A RING TOPOLOGY BASED ON SUBMODULES OVER AN ASANO ORDER OF A RING

Dedicated to Prof. Hisao Tominaga on his 60th birthday

KENTARO MURATA

- 1. Introduction. Let R be a ring with unity quantity and $\mathbb Q$ a regular (bounded) Asano order of R. Throughout the term $\mathbb Q$ -submodule means a two-sided $\mathbb Q$ -submodule of R which contains at least one regular element of R. A ring topology $\mathbb T$ on R is called here a ring $\mathbb Q$ -topology if a set of open $\mathbb Q$ -submodules of R forms a fundamental system of nbd (neighborhood) of zero for $\mathbb T$. The aim of this short note is to describe explicitly the weakest ring $\mathbb Q$ -topology for which any given $\mathbb Q$ -submodule is open, and utilize it for characterization of some special ring topologies.
- 2. Factorization of \mathfrak{D} -Submodules. Let $\mathfrak{G} = \{\mathfrak{a}, \mathfrak{b}, ...\}$ be the set of all two-sided \mathfrak{D} -ideals in R, and $\mathfrak{P} = \{\mathfrak{p}, \mathfrak{q}, ...\}$ the set of all prime ideals of \mathfrak{D} . Then since \mathfrak{D} is Asano, every \mathfrak{a} in \mathfrak{G} has a unique factorization in the form

$$\mathfrak{a}=\prod_{\mathfrak{p}\in\mathfrak{P}}\mathfrak{p}^{\nu(\mathfrak{p},\mathfrak{a})}$$

where $\nu(\mathfrak{p}, \mathfrak{a}) \in \mathbf{Z}$ (the integers) and $\nu(\mathfrak{p}, \mathfrak{a}) = 0$ for almost all $\mathfrak{p} \in \mathfrak{P}$ ([1], [3]). Let M be an \mathfrak{D} -submodule of R. We define

$$\nu(\mathfrak{p}, M) := \inf \{ \nu(\mathfrak{p}, \mathfrak{a}) ; \mathfrak{a} \subseteq M, \mathfrak{a} \in \mathfrak{B} \},$$

and prepare the following notations:

$$\begin{aligned} \mathbf{P}_{+}(M) &:= \{ \mathfrak{p} \in \mathfrak{P} \; ; \; \nu(\mathfrak{p}, M) > 0 \} \\ \mathbf{P}_{-}(M) &:= \{ \mathfrak{p} \in \mathfrak{P} \; ; \; 0 > \nu(\mathfrak{p}, M) > -\infty \} \\ \mathbf{P}_{-\infty}(M) &:= \{ \mathfrak{p} \in \mathfrak{P} \; ; \; \nu(\mathfrak{p}, M) = -\infty \} \\ \mathbf{P}(M) &:= \mathfrak{P} \setminus \mathbf{P}_{-\infty}(M). \end{aligned}$$

Then we have a unique factorization of M as follows ([5], [6]):

$$M = \prod_{\mathfrak{p} \in \mathrm{P}_+(M)} \mathfrak{p}^{\nu(\mathfrak{p},M)} \cdot \sum_{\mathfrak{p} \in \mathrm{P}_-(M)} \mathfrak{p}^{\nu(\mathfrak{p},M)} \cdot \mathfrak{O}_{\mathrm{P}(M)}$$

where $\mathfrak{O}_{P(M)}$ is the P(M)-component of $\mathfrak{O}([1])$. Conversely, let A, B and C be any three subsets of \mathfrak{P} such that they are mutually disjoint and A is

finite. Next we choose an arbitrary positive integer $\alpha(\mathfrak{p})$ for each $\mathfrak{p} \in A$ (when A is not vacuous), and an arbitrary negative integer $\beta(\mathfrak{p})$ for each $\mathfrak{p} \in B$ (when B is not vacuous). Then

$$N := \prod\limits_{\mathfrak{p} \in A} \mathfrak{p}^{lpha(\mathfrak{p})} \cdot \sum\limits_{\mathfrak{p} \in B} \mathfrak{p}^{oldsymbol{eta(\mathfrak{p})}} \cdot \mathfrak{O}_{\mathfrak{p} \setminus C}$$

is an \mathfrak{D} -submodule of R, and we have $A = P_+(N)$, $B = P_-(N)$, $C = P_-(N)$; $\alpha(\mathfrak{p}) = \nu(\mathfrak{p}, N)$ for $\mathfrak{p} \in A$ and $\beta(\mathfrak{p}) = \nu(\mathfrak{p}, N)$ for $\mathfrak{p} \in B$ ([6]).

For a real number r, s(r) will denote the integer n such that $r \le n < r+1$. We now consider an \mathfrak{D} -submodule

$$(M; n) := \sum_{\mathbf{p} \in \mathbf{P}_{-}(M)} \mathfrak{p}^{s(2-n \nu(\mathbf{p},M))} \cdot \mathfrak{O}_{\mathbf{P}(M)}$$

for any \mathbb{C} -submodule M and any positive integer n. Then evidently (M ; n) contains $\mathbb{C}_{P(M)}$ and 1) $(M ; n) \supseteq (M ; n+1)$, 2) $(M ; n) \supseteq (M ; n+1) \cdot (M ; n+1)$ and 3) ((M ; m) ; n) = (M ; m+n) for $m, n \in \mathbb{Z}_{\circ}$ (the non-negative integers).

- 3. A Ring \mathfrak{D} -Topology. Let \mathfrak{N} be a set of \mathfrak{D} -submodules of R with the following three conditions:
 - (1°) $M_1, M_2 \in \mathfrak{N} \Rightarrow \exists N \in \mathfrak{N} \text{ such that } N \subseteq M_1 \cap M_2.$
 - (2°) $\alpha \in \mathfrak{G}, M \in \mathfrak{N} \Rightarrow \exists N \in \mathfrak{N} \text{ such that } \alpha N \subseteq M.$
 - (3°) $M \in \mathfrak{N} \Rightarrow \exists N \in \mathfrak{N} \text{ such that } NN \subseteq M.$

Since regularity (boundedness) is assumed for \mathbb{O} , by using SATZ 1.5 in [1] we can see that the condition (2°) is equivalent to the following each condition:

- (2_1) $a \in R$, $M \in \Re \Rightarrow \exists N \in \Re$ such that $aN \subseteq M$.
- (2_r) $a \in R$, $M \in \mathfrak{N} \Rightarrow \exists N \in \mathfrak{N}$ such that $Na \subseteq M$.

Thus \mathfrak{N} is a fundamental system of *nbd* of zero for a ring topology on R ([4], [7]). $T(\mathfrak{N})$ will denote the topology determined by the above \mathfrak{N} .

Theorem. Let M be an \mathfrak{D} -submodule of R, and $\mathfrak{N}(M)$ the set of all \mathfrak{D} -submodules N's satisfying

- $(1) \quad \mathbf{P}(N) = \mathbf{P}(M),$
- (2) there is $n \in \mathbb{Z}_o$ such that $\nu(\mathfrak{p}, N) = s(2^{-n}\nu(\mathfrak{p}, M)) + 1$ for almost all $\mathfrak{p} \in P(M)$.

Then $\mathfrak{N}(M)$ has the three conditions (1°), (2°), (3°) and $\mathbf{T}(M) := \mathbf{T}(\mathfrak{N}(M))$ is the weakest ring \mathfrak{D} -topology among the set of all ring \mathfrak{D} -topologies on R, for which M is open.

We can show easily that an \mathfrak{D} -submodule N of R is a member of $\mathfrak{N}(M)$ if and only if N is representable as $N = \mathfrak{a} \cdot (M; n)$ for $\mathfrak{a} \in \mathfrak{G}$ and $n \in \mathbf{Z}_{\circ}$. In particular we have $M \in \mathfrak{N}(M)$ by the factorization of M in Section 2. Now let $N = \mathfrak{a} \cdot (M; n)$ and $N' = \mathfrak{b} \cdot (M; m)$ be any two members Suppose that $n \geq m$. Then we have (1) $(a \cap b) \cdot (M; n) \subseteq$ $a \cdot (M; n) \cap b \cdot (M; m) = N \cap N', (2) c(c^{-1}a \cdot (M; n)) = N \text{ for } c \text{ in } \mathfrak{B},$ and (3) $N = \mathfrak{a} \cdot (M; n) \supseteq (\mathfrak{a} \cap \mathfrak{D}) \cdot (M; n) \supseteq (\mathfrak{a} \cap \mathfrak{D}) \cdot (M; n+1) \cdot (\mathfrak{a} \cap \mathfrak{D})$ (M; n+1), since the multiplication of \mathfrak{D} -modules is commutative. Accordingly T(M) is a ring \mathfrak{D} -topology for which M is open. Next we let \mathfrak{N} be an arbitrary set of O-submodules which satisfies the conditions (1°), (2°), (3°) and M is open for $T(\mathfrak{N})$. Then we may assume that M is a member of \mathfrak{N} . Taking $N_n \in \mathfrak{N}$ such that $N_n^{2^n} \subseteq M$, we have $\nu(\mathfrak{p}, N_n) = 2^n \nu(\mathfrak{p}, N_n) \ge$ $\nu(\mathfrak{p}, M)$. Hence $\nu(\mathfrak{p}, N_n) \geq s(2^{-n}\nu(\mathfrak{p}, M)) + 1$ for all $\mathfrak{p} \in \mathfrak{P}$. This implies $N_n \subseteq (M; n)$. Take a member $\mathfrak{a} \cdot (M; n)$ of $\mathfrak{R}(M)$. Then choosing L in \mathfrak{N} with $\mathfrak{a}^{-1}L\subseteq N_n$ we obtain $L\subseteq\mathfrak{a}N_n\subseteq\mathfrak{a}\cdot(M:n)$. $\mathbf{T}(M)$ is therefore weaker than $T(\mathfrak{N})$ as desired.

- 4. Special Ring \mathfrak{L} -Topologies. (a) Let T be a ring topology on R. A subset X of R is bounded for T, if for any nbd U of zero there is an nbd V of zero such that $xv \in U$ and $vx \in U$ for every $x \in X$ and for every $v \in V$. T is called *locally bounded* if there is a bounded nbd of zero for T. Then we can prove that the following four conditions are equivalent.
 - 1) T(M) is locally bounded.
 - 2) (M; n) is the P(M)-component of \mathfrak{D} for some $n \in \mathbb{Z}_{\bullet}$.
 - 3) $T(M) = T(\mathfrak{O}_{P(M)}).$
 - 4) $\{\nu(\mathfrak{p}, M) : \mathfrak{p} \in \mathfrak{P}\}\ is\ bounded\ on\ P(M).$

Then we can prove the following

Statement 1. A ring \mathbb{O} -topology T on R is locally bounded if and only if $T = T(\mathbb{O}_P)$ for a subset P of \mathfrak{P} .

- (b) In this and next paragraphs we assume that $\mathfrak D$ is a Dedekind domain and R is the quotient field of $\mathfrak D$. Unity quantity of $\mathfrak D$ will be denoted by e. Now let $T(\mathfrak N)$ be a field $\mathfrak D$ -topology, that is, $\mathfrak N$ has the above conditions (1°), (2°), (3°) and
- (4°) $M \in \mathfrak{N} \Rightarrow \exists N \in \mathfrak{N} \text{ such that } (N+e)^{-1} \subseteq M+e$. Then we can prove that $\mathbf{T}(\mathfrak{O}_{\mathfrak{p}})$ is the \mathfrak{p} -adic topology for each $\mathfrak{p} \in \mathfrak{P}$, and generalize Theorem 3 in [2] as follows:

Statement 2. $T(\mathfrak{N})$ is a field \mathfrak{D} -topology on R if and only if $T(\mathfrak{N})$ is a supremum of a family of \mathfrak{p} -adic topologies.

(c) A ring topology **T** on a field is called a *V-topology*, if for any nbd U of zero $(U^c)^{-1}$ is bounded for **T**, where U^c is the complement of U in the field ([4]). Let $\mathbf{T}(\mathfrak{N})$ be a ring \mathfrak{D} -topology on R. Then we can show that $\mathbf{T}(\mathfrak{N})$ is a V-topology if and only if there is an ideal \mathfrak{a} such that $\mathfrak{a} \cdot (M^c)^{-1} \subseteq N$ for any two \mathfrak{D} -submodules M and N of R. Now let **T** be a non-trivial ring \mathfrak{D} -topology on R. If we suppose that **T** is a V-topology, then $\mathbf{T} = \mathbf{T}(\mathfrak{D}_{\mathfrak{p}})$ for some $\mathfrak{p} \in \mathfrak{P}$. For, there is a subset P of \mathfrak{P} such that $\mathbf{T} = \mathbf{T}(\mathfrak{D}_{\mathfrak{p}})$ by Statement 1. If P contains two different members \mathfrak{p} and \mathfrak{q} , then $\mathfrak{D}_{\mathfrak{p}} \cap \mathfrak{D}_{\mathfrak{q}} \subseteq \mathfrak{N}(\mathfrak{D}_{P})$. However for any ideal \mathfrak{a} we have $\mathfrak{a}((\mathfrak{D}_{\mathfrak{p}} \cap \mathfrak{D}_{\mathfrak{q}})^c)^{-1} \subseteq \mathfrak{D}_{\mathfrak{p}} \cap \mathfrak{D}_{\mathfrak{q}}$. This is a contradiction. Thus we obtain the following

Statement 3. A non-trivial ring \mathfrak{D} -topology T on R is a V-topology if and only if T is a \mathfrak{p} -adic topology for some $\mathfrak{p} \in \mathfrak{P}$.

References

- [1] K. ASANO: Zur Arithmetik in Schiefringen I, Osaka Math. J. 1 (1949), 98-134.
- [2] E. CORREL: Topologies on quotient fields, Duke Math. J. 35 (1968), 175-178.
- [3] N. JACOBSON: The Theory of Rings, Mathematical Surveys II, Amer. Math. Soc. (1943).
- [4] H. J. KOWALSKY und H. DÜRBAUM: Arithmetische Kennzeichnung von Körpertopologien, J. reine u. angew. Math. 191 (1953), 135-152.
- [5] K. MURATA: On submodules over an Asano order of a ring, Proc. Japan Acad. 50 (1974), 584-588.
- [6] K. MURATA: On lattice ideals in a conditionally complete lattice-ordered semigroup, Algebra Universalis 8 (1978), 111-121.
- [7] B. L. VAN DER WAERDEN: Algebra II (fünfte Auflage), Springer Verlag (1967).

DEPARTMENT OF ECONOMICS
TOKUYAMA UNIVERSITY
TOKUYAMA, 745 JAPAN

(Received February 17, 1986)