is a generalized right p. p. ring.

Recently, in [2] and [3], the following has been proved: (1) If R is a generalized right p. p. ring and each $x \in R$ has at most one expression of the form x = u + a, where $u \in P_0$ and $a \in N$, then $R = P_0 \oplus N$; strictly speaking, both P_0 and N are ideals of R and R is the direct sum of P_0 and N (and conversely). (2) If R is a π -regular ring and each $x \in R$ has at most one expression of the form x = u + a, where $u \in S$ and $a \in N$, then $R = S \oplus N$ (and conversely). (3) If R is a periodic ring and each $x \in R$ has at most one expression of the form x = u + a, where $u \in P$ and $a \in N$, then $R = P \oplus N$ (and conversely). More recently, M. Ohori [5] has proved the following: (1)' A normal ring R is a generalized right p. p. ring if and only if each $x \in R$ has an expression x = u + a, where $u \in P_0$, $a \in N$ and ua = au. (2)' R is a strongly π -regular ring if and only if each $x \in R$ has an expression x = u + a, where $u \in S$, $a \in N$ and ua = au. (3)' R is a periodic ring if and only if each $x \in R$ has an expression x = u + a, where $u \in P$, $u \in N$ and ua = au.

In connection with the above results, we shall prove the following

Theorem 1. (1) If each $x \in R$ is uniquely expressible as x = u + a,

^{*}Supported by the Natural Sciences and Engineering Research Council of Canada, Grant No. A 3961.

where $u \in P_0$ and $a \in N$, then $R = P_0 \oplus N$ (and conversely).

- (2) If each $x \in R$ is uniquely expressible as x = u + a, where $u \in S$ and $a \in N$, then $R = S \oplus N$ (and conversely).
- (3) If each $x \in R$ is uniquely expressible as x = u + a, where $u \in P$ and $a \in N$, then $R = P \oplus N$ (and conversely).
- Proof. (1) In view of the uniqueness of the expression, we can easily see that R is normal. Let $e \in E$ and $a \in N^*$. Then $e + ea = (e + ea)^2$ (e ea) is strongly regular, and the uniqueness of its expression implies that ea = 0, namely $EN^* = 0$. Furthermore, we can easily see that $P_0N^* = 0$ $= P_0 \cap N^*$. Now, we shall prove by induction that $P_0N = NP_0 = 0$. To see this, it suffices to show that EN = 0. Let $e \in E$ and $a \in N$. Then, by the induction hypothesis, we have $(ea)^2 = ea^2 = 0$. Hence $ea = e \cdot ea \in EN^* = 0$. Thus, we have shown that $P_0N = NP_0 = 0$. By making use of this fact and $P_0 \cap N^* = 0$, we can prove that N forms an ideal. Finally, let A be the ideal of R generated by E, and E and E
 - (2) The proof is quite similar to that of (1).
- (3) Observe first that if x = u + a, with $u \in P$, $a \in N$ and au = ua, there exists n > 1 such that $x^n x \in N$ (see the proof of [5, Theorem 3]). Let e be an arbitrary (central) idempotent, and $a \in N^*$. Applying the above observation to 2e, we get a positive integer k such that ke = 0. Hence $e + ea = (e + ea)^{k+1}$ is potent, and the uniqueness of its expression implies that ea = 0, namely $EN^* = 0$. Furthermore, we can easily see that $PN^* = 0$. Now, the rest of the proof proceeds in the same way as in the latter part of the proof of (1).

Next, as was noted in [4, Remark], if N is commutative and each element of R is expressible as the product of elements in $E \cup N$, then N forms an ideal. This can be generalized as follows:

Theorem 2. If N^* is commutative and N is multiplicatively closed then $PN \subseteq N$. In particular, if N is commutative and $P \cup N$ generates R then N forms an ideal.

Proof. First, we claim that $EN \subseteq N$. Let $e \in E$, and $a^{2^a} = 0$. Since both ea - eae and ae - eae belong to N^* , $ea^2e - (eae)^2 = (ea - eae)(ae - eae) = e(ae - eae)(ea - eae) = 0$, i.e., $(eae)^2 = ea^2e$. Repeating this procedure, we see that $(eae)^{2^a} = ea^{2^a}e = 0$, and so $(ea)^{2^{a+1}} = 0$. Hence $EN \subseteq N$.

Now, let $x \in P$. Then, by the above claim, there exists a positive integer n such that $x^nN \subseteq N$. Let a be an arbitrary element in N, and suppose that n>1. It is easy to see that $x^iax^{n-i} \in N$ $(0 \le i \le n)$. If n=2m then $x^max^m \in N$, and hence $x^ma \in N$. Next, if n=2m+1, then $b=xa(x^{2(m+1)}a)^{2m}=xax^{2m}\cdot x^2ax^{2m-1}\cdots x^{2m+1}a\in N$, and therefore $(x^{2(m+1)}a)^n=x^nb\in N$. Hence $x^{m+1}N\subseteq N$, as for the case n=2m. We have thus seen that in either case there exists a positive integer n'< n such that $x^nN\subseteq N$; eventually $xN\subseteq N$.

Combining Theorem 2 with a theorem of Chacron (see, e.g., [1, Theorem 1]), we readily obtain.

Corollary. If each element in R is expressible as the sum of a potent element and a nilpotent element and N is commutative, then R is periodic.

REFERENCES

- H. E. BELL: On commutativity of periodic rings and near-rings, Acta Math. Acad. Sci. Hung. 36 (1980), 293-302.
- [2] H. E. Bell: On commutativity and structure of periodic rings, Math. J. Okayama Univ. 27 (1985), 1-3.
- [3] Y. HIRANO and H. TOMINAGA: Rings decomposed into direct sums of nil rings and certain reduced rings, Math. J. Okayama Univ. 27 (1985), 35-38.
- [4] I. MOGAMI: On certain periodic rings, Math. J. Okayama Univ. 27 (1985), 5-6.
- [5] M. ÔHORI: On strongly π-regular rings and periodic rings, Math. J. Okayama Univ. 27 (1985), 49-52.

DEPARTMENT OF MATHEMATICS
BROCK UNIVERSITY
St. Catharines, Ontario, Canada L2S 3A1
DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY
OKAYAMA, 700 JAPAN

(Received November 5, 1985)