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THE CATEGORY OF s-UNITAL MODULES

Dedicated to Professor Hisao Tominaga on his 60th birthday

Hiroakt KOMATSU

The category of unital modules over a ring with identity element is
characterized as a cocomplete abelian category with a progenerator. More
generally, every cocomplete abelian category C with a generating set U of
small projectives is equivalent to a functor category by Freyd’s theorem, and
Gabriel showed in [5] that this functor category is equivalent to the category
Mod; of s-unital right modules over the ring R = Endc(U) (in notation of
Section 2). From this point of view, in [6], Harada studied Mods. Fuller,
in [4], examined the ring Endw..(U) induced from the skeleton U of the
category of finitely generated unital modules over a ring S with identity

element. In his method, a subfunctor of the functor Homs(uﬂ% U. —) played

an important role.

In this paper, we characterize a cocomplete abelian category C by
a subfunctor F of the functor Homo(U, —) for suitable U C. If F is
faithful and exact and preserves coproducts, then C is equivalent to the
category of s-unital right modules over a right s-unital ring (Theorem 2.4).
When this is the case, we call the pair (U, F) a subprogenerator of C.
Using this result, we can get Freyd-Gabriel theorem mentioned above.

On the other hand, s-unital modules and rings appear occasionally even
in the theory of rings with identity element, and were systematically studied
by Tominaga [10]. In Section 1. we state fundamental results for s-unital
modules and rings.

In Section 3, we examine a subprogenerator of a closed subcategory of
a module category. and give a generalization of a theorem on equivalences in
Fuller [3]. In particular, considering a subprogenerator of the category of
s-unital right modules over a right s-unital ring, we can generalize some
results on Morita equivalence for right s-unital rings (Sections 3 and 4).
In Section 5, we define quotient rings of right s-unital rings and prove that
quotient rings of right Morita equivalent right s-unital rings are also right
Morita equivalent.

Throughout the present paper, R will represent a (associative) ring.
Except as indicated, rings will not be assumed to have identity element. We
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66 H. KOMATSU

denote by My (resp. xM) the category of right (resp. left) R-modules, and
by Ab the category of abelian groups. We shall use freely the categorical
notions employed in [8] and [9].

1. Fundamental results on s-unital modules. L.et A be a subset of R.
A right (resp. left) R-module M is said to be A-s-unital if for any ue M
there exists a € A such that u = ua (resp. u = au). A ring R is called
a right (resp. left) A-s-unital ring if R; (resp. xR) is A-s-unital, and R is
called an A-s-unital ring if R is both left and right A-s-unital. A right (or
left) R-module is called s-unital if R-s-unital. In case A is the set of
idempotents in R, every A-s-unital module is called an s*-unital module.
Now, we denote by Mody the full subcategory of M whose objects are s-
unital right R-modules. If R has an identity element then Mod; coincides
with the category of unital right R-modules (see Proposition 1.8). Let R' be
the ring obtained from R by adjoining an identity element in the customary
manner. Then as is well known, Mz = Mod;:.

According to [5. p. 395], we say that a full subcategory of M which is
closed under taking submodules, homomorphic images, and direct sums is
a closed subcategory of M. Let C be a closed subcategory of M. If M is
an arbitrary right R-module, and (M) denotes the sum of all submodules of
M belonging to C, then clearly also z(M) € C. In this way, we get a left
exact preradical 7 of M,. Let f be a morphism in C. Then the kernel (resp.
cokernel) of f in the category M, is the kernel (resp. cokernel) of f in the
category C. Therefore, f is a monomorphism (resp. epimorphism) in the
category C if and only if f is a monomorphism (resp. epimorphism) in the
category Mi. For any family { Cal. of objects in C, the direct sum /\@ACA is

the coproduct of { Cil, in C and it is easy to see that r(AI;CA) is the prod-

uct of {Cals in C. Moreover, all the factor modules of R% belonging to C
form a generating set of C. Hence, C is a Grothendieck category. If Cis
closed under extensions, then r is a radical.

Proposition 1.1. Mod, is a closed subcategory of My and is closed
under extensions.

Proof. All submodules and all homomorphic images of an s-unital mod-
ule are also s-unital. Conversely, assume that N is a submodule of M; such
that both Ny and M/N; are s-unital. Let u be an arbitrary element of M,
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and choose 7, € R such that u+N = (u+N)r,, i.e. u—ur, € N. Then,
there exists 7, € R with u—ur, = (u—wur,)7., which implies u € uR. Hence
M; is s-unital. This shows that any finite direct sum of s-unital modules is
also s-unital. Now, it is clear that Mod; is closed under direct sums.

We readily obtain the following fundamental result [10, Theorem 1].

Corollary 1.2 (Tominaga). Let M,....,M, be s-unital right R-modules.
IfueM (i=1,.., n) then there exists r € R such that u; = u;r (i =1,

Here, note that Mz = Mods and R is an ideal of R'. More generally,
we consider the relationship between Mod: and Modz, where R is an ideal
of a ring R'. To this end, we state the following lemma whose proof is easy.

Lemma 1.3. The natural homomorphism XM ) : My - Homg(R, M )R,
Jor M € Modg, defined by AM )(u)(7) = ur (u €M, r €R), is an isomorph-

ism, namely A: 1y, = Homg(R, —)R is a natural equivalence.

Proposition 1.4. Lei R be an ideal of a ring R'.

(1) Every s-unital right R-module M has a unique right R'-module
structure which preserves the R-module structure.

(2) For any R-s-unital right R'-modules M and N, HomyM, N) =
Homg{M, N).

Proof. (1) Since Homg(zR, M)R is a right R'-module, via the iso-
morphism A(M ) in Lemma 1.3, M has a right R'-module structure preserving
the R-module structure. Obviously, foranyu € M and v' € R', ur’' = u(rr),
where r is an element of R such that ¥ = ur. This shows that such an R'-
module structure is uniquely determined, which proves (1).

(2) By the proof of (1), we see that Homx(M, N) C Homg(M., N),
proving (2).

Proposition 1.4 states that if R is an ideal of a ring R’ then Mod; is
a full subcategory of Mody. Moreover, the proof of Proposition 1.1 enables
us to see that Modx is a closed subcategory of Mods and is closed under
extensions.

We shall denote by or the left exact radical of M, corresponding to
Mod;. Next, we consider the exactness of o.
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Proposition 1.5. Let S = o(R). Then the following are equivalent :
1) or is exact.

2) oxM) = MS for any right R-module M.

3) Mods = Mod,.

Proof. 2)=>1). This is obvious.

1) = 2). Put A= oi(M), and define an epimorphism f : R¥ — Ax
by fl(r.).) = ugl‘uru. Since ox(f) : S¥ - Az is also an epimorphism, we
obtain A = f{(SY) = uéduS C MS. But, since MS = uéuus is a sum of
homomorphic images of Si, MS; is s-unital. Hence A = MS.

2)=3). If M is an s-unital right R-module, then for any u € M, we
have u € uR = of(uR) = uRS = uS. Thus Mg is s-unital. Combining
this with Proposition 1.4, we obtain 3).

3) = 2). Since (M) is in Mods, as(M) = ox(M)S C MS, and
hence ax:{(M) = MS.

Corollary 1.6. Let S = ox(R). Assume that ox is exact.

(1) S is a generator of Modg.

(2) S is a right s-unital ring.

(3) M (%) Sk and MSy, are canonically isomorphic for any right R-

module M.

Proof. (1) This is immediate from Proposition 1.5.2).
(2) This is immediate from Proposition 1.5.3).
(3) It suffices to show that, for u,,....un €M and si,....,s, €S,

=

u;s; = 0 implies —ii u; ®s; = 0. Actually, from (2) and Corollary 1.2,

~
I
—

n
there exists s € S such that s; = s;s (i = 1,...,n). Then, i; U;®s; =

B

u;s;: Qs = 0.
1

Corollary 1.7. If R is a right s-unital ring then or is exact.

If R is a right s-unital ring then R is a generator of Modg. In general,
a generator of Mod; is not always a faithful module. For example, R =

Z 0 C 1, . 1 0) (O O) .
(Z O) has a right identity element (0 0) but R 10/)= 0.
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Next, we state some fundamental results for s-unital modules over right
s-unital rings.

Proposition 1.8. Let A be a subset of R. If R is right A-s-unital then
the following are equivalent for a right R-module M :

1) Mg is A-s-unital.

2) M; is s-unital.

3) M = MR.

Proof. 1) = 2)=> 3). Trivial.

3) = 2). This is immediate from Corollary 1.7 and Proposition 1.
5.2).

2) = 1). Let u be an arbitrary element of M, and choose r € R with
u = ur. Furthermore, choose a € A such that r = ra. Then. u = ur =
ura = ua. Hence M, is A-s-unital.

Corollary 1.9. Let A be a subset of R. Let M,,...,M, be right R-
modules such that M; = M\R (i = 1,....n). If R is right A-s-unital, then for
w M, (i =1,....,n) there exists a € A such that u;, = u,a(i = 1,....n).

Proof. By Proposition 1.8 and Corollary 1.2, there exists r € R with
wy=ur(i=1,.... n). Choosing a € A with r = ra, we get u; = u;a.

For s*unital rings we obtain the following fine result.

Proposition 1.10. Let R be an s*unital ring and let M,,....M, be
R-R-bimodules such that M, = RM,R(i =1,....,n). Ifu,eM;(i =1,...,n)

then there exists an idempotent e of R such that eu; =u, = ue(i =1,...,n).

Proof. By Corollary 1.9, there exists an idempotent f of R such that
w; = u,f (i =1,...,n). Similarly, we can choose an idempotent g of R such
that f = gf and u; = gu; (i = 1,...,n). Then, one will easily see that e =
f+g—fg is a desired idempotent.

In the rest of this section, for the sake of later use, we introduce some
notions. According to [10], an injective (resp. projective) object of Mod; is
called an s-injective (resp. s-projective) module. A left R-module M is said

to be s-flat if the functor — @ M : Mod; - Ab is exact. Noting that if X is

an s-unital right R-module then Homu(X, Y) and Homu(X, ox(Y)) are iso-
morphic for any right R-module Y, we can apply the argument used in case
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R has an identity element to see the following : A left R-module M is s-flat
if and only if ox{Homz(M, Q/Z))x is s-injective. Furthermore, by making
use of Baer Criterion ([10, Proposition 3]), we can prove the following

Proposition 1.11 (cf. [10, Remarks (3)]). Let R be a right s-unital
ring. Then a left R-module M is s-flat if and only if, for any finitely gener-
ated right ideal Iof R, (®1y: I@ M->R @ M is a monomorphism, where

¢: I = R is the inclusion map.,

If e is an idempotent of R then eR = eR' is projective in M,. We
conclude this section with the following

Proposition 1.12. Let R be a right s-unital ring, and let M be an
s-unital right R-module.

(1) Mz is s-projective if and only if M is projective in M.

(2) If My is s*unital then M is s-projective if and only if My is
isomorphic to a direct summand of a direct sum AGEBA e R, where ep are

idempotents of R.

Proof. (1) Since every homomorphic image of M; is s-unital,
Homu{M, —) = Homx(M, ox( —)) as functors Mz —» Ab. By Corollary 1.7,
or is exact. Hence, Homg(M, —) is exact in Mod; if and only if so is
in M.

(2) Suppose that M, is s-projective. For each u € M there exists an
idempotent e, of R such that « = ue,. Therefore, we can find an epimor-
phism HGEBMeuRR — My, which is split by assumption. The converse is

trivial.

2. Characterization of categories of s-unital modules over right s-unital
rings. Throughout this section, C will represent a preadditive category.
Let U be an object of C, and F a subfunctor of Homc(U, —) : C = Ab.
Then. for each Ce C, F(C) is a subgroup of Homc(U, C) and for each

morphism f: C - D the following diagram is commutative :

Homc(U, C) f—*> Homc(U, D)
ul Ul

F(C) ——— F(D
) ) (D)
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Thus, Homc(C, D)F(C) € F(D). In particular. F(U) is a left ideal of
Homc(U, U) and F(C) is a right F(U)-module for any C&€ C. It is clear
that for any morphism f of C, F(f) is an F(U)-homomorphism. Therefore,
F induces a functor from C to My, We state some lemmas concerning F.

Lemma 2.1. If C is abelian and F is right exact then F(C)gy, is
s-unital for any C € C, and F = Homc(U, —)F(U) = gpu{Hom(U, —)).

Proof. Let fe F(C), and g: C —> D the cokernel of f. Then the

sequence F(U) ﬂf—)a F(C) M F(D) - 0 is exact and F(g)(f) = gf

= 0. Therefore, there is h € F(U) with f= F(f}h) = fh. Hence
F(C)pe is s-unital. Also, F(C) = F(C)F(U) C Homc(U, C)F(U) C
F(C), namely F(C) = Homc(U, C)F(U).

Lemma 2.2. If C is a full subcategory of a cocomplete abelian category
D in which C is closed under taking factor objects. then the following are
equivalent :

1) Fis faithful.

2) For any C € C, there exists an epimorphism f: U™ — C in D with
some index set A such that fin € F(C) for every injection ¢» of the coproduct
UU\).

3) U is a generator of C and there exists an epimorphism f: U —» U
in D with some index set A such that fi, € F(U) for every injection ¢, of the
coproduct U,

Proof. 1)=>2). Put A = F(C) and let ¢¢: U - U"“ be the g-th
injection for each g € A. From the property of coproducts there exists
f:U" > C such that fio = g for all g€ A. Suppose that h: C - D is
a non-zero morphism of D. Then & is factored through an epimorphism
h': C - C' and a monomorphism i: C' - D. Since F is faithful, we have
F(h') = 0 and hence h'g & 0 for some g€ F(C). Since g = fis and i is
a monomorphism, we obtain hAf & 0. Thus we have shown that f is an
epimorphism.

2) = 3). Trivial.

3) =>1). Given a non-zero morphism h: C - D of C, we must prove
F(h) % 0. Since U is a generator, there exists g: U - C such that hg
# 0. Since f is an epimorphism, we have hgf & 0 and hence hgf:, % 0 for
some A€ A. Obviously, gfen € F(C), by assumption.
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Lemma 2.3. Let C be a coproduct of a family | C.l, of objects of C
with injections (» and projections m. Let ex = u,um (A€ A). Suppose that,
Jor any finite subset I" of A, C has the coproduct Yﬂjrcy. Then the following

are equivalent :
1) F(C) is the coproduct of the family { F(C\)|. with injections F(ca).
2) The monomorphism v : ,\Gea.1F(C") - F(C). defined by v((fi)s) =

A§A tafr, is an isomorphism,
3) F(C) = @ eaF(C).
A€ A
4) For any fe F(C). there exists a finite subset I" of A and g €

F ( Y@rcy) such that f = (g, where (: @ Cy— C is the canonical injection.
(53 YET

Proof. 1)<>2). Let in: F(C) - €BiF(Cy) be the usual injection.
HUE A

Then F(:) = via. Hence, the assertion is clear.

2) = 3). Any element of F(C) is a finite sum of exixfo = tafa (i €
F(C,)). Hence, the assertion is clear.

3) = 2). Since mF(C) C F(C,), we have e F(C) C (+F(C,), and
therefore Im v = A;/l (2 F(Cy) = F(C). Thus v is an epimorphism.

3)=>4), Put '={A€ Alerf = 0l. Then I' is a finite set and
f= -E‘re"f‘ We consider a coproduct D = @rcy with injections ¢y, Let

¢: D = C be the canonical injection. Then, there exists n: C - D such
that m = 1,. Since tmy = tmty =ty = ty(yE€ I'). we have tmey = ey
(yeI). Hence f = ¢nf. Clearly nf e F(D).

4) = 3). Now suppose that f&€ F(C) is of the form in 4). Let ¢y be
the 7-th injection of AGEBFC,\()’E I'). Then A)E:re;\u; = (y=wy(y€ ), and

therefore ¢ = 2. exe. Hence f= X erf.
AET AET

A pair (U, F) of an object U of C and a subfunctor F of Homc(U, —) :
C - Ab will be called a subprogenerator of C if F is faithful and exact and
preserves coproducts. For example, if R is right s-unital then (R, Homg(R,
—)R) is a subprogenerator of Mods (Lemma 1.3). We are now in a position
to state the main theorem of this section.

Theorem 2.4. Let C be a cocomplete abelian category, and R a right
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s-unital ring. Then C is equivalent to Mody if and only if C has a subpro-
generator (U, F') such that F(U) = R as rings.

Proof. First, suppose that C and Mod: are equivalent. Let G : Mod,
— C be an equivalence, and H: C — Mod; the inverse of G. Consider the
subfunctor F = Homc(G(R), —)G(R,) of Homc(G(R). —). where R; is the
set of all left multiplications effected by elements in R. Then F = Homg(R,
H(—))R = H(Lemma 1.3). Therefore (G(R), F') is a subprogenerator of
C, and moreover, F(G(R)) = R. Conversely. suppose that C has a subpro-
generator (U, F). By Lemma 2.1, F induces a functor F: C » Mod,
(F(C) = F(C)). We shall prove that F is an equivalence. First we show
that F is full. Let ¢ be an arbitrary element of Homp:(F(C), F(D)). By

Lemma 2.2, we can construct a resolution

U(Az) é UMI} i‘,) C - O

of C such that fi; € F(C) for every A-th injection ¢n: U - U™ (A€ A)
and foin € F(U"Y) for every A-th injection (x: U —» U** (A€ A,). Similarly,

. g g .
we obtain an exact sequence U, 20,35 D-o. Applying the exact functor
F, we have the following diagram with exact rows :

F( U’:Azi) F(fZ). F(U:m)) F(fl)a F(C) -0

i
1
[l
!
1
ll

Fh) | Flh) ¢
l l
(0 F(g.) (0 F(g) D)

We shall fill out this diagram to make it commutative. Since F(g,) is sur-
jective, for each A€ A, there is hy € F(U,) such that F(g.)(hy) = ¢(fica).
The family {hx: U — U,l4, gives rise to a morphism h, : U"” - U, such that
ha = hita for each A€ A,. Then, we have F(g,)F(h,) = ¢F(fi). To show
this, it suffices to show that F(g\) F(k\)F(:n) = ¢F(fi)F(¢a) for every A€
A., since F()’s are the structure maps of the coproduct F(U"") = F(U)*“",
Actually, F(g)F(h)F(i)(k) = F(g)(hak) = ¢(fitak) = oF(f)) F(2)(k) for
all k € F(U). Similarly, we can find k,: U"? - U, such that F(g,)F(h,)
= F(h,)F(f;). Since F is faithful, the left square of the following diagram

is commutative :
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g by g G g

hzl hlj h
l

U,— U —D->0
82 &1
There exists a unique morphism A : C — D such that this diagram is commu-
tative, since f; is the cokernel of f,. Applying F again, we obtain ¢ = F(h),
since F(f,) is the cokernel of F(f,). Thus, we have shown that F is full,
It remains therefore to prove that any s-unital right F(U)-module M is
isomorphic to F(C) for some C € C. Since F(U) is a generator of Modz,
@2

and F preserves coproducts., we obtain an exact sequence F(U,) — F(U,)

$

— M —> 0, where U; (i = 1, 2) are coproducts of copies of U. As was
shown above, F is full, and so we have ¢ = F(f) for some f: U, » U,.
Let g: U, - C be the cokernel of f. Then applying F, we have an exact

Fi
sequence F(U,) ﬁ F(U) _(g_)) F(C) - 0. Thus F(C) = M. which com-

pletes the proof.

Now, let U = {U,l, be a family of objects of C. Put Endc(U) =
M@z 4H0mc( U, U,) as module and make Endc(U) a ring by the composition of

morphisms (see [5]). Then Endc(U) is an s*unital ring. We assume that
C has the coproduct U = /\@A U, with injections ¢, and projections m. Put
€

ex = txm. Then |eal, is a set of orthogonal idempotents of Homc(U, U).
Now, we define a subfunctor Fy of Home(U, —) : C — Ab as the coproduct
of subfunctors Homc(U, —)ea (A€ A). i.e. Fy(C) = A@AHomC(U, Cex

(C € C). Then, it is obvious that Fy(U) is a right s*unital ring and Fy(C) =
Homc(U, C)YFy(U) (C € C). Since both Homc(U, —) and or., are left
exact, Fv = orwo{Homc(U, —)) is also left exact. Harada pointed out in [6]
that if C is a cocomplete abelian category and U is a generating family of C
consisting of small projectives, then C is equivalent to Modgna. . In order
to give a new proof of this result, we state the following

Lemma 2.5. Under the above notations, if C is abelian there holds the
Sfollowing :
(1) F\y is faithful if and only if U is a generator of C.
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(2) Fyis exact if and only if U is projective in C.
(3) Fy preserves coproducts if and only if Ux is small in C for every
A€ A. When this is the case, Fy(U) = Endc(U) as rings.

Proof. (1) If Fy is faithful then U is a generator of C by Lemma 2.2,
Conversely. suppose that U is a generator of C. Let f: C - D be a non-
zero morphism. Then fg % 0 for some g: U —» C, and hence fgu & 0 for
some A€ A. Therefore fgex & 0. Since ge, € F(C), this proves that
Fuo(f) 0.

(2) Suppose Fyu is exact. It suffices to show that each U, is projec-
tive. Let g: C — D be an epimorphism, and f: Uy = D a morphism. Since
fm€ Fu(D), there is h € F.(C) with gh = fm. Then ghey = f. Converse-
ly, suppose U is projective. As was mentioned above, Fy is left exact. It
remains therefore to prove that F'y preserves epimorphisms. lLetg: C - D

be an epimorphism, and f€ Fy(D). Then there is h: U — C with gh = f.
Now, fis in E’_él Homc(U, D )ea, with some e,,. If A" = h(ea,+...+ea,) then

h' € Fy(C) and F (g )(h') = gh’ = f. Thus Fy(g) is an epimorphism.

(3) By definition, we have F{(C)ex = Homc(U, C)ex = Homc(U,,
C)m and Fy(C) i = Homc(Uy, C) (C € C, A€ A). Hence the assertion is
clear by Lemma 2.3.

Combining Lemma 2.5 with Theorem 2.4, we readily obtain the fol-
lowing

Proposition 2.6 (cf. [6, p. 344]). If a cocomplete abelian category C
has a generating family U of C consisting of small projectives then C is equiv-
alent to Modgna ).

In [1]. G. D. Abrams introduced the notion of rings with local units and
studied equivalences of module categories over such rings. In the rest of
this section, we shall prove a generalization of the main theorem of [1].
A set E of commuting idempotents in R is called a sei of local units for R if
for each r € R there exists e € E such that er = r = re. Every ring with
*.unital ring.

Let A be a directed set. Suppose that for each A€ A there exists U, €
C. and for each pair A < yin A there exist morphisms (% : Uy = U, and 7% :

local units is an s

U, = U.. We call the collection { Ux, ¢%X, 7kl a split direct-inverse system
in C over A if {Ux, £}, is a direct system, | U, 7%}, is an inverse system,
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and a3k =1y for each A< . If S =|U,, (&, #Xls is a split direct-
inverse system in C over A, then | Homc(U,, Us), Home( 7%, ¢)1,4 is a direct
system of rings, and End(S) = Ign Homc(U,, U,) is an s*unital ring.

Lemma 2.7. Let S = {U,, &, 7&ls be a split direct-inverse system in
C over A. If C has the direct limit U = lgn U, with structure morphisms

lea: Un = Ul on the direct system |Ux, (Xl4, then there exists a family of
morphisms | mn : U = Us,l. satisfying the following conditions :

(1) 7uta = mp for all A, < v

(2) Taéa = lu,\ for all A

(3) muta = & and mae, = 7 for all A < p.

(4) mému=mforall A< pu

Proof. Fix p€ A. If A, u< v <y in A, then nlf = ninl ) d=
mrtX. Hence, we may set fi = nhel for any v € A with A, ¢ < v. It is easy
to see that if A<< ' then f, = fi¢}. Hence, there exists n,: U = U, such
that f = muta for every A€ A. Thus, we have obtained a family {7 : U -
Uil satisfying (1). (2) and (3) are clear by (1). Finally, we shall prove
(4). Let A< g, and v be an arbitrary element of A. Choose v' € A such
that u, v < v'. Then n¥{rnut, = aknlie) = 7{¢) = maen. Whence, nn, = 7.

Under the notations used in Lemma 2.7, we put ex = ¢ams. Then e, is
an idempotent of Homc(U, U). By the condition (3) of Lemma 2.7, we have
e en = ey = eney, for all A < p.  This implies that | exHomc (U, Udenly is
a direct system of subrings of Homc(U, U), and clearly this is isomorphic to
the direct system |{Homc(U,, Ua), Homc(#%, ¢$)14. Hence ALE)4e;\Homc( U,

U)er = End(S) as rings. Now, we shall generalize [1, Theorem 4.2] as
follows :

Proposition 2.8. Let C be a cocomplete abelian category, and R an s*
unital ring. Then C is equivalent o Mody if and only if C has a split direci-
inverse system S = | Uy, (X, n&ls such that | Unl, is a generating family of C
consisting of small projectives and End(S) = R as rings.

Proof. Let E be a set of all idempotents of R. By Proposition 1.10,
E is a directed set with respect to the usual order (e < f<= fe = e = ef).
For any e < f in E, we denote by (Z an inclusion map eR C fR and by =7 :
JR — eR the map induced from the left multiplication e,. Then, it is easy
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to see that | eR, ¢%, n%}r is a split direct-inverse system in Modg, and { eR |z
is a generating family of Mod; consisting of small projectives. Therefore,
if C is equivalent to Mod; then C has a split direct-inverse system with the
property requested. Conversely, suppose that C has a split direct-inverse
system S = | Uy, X, nils such that U =|U,|, is a generating family of C
consisting of small projectives. Put U = li{)n U, and consider the family

| eals of idempotents in Homc(U, U) defined just before Proposition 2.8. As
was mentioned above, the s*unital subring S = AQAeAHomC(U, U)e, is iso-

morphic to End(S). We shall prove that C is equivalent to D = Mods.
Obviously, V = {eaS |, is a generating family of D consisting of small pro-
jectives. Since Homc(Ux, U,) = e Homc(U, U)er = e,Se, = Homs(e,S,
e.S) (A u€ A), it is easy to see that Endc(U) = Endp(V). Furthermore,
by Proposition 2.6, C is equivalent to Modgna ) and D is equivalent to
Modgna,v;. In conclusion, C is equivalent to D.

Remark. Let C be a cocomplete abelian category, and S = | U,, (%,
mils a split direct-inverse system in C over a directed set A. Put U =
li_r)n U, and consider the family |exl, of idempotents in Homc(U, U) defined

just before Proposition 2.8. We define a subfunctor Fs of Home(U, —) : C
— Ab as the direct limit of a direct system of subfunctors | Homc(U, —Jeals,
i.e. F5(C) = ALEJAHomC( U. C)es(C e C). By the same argument of Lemma

2.5, we can prove the following :

(1) Fs is faithful if and only if U is a generator of C.

(2) Fs is exact if and only if U, is projective in C for everv A€ A.

(3) Fs preserves coproducts if and only if U, is small in C for every
Ae A

Moreover, if Fs is exact and preserves coproducts then we can prove
Fs(U) = End(S) as rings.

Using these facts, we readily obtain the if part of Proposition 2.8.

3. Subprogenerators in a full subcategory of a module category. In
this section, we shall consider subprogenerators of a closed subcategory of
Mr. Throughout this section, C will represent a closed subcategory of M,
U an object of C, and F' a subfunctor of Homg(U, —): C - Ab. We put
S = F(U). For any right S-module M, there exists a canonical epimorphism
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U » M @ Uz, and so M (? Ue C. We define a natural homomorphism
7(C): F(C) @ Uz — C for CEC by n(C)f®u) = flu). First, we

prove the following

Lemma 3.1. If »(C) is an epimorphism for every C € C, then, for
any S-submodule M of F(C) (C € C), the map n: M @ Ur » Cg defined by

(f®u) = flu) is a monomorphism.

n
Proof. Let 2_:1f5 Qu:€Kernp (€M, u,c U). We consider the
n
direct sum U™ with projections m. Put K =Ker 2 fim, and ¢: K = U" the
i=1
inclusion map. Since (u,...,u,) € K and n(K) is an epimorphism, there

m
exist gi1,....gn € F(K) and v,,..., vm € U such that Zlgj(vj) = (Ury...,Un).
J=

Noting mig; € S, we have éﬁ@ui = éf,-@ mz(}égj(vj)) =j§ ( éﬂm)zgj
® Vv; = 0.

Proposition 3.2. The following are equivalent :
1) Fis faithful.

2} Uis a generator of C and U = SU.

3) n(C) is an isomorphism for every C € C.

Proof. 1) <> 2). This is obvious by the equivalence 1) <= 3) in
Lemma 2.2.

3) = 2). Trivial.

2) = 3). Let C be an arbitrary object of C, and ¢ an arbitrary ele-
ment of C. Since U is a generator of C, there exist f£,,...,fn € Homx(U, C)

n
and u,,...,un € U such that ¢ = ;fi(ui)' Since U = SU, each u; is writen
as 2 s;uy for some s;; €S and u;; € U, Then ¢ = n(C)(_Zj'. f,-sl-,-®u;,-).
J L.
Therefore, 7{C) is an epimorphism and hence an isomorphism by Lemma

3.1.

Corollary 3.3. Suppose that F is faithful.
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(1) Fis full.
(2) If S is right s-unital then sU is s-flat.

Progf. (1) Let ¢ be an arbitrary element of Homy(F(C), F(D))
(C.DeC). We put f=n(D)(¢®1,.)p(C)""' € Homg(C, D). Then, for
any g € F(C) and any u € U. we have fg(u) = fp(C)(g®u) = p(D)} (¢ ®
1.)(g ®u) = ¢(g)(u), which shows F(f) = ¢. Thus F is full.

(2) Noting that p(U): S @ Ur — Uy is an isomorphism, the assertion

is immediate from Lemma 3.1 and Proposition 1.11.

Proposition 3.4. Suppose that F is exact and S is a right A-s-unital
ring for some A € S. Then F preserves direct sums if and only if a(U ) is
finitely generated for every a € A.

Proof. First. suppose that a{U) is finitely generated for every a € A.
Let {Cal4 be an arbitrary family of objects of C. and f an arbitrary element

of F(AEBi CA). By Lemma 2.1 and Proposition 1.8, we can choose a € A4

with f = fa. Since a(U); is finitely generated, so is f{U )y = fa(U )¢, and
therefore f(U') is contained in some finite direct sum of C,’s. Hence, by
Lemma 2.3, F preserves direct sums. Conversely, suppose that F preserves
direct sums. Let a be an arbitrary element of A, and define @ € F(a(U)) by
a(u) = a(u). There exists an epimorphism f: Veﬂam | v)r = a(U)g, where

| v) is a submodule of U, generated by v. Then a = fg for some g€

F( & |v)). By Lemma 2.3, g(U) is contained in a suitable finite direct

ve atn

sum V = iEE | vy) (v; € a(U)). Hence, a(U) = fg(U) € f(V), and therefore
a(U) = f(V). Thus a(U )y is finitely generated.

We are now in a position to characterize a subprogenerator of C.

Theorem 3.5. Let C be a closed subcategory of Ma, U an object of C,
and F a faithful subfunctor of Homg(U, —): C — Ab. Put S = F(U). Then
the following are equivalent :

1) (U, F) is a subprogenerator of C.

2) S is a right s-unital ring, and the natural homomorphism 6(M) :
Mg - F(M@ U)s for M & Mods defined by 8(M)m)(u) = m®u is an
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isomorphism.
3) F(C) € Mods for all C€C, and M Q U = 0 implies M = 0 for

M € Mod;s.

Proof. 2)=>1) and 3). Let C be an arbitrary object of C. Since
F(C) @F(U) @ U, = F(C) @ Uy = Cy by Proposition 3.2, we obtain
F(C)s = F(F(C) @ S @ U)s, which is isomorphic to F(C) @ Ss, by

assumption. Hence, F(C) € Mods. Thus, F: C » Mods and — @ U:

Mods — C are equivalences.

1) = 2). By Lemma 2.1, S is right s-unital, It is easy to see that
F(p(U))6(S) = 15. and therefore #(S) is an isomorphism. Now, the
functor F(— @ U): Mod; » Mod; is right exact and preserves direct

sums. Hence. 6 is a natural equivalence by [2, Theorem 2.6].

3) = 2). By Corollary 3.3, (U is s-flat, and hence #(M) is a mono-
morphism for any M € Mod;. Let M be an arbitrary object of Mods. and f:
F(M @ U)s = N the cokernel of 8(M). Then, we have an exact sequence

M
0—>M<§)URMF(M@U)@UR&N@UR—W.

On the other hand, it is easily seen that n(M @ UXM)®1,) = lugu,and
so (M) ® 1, is an isomorphism. This implies N@ U=0. By assumption,
N =0, and hence 8(M) is an isomorphism.

The rest of this section, we assume that R is a right s-unital ring and
C = Mod,. We put U* = F(R). and define an R-R-homomorphism ( , ) :
U* @ U- Rby (f. u) = f(u) and an S-S-homomorphism|[ . ]: U@ U* -»

S by [u, f] = u(f. —). Then {sUx. (U (. ). [ . ]l is a Morita context.

Canonically, R and S are regarded as subrings of the generalized matrix

ring T = (S

U* R)' For every right T-module N, we define homomorphisms

®:(N) : NRx —» Homs(U*. N4 by &(N)(n)(f) = n(? g) (n€ NR. f€ U*)

and TA(N) : NSs — Homs(U. N)s by Wr(N)(n)(x) = n(g (‘)‘) (neNS. ue
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U). In what follows, we shall give conditions, in terms of the Morita con-
text | sUr. 2U¥, ( . ). [ . ]! defined above. for F to be faithful or to be exact
and preserve direct sums.

Lemma 3.6. Lei N be a right T-module. If NR (resp. NS) is (U*, U)-
s-unital (resp. [U, U¥]-s-unital) then ®:(N) (resp. U(N)) is a monomorphism
and its image is Homs(U*, N)(U*, U) (resp. Homg(U, N)[U, U*]) ; moreover,

Sfor any S-submodule (resp. R-submodule) N' of N containing N ((z]* g) (resp.

N(g (I)])) @(N) (resp. Ur(N)) gives an isomorphism NR; = Homy (U™,

NYU*, U) (resp. NS5 —> Homd(U. N)[U. U*)).
Proof. By the definition of ®(N), Ker ¢(N) = (Ker &, (N))(U*, U)
= (Ker ®-~(N))(0 O)(O U) = 0. Clearly, Im ®;(N) is contained in
! U* 0/\0 0 ’ 77 T
Homs(U*, N)(U*, U). Conversely, if ¢ € Homs(U*. N) then
o(f. u)(g) = ((f. u)g) = ¢(flu. g]) = ¢(f)[u. g]

= s[5 5)(2 5) = o (e[S ¢))o) e v i ue ),

This shows that Homs(U*, NS )(U*, U) C Im ®(N). The rest of the proof

is clear.

Proposition 3.7. The following are equivalent :

1) Fis faithful.

2) (., ) is an isomorphism.

3) (i) The natural homomorphism a(M): M@ Uz = Homs(U* M )R,

Jor M € M defined by a(M )(m ® u) = mlu, —] is an isomorphism.
(ii) RU* is faithful and R is regarded as a left ideal of End(U¥) via

the canonical ring homomorphism.
Proof. 1)=>2). (,)=7(R) is an isomorphism by Proposition 3.2.
2) = 1). Canonically, we obtain an epimorphism U} —» U* @ Ux =

Rz, and so U is a generator of Modz. Also, U= U(U*, U) = [U, U*]U C
SU. and hence U = SU. Thus. by Proposition 3.2, F is faithful.
2)=>3). (i) Let M be an arbitrary right S-module, and consider
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MM@U

the right T-module N = (
0 0

). By Lemma 3.6, ®{N) gives an iso-

morphism M @ Us = Homs(U* M )Ry, which is equal to (M) by definition.

0
U*
3.6, @.(N) gives a monomorphism R — End(U¥) which is the canonical ring

(ii) Pu N = < %), which is a right ideal of T. Then, by Lemma

homomorphism determined by the R-module structure of ;U¥, and Im $,(N) is
a left ideal of End(U¥).
3) = 2). From the condition (ii), the canonical ring homomorphism

R - End(U¥) gives a ring isomorphism A: R = End(U¥)R. Obviously,
AN, ) =ea(U*). Thus( , ) is an isomorphism.

Corollary 3.8. Suppose that F is faithful.

(1) Homs(U*, —)R:Ms — Mod; is exact and preserves direct sums.

(2) sUis flat.

(3) The S-R-homomorphism a: U — Homs(U*, S )R defined by a(u) =
[u, —] is an isomorphism.

Proof. (1) and (2) are obvious from Proposition 3.7.3).
(3) Obviously, N = (3 (I)J) is a right ideal of T and &(N)(u) =
a(u) (w€ U). By Proposition 3.7, (U*, U) = R. This implies that « is
an isomorphism, by Lemma 3.6.

Lemma 3.9. If S is a right A-s-unital ring for some A C S then the
following are equivaleni :

1) Fis exact.

2) F(C) € Mods for all C € C, and for any a € A there exists a fam-
ily | vala of elements of a(U) and a family | fils of homomorphisms in U* such
that, for each u € U, a(u) is a finite sum a(u) = A;/lv;\f;\(u), where fi{u) =

'0 for almost all A € A.

3) F = HomiU, —)8S, and for any a € A there exists a family {vil,
of elements of a(U) and a family | g) 4 of homomorphisms in Homx(a(U), R)
such that, for each v € a(U), a(v) is a finite sum a(v) = AéivAgA(v), where

gA(v) = 0 for almost all A€ A.
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Proof. 1)=>2). By Lemma 2.1, F(C) € Mod;s for all C € C. Next,
suppose that a € A and |v,}, is a family of generators of a(U/)s. Denote by
m the A-th projection of R*™, and define an epimorphism g : R% —» a(U), by
glx) = A;ﬂv,\ mlx) and @ € F(a(U)) by a(u) = a(u). Then, by assumption,

there exists f& F(R™) with @ = gf. One will easily see that {v,|, and
| mJS 14+ have the property requested.

2) => 3). By the proof of Lemma 2.1, we fave F = Homu(U, —)S.
Given a € A, we choose |va}, and {fil4 as in 2). Then, the family { g}, of
restrictions of f, to a(U) satisfies the condition requested.

3) = 1). Obviously, F is left exact. Let g: Mz - Ny be an epimor-
phism of Mod;, and f an arbitrary element of F(N). By Proposition 1.8,
we can choose a € A with f = fa. For this a, there exist families {v,|, and
{gala satisfying the condition in 3). Since g is an epimorphism, there exists
ma € M such that g(m,) = f(va) for every A€ A. We define a homomorphism
h: Up = Mz by h(u) = Aéim,\g,\a(u). Then, ha € F(M) and gha(u) =

Agig(m,\)gkaz(u) = f(A?E:AVAg,\az(u)) = fa*(u) = f(u) (u € U). Therefore,
we obtain F(g)(ha) = f, which shows that F(g) is an epimorphism.

In virtue of Proposition 1.12, as a special case of Lemma 3.9, we
readily obtain

Corollary 3.10. If S is a right s*unital ring then F is exact if and only
if F = Homi(U, —)S and e(U)x is s-projective for every idempotent e of S.

Proposition 3.11. The following are equivalent :

1) F is exact and preserves direct sums.

2) [ . ]is an isomorphism, and F(M) € Mods for every M € Mod;.
3) F=— @ U* as functors from Mody to Ms.

Proof. 3)=>1). Trivial.

1) =>2). Let s be an arbitrary element of S. By Lemma 2.1 and
Proposition 3.4, s(U), is finitely generated. Let |vi,...,va] be a set of
generators of s(U)z. As was shown in the proof of 1) = 2) in Lemma 3.9,

there exists a family | fi....,fn} of elements of U* such that s(u) = i] viflu)

(u € U). Therefore s = _)_El[v,-, fi], and hence [ , ] is an epimorphism.
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Now, we put § = , ] and suppose x € Ker 4. By Lemma 2.1, we can
choose s € S with x = xs. Since 6 is an epimorphism, there exists y €
U (? U* such that #(y) = s. Then, by the property of Morita context,

x=x6(y) = §(x)y = 0. Thus # is an isomorphism.
2) = 3). For any M € Mod;, we consider the right T-module N =
(M (;& Uu* M
0 0
M ® Ut = Hom(U, M)Ss = F(M).

). Then, by Lemma 3.6, ¥;(N) gives a natural isomorphism

Proposition 3.7 together with Proposition 3.11 gives the following

Theorem 3.12. Let R be a right s-unital ring, Ur an s-unital module,
and F a subfunctor of HomgU, —) : Modx » Ab. Then, (U, F) is a sub-
progenerator of Mody if and only if F(U) is a right s-unital ring, F =
Homx(U, —)F(U), and both ( , ) and [ . ] are isomorphisms.

4. Invertible modules. Let R and S be rings with canonical isomor-
phisms R@R-ER and ps: S@S = S, where ux:x®y P xy.
An S-R-bimodule U is defined to be invertible if sS @ U@ Ry = sUz and
there exists an R-S-bimodule V such that RV@ Ur = iR, SU@ Vs = sSs,
and xR @ V@ Ss = xVs. When this is the case, Vs is unique up to iso-

morphism and denoted by U~'. Now, suppose that an S-R-bimodule U and an
R-S-bimodule V satisfy RV@ Ui = xRz and SU@ Vs = sSs. Then sS @ Ux

= SU@ V@ U = SU@ Rz, and it is easy to see that SU@ Ry is invert-
ible and RV@ Ss = (U@ R)™'. Let My (resp. :N) be the full subcategory

of M (resp. M) whose objects are right (resp. left) R-modules M such that
M @ Ry = Mz (resp. rR (%M =~ :M). Note that if there is an isomorphism

o: M (% Ry = M, (resp. ¢: R @M =, tM) then the canonical homomor-
phism z: M @ Ry > Mg (resp. u: R @ M - ;M) is an isomorphism. In

fact, the following diagram is commutative :
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lm®,llk

M@R@R—)M@R
@1, |= =g
M@R M
U

Lemma 4.1. Let R and S be rings with canonical isomorphisms upg:
R @ R S Rand us: S @ S = S. If an S-R-bimodule U is invertible then
the functors — @ U: Rs > Nyg and U@ — : M > N are equivalences.

Proof. It is easy to see that the functor — @ U': Ny > N gives the
inverse of — @ U.

From now on, R and S will represent right s-unital rings. In this case,
N coincides with Mody and an S-R-bimodule U is invertible if and only if
U = UR and there exists an R-S-bimodule V such that RV@ Up = Rz and

SU@ Vs = SSS-

Theorem 4.2. Let R and S be right s-unital rings. Let U be an S-R-
bimodule, and U* = Homu(U, R)S. Then the following are equivalent :

1) Uz is invertible.

2) (i) sUis faithful and S is regarded as a left ideal of End(U,) via
the canonical ring homomorphism.

(ii) (U, Homg(U, —)S) is a subprogenerator of Mod;.

3) (i) sUis faithful and S is regarded as a left ideal of End(Uy) via
the canonical ring homomorphism.

(ii) The functors Homg(U, —)S: Mody —» Mods and Homs(U*, —)R:
Mods — Mod; are both faithful.

Proof. 3) = 2). Since Hom{U, —)S is faithful, R is regarded as
a left ideal of End(U¥) (Proposition 3.7) and sUz = sHoms(U*, S )Ry (Cor-
ollary 3.8.(3)). These facts and the hypothesis that Homg(U*, —)R is
faithful enable us to apply Corollary 3.8 to U¥ instead of Uz. Then Homg(U,
—)S is exact and preserves direct sums. Hence (U, Homg(U, —)S) is
a subprogenerator.

2) = 1). This is obvious from Theorem 3.12.
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1)=3). (i) If s S annihilates U then sS = s(U@ V) =0, and

hence s = 0. Therefore (U is faithful and we may assume that S is a sub-

ring of End(Uy). Let ¢ be an arbitrary element of End(U,), and x: S @ U

— U the canonical isomorphism. Since the map @ » a ® 1, from End(Sy)
to End(S @ Uy) is an isomorphism by Lemma 4.1, there exists a € End(S5)

with £ '¢u= a® 1y, namely ¢ = p{a® 1) p~". This implies that, for any
s€ S, ¢s = a(s) €S. Thus S is a left ideal of End(Up).

(ii) Since UY™ —» U™! @ Us = R:, U is a generator of Modz, and
U= SUfromU=S @ U. Therefore, Homg(U, —)S is faithful by Propo-
sition 3.2. By Proposition 3.7, we have U* @ Ur = rR&, and so U¥ =
U* @ S = U* @ U@ Us' =R @ Us' = zUs'. Hence U¥ is invert-

ible. Now, the argument employed in proving that Homg{U, —)S is faithful
enables us to see that HomJ{(U*, —)R is faithful.

Theorem 4.2 says that an invertible S-R-bimodule U is nothing but
a subprogenerator of Mod; and Homx(U, R)S = U"".

If Mod; and Mods are equivalent then we say that R and S are right
Morita equivalent. Combining Theorems 2.4, 3.12, and 4.2, we obtain
at once

Corollary 4.3. The following are equivaleni :

1) R and S are right Morita equivalent.

2) There exists an invertible S-R-bimodule.

3) There exists a Morita context | U, Vs, ( , ), [ , ]| such that both
(,)and[ ., ] are isomorphisms.

4) Modg has a subprogenerator (U, F) with F(U) = S as rings.

Next, we shall show that if (Ui is invertible then sSs and Ry have
a closed relationship to sUs.

Proposition 4.4. Suppose that an S-R-bimodule U is invertible.

(1) There exists a ring isomorphism ~ : End(sU) = End(:R) with
$(ur) = ud(r) (€ End(sU), w€ U, r € R), and End(sUs) = End(zRy).

(2) There exists uniquely a ring isomorphism " End(Uy) = End(Sy)
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with ¢(su) = ¢(s)u(p€ End(Up),u€ U, s €S), and En/(?UR) = End(sS5s).
(3) If e is an idempotent of End(sUz) then bo?h e(R) and &(S) are
right s-unital rings and the &(S )-e(R )-bimodule e(U) is invertible.

Proof. By Theorems 4.2 and 3.12, we have a Morita context | sUx,
Us', (, ), [, 1t suchthat both( . )and [ , ] are isomorphisms.

(1) By Lemma 4.1, the mapping ¢ — 1, ® ¢ from End(U) to
End(U™! @U) is a ring isomorphism. Let ¢=( . J(1;m® @)( , )"

Then ~is a ring isomorphism from End(sU) to End(zR) and &((v, u)) =
(v, p(w))(u€ U,ve U™"). This implies that ug(r) = ¢(ur) (uc U, rER).

Clearly, En?l?s/UR) C End(zRz). Let ¢ be an arbitrary element of
End(zRz). Then there is ¢ € End(sU) with § = ¢. For any u € U, choose
a € R with u = ua. Then, for any r € R, ¢(ur) = ¢luar) = u¢glar) =
u{a)r = ¢lua)r = ¢(u)r, and hence ¢ € End( Ux).

(2) Using the same method as in (1), we can prove the assertion except
the uniqueness. The uniqueness follows from the fact that (U is faithful
(Theorem 4.2).

(3) Since ¢ is an idempotent of End(zR;), é(R) is a direct summand of
R as ideal, and hence é(R) is a right s-unital ring. Similarly, &(S) is
a direct summand of S as ideal. From (1) and (2), we have e(U) = U&(R)
= &(S)U. Now, considering zUs"' instead of sUz in (2), we obtain a ring

isomorphism By End(RUsY) = End(zR:) such that r¢(v) = g(r)v (g€
End(RUs'), r€ R, ve U™'). Choose f€ End(zUs') with f =¢&. Then
e(U) Ql%)lf(U") = e(U) @f(U“). Since se(U)r is a direct summand of

sUg and s AU")s is a direct summand of zUs', we have se(U) @f(U")s ~
sle(U), AU M]s = e(S). Similarly zf(U™") % e(U)r = z8(R)s. This
completes the proof.

Remark. If U is faithful then a ring isomorphism ~ in Proposition
4.4.(1) is uniquely determined, and it is easy to see that ¢(r)vs = rvé(s)
(¢ End(sUp), veU ', reR, s€8S).

For any S-R-bimodule M, we denote by L(sM;) the lattice of S-R-sub-
modules N of M with N = SNR.

Proposition 4.5. Suppose that an S-R-bimodule U is invertible.
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(1) There exists uniquely a lattice isomorphism ~: L(sUj) = L(zRz)

NS

with W = UW (W € L(sUy)), and L(sUs) = L(sR5).

(2) There exists uniquely a lattice isomorphism ~: L(,U) = L(,Ss)
with W = WU (W € L(;Uy), and L(sUs) = L(sS5).

(3) WU~ = U'W(W € L(sUy)).

(4) For any W € L(sUy), the S/W-R/W-bimodule U/W is invertible.

Proof. By Theorems 4.2 and 3.12, we have a Morita context .# =
{sUg. aUs", (', ), [, ]l such that both ( , ) and [ , ] are isomorphisms.

(1) For W & L(sUy), we put W = (U™, W). Then, UW = U(U~" W)
=[U U"'JW =W, and so RW = (U™, UYW = (U™, UW) = (U™, W)
= ﬁ", namely we L(zRz). It is easy to see that I » UI is the inverse
of 7. Therefore, ™ is a lattice isomorphism. The rest of the proof is
obvious.

(2) For W e L(;Uy), we put W = [W, U™']. Then the proof of (2)
proceeds in the same way as in (1).

(3) For any W € L(Us), we have WU = (U™, W)U = U [W,
Ul =U"'W.

(4) Let W be an arbitrary element of L(sUy). Put R = R/W, § =
S/W, U= U/W, and V = U~'/WU"'. Then .# induces a Morita context
{sUz #Vs. (. ). [, ]I, where ( , ) and [ . ] are epimorphisms. Then, by

the same argument as in the proof of 1) => 2) of Proposition 3.11, both ( , )

and [ , ] are isomorphisms. This completes the proof.

The next is immediate from Propositions 4.4 and 4.5.

Corollary 4.6. Suppose that R and S are right Morita equivalent.

(1) There exists a ring isomorphism ~: End(zRp) = End(sSs) such
that, for each idempotent e of End(zRz), e(R) and &(S) are right Morita

equivalent.

(2) There exists a lattice isomf)rphism ~: L(gRp) 5 L(sSs) such
that, for each I € L(yRz), R/I and S/I are right Morita equivalent.

If R has an idempotent e with R = ReR then eR is a small (finitely
generated) projective generator of Mods, and hence R is right Morita equiv-
alent to eRe (see, e.g. Proposition 2.6). Concerning the converse of this
fact, we have the following
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Proposition 4.7. Let A be a subset of R. If R is a right A-s-unital
ring and R is right Morita equivaleni to a ring S with identity element, then
there exists a € A with R = RaR.

Proof. Since S is a small projective generator of Mods, Mod: also
has a small projective generator Uz. By Proposition 3.4, Ui has a finite set
of generators {ui,...,un}. Then there exists a € A with u; = u,a for all i,

by Corollary 1.9. Therefore U = UaR. Since. Rz = sHomg(U,R) & Ux

Endiy;)

by Proposition 3.7, we get R = RaR.

5. Quotient rings of right s-unital rings. Recently, by making use of
Gabriel’s method, M. Parvathi and P. R. Adhikari [7] constructed quotient
rings of rings with local units, and proved that quotient rings of two Morita
equivalent rings with local units are again Morita equivalent. We shall
generalize this result to right s-unital rings. In this section too, R and
S will represent right s-unital rings. For any ring T and any subset A C T,
we write A, for the set of all left multiplications effected by elements in A.

A non-empty set § of right ideals of R is called a right Gabriel topology
on R, if the following conditions are satisfied :

(1) fIecFandrcRthenr 'I=|acR|racllc§.

(2) If I is a right ideal and there exists J € § such that r ' € § for
every r €J, then I € §.

It is clear that any intersection of right Gabriel topologies is a right
Gabriel topology, and so the right Gabriel topologies on R form a complete
lattice Top(R). The proof of the next lemma is quite similar to that of the
same given in [5] when R has an identity element.

Lemma 5.1. Ewvery right Gabriel topology & on R determines a local-
izing subcategory L(F) of Modr consisting of all s-unital right R-modules
M such that for each u € M there exists I €F with ul = 0. Conversely,
every localizing subcategory £ of Mody determines a right Gabriel topology
T(R) = |I: € Rx| R/I€8|. Moreover, TL(F) = &, LT(8) = &, and all
the localizing subcategories of Mody form a complete lattice Loc(R ) which is
isomorphic to Top(R ).

Now, we shall construct a quotient ring of an s-unital ring R with
respect to a right Gabriel topology ¥ on R. By Lemma 5.1, § determines
a localizing subcategory € of Modz. Put C = Mod:/&, the quotient catego-
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ry, and let Q: Mody — C be the canonical functor. Then Q(R,) is a subring
of Home(Q(R), Q(R)). Define Ry = Q(R.)Homc(Q(R), Q(R))Q(R.). We
shall call Ry the quotient ring of R with respect to . If R is a right (resp.
left) A-s-unital ring for a subset A of R, then R; is a right (resp. left)
Q(A.)-s-unital ring.

We are now in a position to generalize the main result of [7] as fol-
lows :

Theorem 5.2. If R and S are right Morita equivalent, then there exists

a lattice isomorphism ~: Top(R) = Top(S) such that R; and Si are right
Morita equivalent (§ € Top(R)).

Proof. Let G: Mods » Mod; be an equivalence. Then G induces
a lattice isomorphism Loc(S) = Loc(R). Combining this with Lemma

5.1, we obtain a lattice isomorphism ~: Top(R) — Top(S). Now, let F
be a right Gabriel topology on R, and € (resp. &) the localizing subcategory
corresponding to § (resp. &) under the correspondence given in Lemma 5.1.
Consider the quotient categories C = Mods/Q with the canonical functor P :
Mod; » C, and D = Mods/& with the canonical functor Q: Mods — D.
Then, G() = 2, and there exists uniquely a functor G: D - C such that

PG = GQ:

G
Mods; — Mod;

| |r

G
As is easily seen, G is an equivalence, and therefore G induces a ring

isomorphism Homp(Q(S ), Q(S)) = Homc(GQ(S), GQ(S)). Hence, we
have Sz = G(S3), and also G(S5) = GQ(S,)Homc(GQ(S ), GQ(S))GQ(S,)
= PG(S.)Homc(PG(S ), PG(S))PG(S.). Put U = PG(S,)Homc(P(R),
PG(S))P(R,) and V = P(R,)Homc(PG(S), P(R))PG(S,). Then U is
a G(Sz)-Rz-bimodule with U = UR;. and V is an Ry-G(Sz)-bimodule
with V = VG(S;). As was shown in the proof of Theorem 2.4, (G(S),
Homg{G(S ), —)G(S.)) is a subprogenerator of Modsz. By Proposition 3.7.2)
and Lemma 1.3, R, = Homx(G(S), R)G(S,)Homyg(R, G(S))R., and so
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P(R,) C Homc(PG(S), P(R))PG(S.)Homc(P(R ). PG(S ))P(R.). Then we
can see that VU = Ry, and similarly UV = G(S3). Hence, we have a Morita
context | zaspUny #a Vasa. ( . ) [ . ]l such that ( , ) and [, ] are epimor-
phisms. As noted in the proof of Proposition 4.5.(4), ( , ) and [, ] are
isomorphisms. Thus Ry and G(Sz) are right Morita equivalent (Corollary
4.3). This completes the proof.
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