COZZENS DOMAINS ARE HEREDITARY

CARL FAITH

A ring R is said to be a right V-ring (after Villamayor) provided that it satisfies the equivalent conditions:

- (V.1) rad M = 0 for all M in mod-R.
- (V.2) Each right ideal is the intersection of maximal right ideals.
- (V.3) Each simple right R-module is injective.

For proof consult [3], p. 356 or [6].

Condition (V.3) was introduced by Kaplansky who showed that (V.3) in commutative R is equivalent to R von Neumann regular.

A generalized right Cozzens domain is a right Noetherian right V-domain R for which every indecomposable injective right R-module is either simple or else embeds in the right quotient field of R.

A module M of mod-R is a B-object (after Bass; see 18.3(b) of [5]) provided that every submodule $S \neq M$ is contained in a maximal submodule. A ring R is a right B-ring if every M in mod-R is a B-object (see [5], pp. 330 -331 and 155 for further background and related results).

In [1] Cozzens constructed V-domains not fields in providing a negative answer to Bass' question of whether or not a right B-ring with no infinite sets of orthogonal idempotents was necessarily right perfect, equivalently satisfied the d.c.c. on principal left ideals. (Bass proved that the converse held.)

The domain R constructed by Cozzens were right and left hereditary, and right and left Noetherian, in fact, they were principal right (left) ideal rings. Furthermore, R has a unique simple right R-module and a unique indecomposable injective right R-module, namely the right quotient field K of R.

We prove that any right Ore domain with these two properties is necessarily right hereditary. More generally, we have:

Theorem. Every generalized right Cozzens domain is hereditary.

Proof. The proof requires a result of [4] which states that a right Noetherian right V-ring is right hereditary provided that each indecomposable injective right R-module E is restricted semisimple, that is, E/S is semisimple, whence injective, for each submodule $S \neq 0$. Since K is the only non-simple indecomposable injective, we check K/M, for a submodule $M \neq 0$.

38 CARL FAITH

Now, by the Matlis' structure theory of injective modules over right Noetherian rings, the injective hul E(K/M) is a direct sum of nonzero indecomposable injectives

$$E(K/M) = \oplus E_t$$

where $0 \neq E_i = E(U_i/M)$ for some uniform submodule U_i/M of K/M. Now, there are just 2-possibilities for E_i , namely simple, or $E_i \approx K$. But if $E_i \approx K$, then U_i/M embeds in K, hence there is an K-morphism $f: U_i \to K$ with ker f = M. Since K is injective, then there exists a mapping $f^*: K \to K$ extending f. However, f is essential in f, so it follows that for any f and f is f in f with f is f in f in

$$f^*(u) = f^*(k)r = 0$$

whence $f^*(k) = 0$, proving that $f^* = 0$. But then, this implies that f = 0, whence $U_t = M$, contrary to the choice of U_t/M .

Thus, E_i is simple for all i, so E(K/M) is semisimple, and therefore so is K/M. This proves what we wanted.

Another proof can be given using the results of [6], and the calculations above.

We remark that there exist generalized Cozzens domains with more than one isomorphy class of simple injectives. (See [2] and [7].)

REFERENCES

- J. H. COZZENS: Homological properties of the ring of differential polynomials, Bull. Amer. Math. Soc. 76 (1970), 75-79.
- [2] J. H. COZZENS: Twisted group rings and a problem of Faith, Bull. Austral. Math. Soc. 19 (1973), 11-19.
- [3] C. FAITH: Algebra I: Rings, Modules, and Categories, Springer-Verlag, Berlin-Heidelberg-New York, 1973, corrected reprint 1981.
- [4] C. FAITH: On hereditary rings and Boyle's conjecture, Arch. der Math. 27 (1976), 113-119.
- [5] C. FAITH: Algebra II: Ring Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
- [6] G. O. MICHLER and O. E. VILLAMAYOR: On rings whose simple modules are injective, J. Algebra 25 (1973), 185-201.
- [7] B. L. OSOFSKY: On twisted polynomial rings, J. Algebra 18 (1971), 597-607.

DEPARTMENT OF MATHEMATICS
RUTGERS, THE STATE UNIVERSITY
MEW BRUNSWICK, NEW JERSEY 08540, U.S.A.

(Received March 15, 1985)