SOME CONDITIONS FOR COMMUTATIVITY OF RINGS

To Adil Yaqub on his 60th birthday

HISAO TOMINAGA

Let A be a non-empty subset of the ring $R(\neq 0)$ with center C; let N denote the set of nilpotent elements in R, N^* the subset of N consisting of all x with $x^2 = 0$, and E the set of idempotents in R. Let q > 1 be a fixed integer. We consider the following conditions:

- (I-A) For each $x \in R$, there exists a polynomial f(t) in Z[t] such that $x-x^2f(x) \in A$.
- (I'-A) For each $x \in R$, either $x \in C$ or there exists a polynomial f(t) in Z[t] such that $x-x^2f(x) \in A$.
- (II-A)_q If $x, y \in R$ and $x-y \in A$, then either $x^q = y^q$ or x and y both belong to the centralizer $C_R(A)$ of A in R.
- (III-A) For each $x \in R$ and $a \in A$, [[a, x], x] = 0.
- (III'-A) For each $x \in R$ and $a \in A$, there exists a positive integer m = m(x, a) such that $[a, x]_m = [[a, x]_{m-1}, x] = 0$.
- (III"-A) For each $x \in R$ and $a \in A$, there exists a positive integer n = n(x, a) such that $[[a, x^n], x^n] = 0$ and $[[a, x^{n+1}], x^{n+1}] = 0$.

Our objective is to prove the following theorem which is related to a number of recent results by H. Abu-Khuzam, A. Yaqub and the author (see, e. g., [1], [2], [5], and [6]).

Theorem 1. The following statements are equivalent:

- 1) R is commutative.
- 2) There exists a commutative subset A for which R satisfies (I-A), (II-A)_q and (III-A).
- 3) There exists a commutative subset A of N for which R satisfies (I'-A) and (III-A).
- 4) There exists a commutative subset A for which R satisfies (I-A), $(II-A)_a$ and (III'-A).
- 5) There exists a commutative subset A of N for which R satisfies (I'-A) and (III'-A).
 - 6) R satisfies ($III'-N^*$) and there exists a commutative subset A for

which R satisfies (I-A) and (II-A)_q.

- 7) R satisfies (\coprod '-N*) and there exists a commutative subset A of N for which R satisfies (\coprod '-A).
- 8) There exists a commutative subset A for which R satisfies (I-A), (II-A)_q and (III"-A).
- 9) There exists a commutative subset A of N for which R satisfies (I'-A) and (\coprod "-A).

In preparation for proving Theorem 1, we state the next lemma.

Lemma 1. (1) If R satisfies (I-C), then R is commutative.

- (2) If R satisfies (I'-A), then $N \subseteq A^+ + C$ and $N^* \subseteq A \cup C$, where A^+ is the additive subsemigroup generated by A.
 - (3) $(\coprod -A)$ implies $(\coprod -A)$.
- (4) If R satisfies (I'-A) and (II-A)_q, then R is normal; that is, E is central.
 - (5) If R satisfies (I'-A) and (III''-A), then R is normal.
- (6) If A is commutative and R satisfies (I'-A), then N is a commutative nil ideal containing the commutator ideal of R and is contained in $C_R(A)$.
- (7) If R satisfies (\coprod '- N^*) and there exists a commutative subset A for which R satisfies (\coprod '-A), then R satisfies (\coprod '-A).
- (8) Let R be a normal, subdirectly irreducible ring. If A is a commutative subset of N not contained in C for which R satisfies (I'-A), then R is of characteristic p^{α} , where p is a prime.
- *Proof.* (1) This is a well-known fact as a theorem of Herstein (see [3]).
 - (2) See [5, Lemma 1 (2)].
 - (3) Obviously, $[[a, x^2], x^2] = 0$ for all $x \in R$ and $a \in A$.
 - (4) See [5, Lemma 1 (4)].
- (5) Let $e \in E$, and $a^* \in N^*$. By (2), $N^* \subseteq A \cup C$. This together with (III"-A) shows that $[[a^*, e], e] = 0$. Hence e is central by [4, Remark 2].
 - (6) See [5, Lemma 1 (5)].
- (7) Let $x \in R$, and $a \in A$. Since $[R, R] \subseteq N$ and [N, A] = 0 by (6), we see that $[a, x]^2 = [a, x](ax xa) = a[ax, x] [ax, x]a = 0$. Thus, by (III'-N*), there exists a positive integer m such that $0 = [[a, x], x]_m = [a, x]_{m+1}$.
 - (8) See [5, Lemma 2].

Proof of Theorem 1. Obviously, 1) implies 2)-9). By [6, Theorem 1], each of 4) and 5) implies 1). Furthermore, by Lemma 1 (3) and (7), 2), 3), 6) and 7) imply 8), 9), 4) and 5), respectively.

- $8) \Rightarrow 1$). We may assume that R is subdirectly irreducible. According to Lemma 1 (1) and (I-A), it suffices to show that $A \subset C$. Suppose, to the contrary, that there exist $a \in A$ and $x \in R$ such that $[a, x] \neq 0$. By (I-A) and (II-A)_q, $x^q = (x^2 f(x))^q$ with some $f(t) \in Z[t]$. Since $x \in N$ by Lemma 1 (2), Lemma 1 (4) shows that $e = (xf(x))^q$ is a non-zero central idempotent, and hence e = 1 and x is invertible. By (I-A), we can find a non-zero integer k such that $k = k \cdot 1 \in A$. Obviously, $[a, x + ik] \neq 0$ for all $i \in \mathbb{Z}$. Hence, by $(\text{II-}A)_q$, every x+ik is a zero of the polynomial $(t+k)^q-t^q$. Note here that $\bar{R} = R/N$ is a subdirect sum of commutative integral domains (Lemma 1 (6)). Then, we can easily see that $q! k^q \in N$, and so $h \cdot 1 = 0$ for some positive integer h. This implies that R is of characteristic p^{α} , p a prime. Then we can easily see that $\langle x \rangle$ is a finite local ring; hence $\bar{x} = x + N$ generates a finite subfield of $\bar{R}: \langle \bar{x} \rangle = GF(p^{\beta})$. By (III"-A), there exists a positive integer n such that $[[a, x^n], x^n] = 0 = [[a, x^{n+1}], x^{n+1}]$. Since $(\bar{x}^n)^{\rho^{ab}} =$ \bar{x}^n and [A, N] = 0 by Lemma 1 (6), we see that $[a, x^n] = [a, (x^n)^{\rho^{ab}}] =$ $p^{\alpha\beta}(x^n)^{\rho^{\alpha\beta-1}}[a, x^n] = 0$. Similarly, $0 = [a, x^{n+1}] = x^n[a, x] + [a, x^n]x = 0$ $x^n[a, x]$, and hence [a, x] = 0. This is a contradiction.
- 9) \Rightarrow 1). We may assume that R is subdirectly irreducible. As above, suppose that there exist $a \in A$ and $x \in R$ such that $[a, x] \neq 0$. Since $x \in N$ by Lemma 1 (2), there exists a non-zero idempotent e in $x\langle x\rangle$, by (I'-A). Since the subdirectly irreducible ring R is normal by Lemma 1 (5), we get e=1, and therefore x is invertible. Furthermore, by Lemma 1 (8), R is of characteristic p^a (p a prime), and $p\langle x\rangle$ is a finite local ring. Thus we can repeat the above argument to see that [a,x]=0. This contradiction proves that R is commutative (Lemma 1 (1)).

References

- [1] H. ABU-KHUZAM: A commutativity theorem for periodic rings, Math. Japonica, to appear.
- [2] H. ABU-KHUZAM and A. YAQUB: Some conditions for commutativity of rings with constraints on nilpotent elements, Math. Japonica 24 (1980), 549-551.
- [3] I. N. HERSTEIN: The structure of certain class of rings, Amer. J. Math. 75 (1953), 864-871.
- [4] Y. HIRANO, H. TOMINAGA and A. YAQUB: On rings satisfying the identity $(x+x^2+\cdots+x^n)^m=0$, Math. J. Okavama Univ. 25 (1983), 13-18.
- [5] H. TOMINAGA and A. YAQUB: Some commutativity properties for rings, Math. J. Okayama Univ. 25 (1983), 81-86.

[6] H. TOMINAGA and A. YAQUB: Some commutativity properties for rings. II, Math. J. Okayama Univ. 25 (1983), 173-179.

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY

(Received June 9, 1986)