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ON PERIODIC RINGS AND RELATED RINGS

Howarp E. BELL* and Hisao TOMINAGA

Throughout, R will represent a ring. Let E be the set of idempotents
in R, N the set of nilpotent elements in R, and N* the subset of N con-
sisting of all x with x> = 0. R is called normal if E is central. An ele-
ment x in R is called a right (resp. left) p.p. element if there exists
an e € E such that xe = x and 7(x) = r(e) (resp. ex = x and I(x) = I(e)),
where 7( *) (resp. {(*)) denotes the right (resp. left) annihilator of * in R.
Obviously, every (von Neumann) regular element is a right and left p. p. ele-
ment. We denote by P, the set of right p.p. elements in R. Also, we
denote by S the set of strongly regular elements in R, and by P the set of
potent elements in R. A ring R is called a generalized right p. p. ring if for
each x € R there exists a positive integer 2 such that x” € P,. Needless to
say, every periodic ring is a strongly m-regular ring, and every =-regular
ring is a generalized right p. p. ring.

Recently, in [2] and [3], the following has been proved: (1) If R is
a generalized right p. p. ring and each x € R has at most one expression of
the form x = u+a, where v € Py and ae N, then R= F, @ N; strictly
speaking, both P, and N are ideals of R and R is the direct sum of P, and N
(and conversely). (2) If R is a n-regular ring and each x € R has at most
one expression of the form x = u+a, where u € S and a € N, then R =
S @ N (and conversely). (3) If R is a periodic ring and each x € R has at
most one expression of the form x = u+a, where u € P and a € N, then
R=P@ N (and conversely). More recently, M. Ohori [5] has proved
the following : (1)' A normal ring R is a generalized right p. p. ring if and
only if each x € R has an expression x = u+a, where u € P, a € N and
ua = au. (2) R is a strongly 7-regular ring if and only if each x € R has
an expression x = u+a, where u € S, a € Nand ua = au. (3) R is a pe-
riodic ring if and only if each x € R has an expression x = u+a, where
ue P, ac Nand ua = au.

In connection with the above results, we shall prove the following

Theorem 1. (1) If each x € R is uniquely expressible as x = u+ta,

* Supported by the Natural Sciences and Engineering Research Council of Canada,
Grant No. A 3961.

101



102 H. E. BELL and H. TOMINAGA

where u € P, and a € N, then R = P, ® N (and conversely).

(2) If each x € R is uniquely expressible as x = u+a, where u € S
and a € N, then R = S & N (and conversely).

(3) If each x € R is uniquely expressible as x = u+a, where u € P
and a € N, then R = P & N (and conversely).

Proof. (1) In view of the uniqueness of the expression, we can easily
see that R is normal. Let e € E and a € N*. Then e+ea = (e+ ea)’
(e—ea) is strongly regular, and the uniqueness of its expression implies that
ea = 0, namely EN* = 0. Furthermore, we can easily see that P,N* =
= P, N N*. Now, we shall prove by induction that P,N = NP, = 0. To
see this, it suffices to show that EN=0. Let e€ E and a € N. Then,
by the induction hypothesis, we have (ea)’ = ea’ = 0. Hence ea = e-ea €
EN* = 0. Thus, we have shown that P,N = NP, = 0. By making use of
this fact and P, N N* = 0, we can prove that N forms an ideal. Finally,
let A be the ideal of R generated by E, and x an arbitrary element in
AN N. We write x = e,x;+ -+ exxy with some e, € E and x; € R. As
is well known, there exists a (central) idempotent f such that fe, = e, (1 <
i<k) Then x= fxc€ EN=0, and hence AN N=0. Since P,C A
and each element in R is expressible as u+ a with some u € F, and a € N,
this proves that P, = A and R = P, & N.

(2) The proof is quite similar to that of (1).

(3) Observe first that if x = u+a, with v € P, a€ N and au = ua,
there exists n > 1 such that x"—x € N (see the proof of [5, Theorem 3]).
Let e be an arbitrary (central) idempotent, and a € N*. Applying the above
observation to 2e, we get a positive integer k such that ke = 0. Hence
e+ea = (e+ea)**' is potent, and the uniqueness of its expression implies
that ea = 0, namely EN* = 0. Furthermore, we can easily see that PN*
= 0. Now, the rest of the proof proceeds in the same way as in the latter
part of the proof of (1).

Next, as was noted in [4, Remark], if N is commutative and each ele-
ment of R is expressible as the product of elements in E U N, then N forms
an ideal. This can be generalized as follows :

Theorem 2. If N* is commutative and N is multiplicatively closed
then PN C N. In particular, if N is commutative and P U N generates R
then N forms an ideal.
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Proof. First, we claim that ENC N. Let e€ E, and ¢ = 0. Since
both ea— eae and ae— eae belong to N*, ea’e—(eae)’ = (ea— eae)(ae— eae)
= e(ae—eae)ea—eae) = 0, i.e., (eae)’ = ea’e. Repeating this procedure,
we see that (eae)* = ea*’e = 0, and so (ea)***' = 0. Hence EN C N.

Now, let x € P. Then, by the above claim, there exists a positive in-
teger n such that "N C N. Let a be an arbitrary element in N, and
suppose that » > 1. It is easy to see that X’ax" e N (0 <i<n). Ifn
= 2m then x™ax™ € N, and hence x™a € N. Next, if n = 2m+1, then b
= xa(x®™Va)’"™ = xax’™-x’ax®™ e x’"*'a € N, and therefore (z*™*"a)"
= x" € N. Hence x®"'NC N, as for the case n = 2m. We have thus

seen that in either case there exists a positive integer n' < n such that
x*NC N; eventually xN C N.

Combining Theorem 2 with a theorem of Chacron (see, e.g., [1,
Theorem 1]), we readily obtain.

Corollary. If each element in R is expressible as the sum of a potent
element and a nilpotent element and N is commutative, then R is periodic.

REFERENCES -

[1] H. E.BELL: On commutativity of periodic rings and near-rings, Acta Math. Acad. Sci.
Hung. 36 (1980), 293 —302.
[2] H.E.BELL: On commutativity and structure of periodic rings, Math. J. Okayama Univ. 27
(1985), 1—3.
[3] Y. Hirano and H. ToMINAGA : Rings decomposed into direct sums of nil rings and certain
reduced rings, Math. J. Okayama Univ. 27 (1985), 35 —38.
1. MoGaMl :  On certain periodic rings, Math. J. Okayama Univ. 27 (1985), 5-—6.
M. Ouort :  On strongly n-regular rings and periodic rings, Math. J. Okayama Univ. 27
(1985), 49 —52.

—
[
[Ery )

DEPARTMENT OF MATHEMATICS
Brock UNIVERSITY
St. CATHARINES, ONTARIO, Canapa L2S 3A1l
DEPARTMENT OF MATHEMATICS
OxayaMA UNIVERSITY
Okavama, 700 Japan

(Received November 5, 1985)



