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ON COMMUTATIVITY OF S-UNITAL RINGS

To the memory of Professor Akira Hattori
Hiroaki KOMATSU and Hisao TOMINAGA

Throughout, R(# 0) will represent a ring with Jacobson radical J, and
N the set of nilpotent elements in R. A ring is called s-unital if x € Rx N xR
for any x € R. As is well known, if R is an s-unital ring, then for any finite
subset F' of R there exists a pseudo-identity e of F' (ex = xe = x for all x €
F') which is not quasi-regular. (Choose a non-zero element y in R, and con-
sider a pseudo-identity of F U {y1.)

Now, let n be a positive integer, and A a subset of R. We consider the
following conditions :

Po(n,A) (xy)" = x"" for all x, y € A.
Pi(n,A) (xy)" = (yx)" for all x, y € A.
P;(A) For any x,y € A, there exist positive integers / = {(x, y) and
m = m(x, y) with ({, m) = 1 such that (xy)’ = (yx)' and
(xy)™ = (yx)™.
Q(n) For any x, ¥y € R, n[x, y] = 0 implies [x, y] = 0.

Specifically, we write Po(n) = Po(n,R), Ps(n) = Ps(n,R), and P; = Ps(R).
Our present objective is to generalize the recent results of Bell and
Yaqub [2] as follows :

Theorem 1. Let R be an s-unital ring.
(a) If R satisfies Ps(n, R\J) and Q(n), then R is commutative.
(b) If R satisfies Po(n+1, R\J) and Q(n(n+1)), then R is commuta-

tive.

(¢) If R satisfies Ps(R\J), then R is commutative.

Theorem 2. . Let R be an s-unital ring.
(a) IfR satisfies Ps(n, R\N) and Q(n), then R is commutative.
(b) If R satisfies Po(n+1, R\N) and Q(n(n+1)), then R is commuta-

tive.

(¢) IfR satisfies Ps(R\N), then R is commutative.
In preparation for the proof of our theorems, we state the next
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Lemma 1. Let R be an s-unital ring.

(a) If R satisfies Ps(n) and Q(n), then R is commutative.

(b) IfR satisfies Po(n+1) and Q(n(n+1)), then R is commutative.
(¢) IfR satisfies Ps, then R is commutative.

Proof. (a) This is included in [3, Theorem 1].
(b) This is proved in [1, Theorem 2].
(¢) This is included in [4, Theorem].

Proof of Theorem 1. (a) Since R/J satisfies the polynomial identity
(x1262)™ — (x2200)™ = 0, [3, Proposition 2] proves that [R, R] € J. Put p(t)
=(1—1t)"—1€ Z[t]. Let a, b be elements of J with quasi-inverses a’, b',
respectively, and choose a pseudo-identity e of {a, b} in R\J and a pseudo-iden-
tity fof e. Then

(f=b)e—a)"(f—b) = ((f—b)e—a)(f—b))"
= ((e—a)(f—b)Nf—b))"=(e—a)",

and hence [b, p{a)] = —[f—b,(e—a)™] = 0. This shows that R satisfies
the polynomial identity [[x;, x2], p([ax1, 2] [xx5. 2:])] = 0. In any 2X 2 matrix
ring over any finite prime field, we have

[[en, elz], P( [en, elz] [ezzq 6‘21])] = [912, (l_en)n] = €e)2.

Hence, again by [3, Proposition 2], [R, R] € N and N forms an ideal. Next,
let ¢ € N, and suppose that [b, ¢c"] = 0 for all integers r = k, k minimal.
Suppose k£ > 1, and put a = ¢*~'. Then, by the above, we see that 0 =
[f—b,(e—a)™] = n[b, ¢*"'], and hence [b, ¢*~'] = 0 by Q(n). This contra-
diction shows that k = 1 and hence [J, N] = 0. Again, let a, b € J. Since
([f—b,e—al,e—al = —[[b,a],a] € [N,J] =0, we have n(e—a)"*"
[b,a] = [f—b,(e—a)™] = 0, whence [b, a] = 0 follows. Thus J is a com-
mutative ideal, and J? is central. If #> 1, this enables us to see that (xy)”
= (yx)" provided x € J or y € J. Combining this with P;(n, R\J), we see
that R satisfies Pi(n). and hence R is commutative by Lemma 1 (a). On the
other hand, if n =1, x € Jand y € R\J, then y+xy = (e'+x)y = y(e'+x)
= y+yx, where e' is a pseudo-identity of {x, ¥ | in R\J. This proves that
[J,R\J] = 0. Since both J and R\J are commutative, R is also commutative.
(b) As in (a). we can see that [R, R] € J. Put p(¢) = (1—1t)™*"**"

—1. Now, let a, b € J, and choose e, fas in (a). Then

(f—b)e—a)"' (f—b) = ((f—b)e—a)f—b))"""

— (f_b)ﬂ+](e__a)7l+l (f_b’)n+]’
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and hence [(f—&)™ (e—a)™"] =0. Similarly, we have [(f—5)"
(e —a)™™* V]=0and[(f—b)"*"(e—a)"* " ]=[(e—b)**"", (f—a)*"""] =0,
and hence [0, p(a)] = —[f—b,(e—a)™*"] = 0. This shows that R satis-
fies the polynomial identity [[x:, x:], p([x:, 2] [xx3, 2:])] = 0. Then, as in (a),
we can see that [R, R] < N and N forms an ideal. Next, let ¢ € N, and sup-
pose that [b, ¢"] = 0 for all integers r = k, k minimal. Suppose £ > 1, and
put @ = c*~'. Then, by the above, we see that 0 = [f—b, (e—a)™"*"] =
n(n+1)[b, c*'], and hence [b,c* '] = 0. This contradiction shows that
[J, N] = 0. Now, repeating the argument employed in(a), we can easily see that
(xy)™*' = x""'y"* provided x € J or y € J. This together with Py(n+1,
R\J) implies Py(n+1) and hence R is commutative by Lemma 1 (b).

(¢) Since R/J is commutative by Lemma 1 (c), we have [R.R] C J.
Let a, b € J, and choose e, fas in (a). Then there exist positive integers /,
m with ([, m) = 1 such that [f—b,(e—a)'] = 0 = [f—b,(e—a)™]. Wecan
easily see that [a, b] = [f—b,e—a] = 0. So, J is commutative and J? is
central. Accordingly, if x € Jor y € J then (xy)’ = (yx)* for i > 2. Hence
R satisfies P;, and R is commutative by Lemma 1 (c).

Proof of Theorem 2. In view of [3, Proposition 1], Theorem 2 is an im-
mediate consequence of the theorems in [2]. However, we shall reduce the
proof to Theorem 1 ; actually, we shall show that N is an ideal (contained
inJ).

(a) Careful scrutiny of the proof of Theorem 1 (a) shows that N is com-
mutative. Suppose, to the contrary, that NR & N, say. Then we can find
a€ Nand r € R such that ar € Nand a’R € N. Let a' be the quasi-inverse
of a, and e a pseudo-identity of {a, r|. Then, noting that (e—a)ar € N, by
Pi(n, R\N) we see that (e—a)(ar)™e—a') = ((e—a)ar(e—a'))" = (ar)™
Hence [a, (ar)™] = —[e—a, {ar)"] = 0, and therefore (ar )"*' = a(ar )™ —
[a, (ar)™]r € N, a contradiction. Similarly, we can show RN C N.

(b) Careful scrutiny of the proof of Theorem 1 (b) shows that N is com-
mutative. Suppose, as in (a), that we can find a € N and r € R such that
ar € Nand a’R C N. Let e be a pseudo-identity of {a, r }, and A the minimal
positive integer such that [a®, (ar)"*"] = O for all s> h. Suppose now that
h > 1. Then, noting that ar € N and (e—a" ")ar € N, by Py(n+1, R\N)
we can easily see that (e—a" ") (ar)™**' (e—a*) = (e—a" )" (ar )"’
(e— a*)™*!, where a* is the quasi-inverse of a"~'. Hence n[a""!, (ar)**"] =
—[(e—a™* "™ (ar)™*'] = 0, whence [&"7", (ar)™*'] = 0 by Q(n(n+1)).
This contradiction shows that A= 1, and hence (ar)"*? = alar)**'r
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— [a, (ar)™*']r € N. But this contradicts ar &€ N. We have thus seen that
NR © N; similarly RNC N.

(¢) Letbd,c€ N,x€ R, and e a pseudo-identity of {6,x|. Then, care-
ful scrutiny of the proof of Theorem 1 (c) shows that [b, ¢] = 0 and there
exist positive integers [, m with (/, m) = 1 such that [b, x*] = 0 = [b, 2™].
Now, choose a minimal positive integer A such that [b,x"] = 0. If A > 1,
then there exist positive integers p, g with (p, ¢) = 1 such that p[b, "] =
[b,(e+x""")"] =0 = [b,(e+x""")7] = q[b,x"""]. This forces a contradic-
tion [b,x"" "] = 0. Thus we have shown that N is central, and hence N is an
ideal.
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