PRODUCTS OF GALOIS OBJECTS AND THE PICARD INVARIANT MAP

LINDSAY N. CHILDS

Throughout this paper, R is a commutative ring and H is a commutative, cocommutative Hopf R-algebra which is a finitely generated projective R-module with dual $H^* = \operatorname{Hom}_R(H, R)$. Let $\operatorname{Gal}(H)$ be the abelian group of R-algebra, H-module isomorphism classes of Galois H-objects, and $Pic(H^*)$ the group of H^* -module isomorphism classes of rank one projective H^* -modules. In [9], A. Nakajima studied the map η' from Gal(H) to $Pic(H^*)$ induced by viewing a Galois H-object as an H^* -module, and showed that if $H \cong H^*$ as H^* -modules, then the map η' is a homomorphism. In this note we show that the map η from Gal(H) to $Pic(H^*)$ defined by sending the class of S to the class of $S^* =$ $\operatorname{Hom}_R(S,R)$ is a homomorphism. This result is implicit from the cohomological description of Gal(H) found in [12] and [5], but here we give a direct proof. Nakajima's result is a special case of this result, as we show. We also give another proof of Nakajima's result along the lines of the proof of Garfinkel and Orzech [7] for H the group ring of a finite abelian group. In order to obtain these results, it is appropriate to show that various definitions of the product of Galois extensions in the group Gal(H) given by Chase [2], Beattie [1] and Nakajima [9], and, when $H^* = RG$, G a finite abelian group, by Harrison [8], are the same: this appears in the first section of the paper.

All rings have unity, and unadorned tensor products are over R. Given the Hopf algebra H, we consider only H-objects S which are associative, commutative R-algebras with identity and which are finitely generated, projective R-modules. If S is a Galois H-object or a rank one projective H^* -module, the class of S in Gal(H) or in $Pic(H^*)$ will be denoted by [S].

For the Hopf algebra H, the multiplication, unit map, comultiplication, counit and antipode will be denoted by μ , i, Δ , ε and λ , respectively. If S is an H-object, the structure map is $\alpha_S: S \to S \otimes H$. We use the Sweedler notation:

$$\Delta(h) = \sum_{(h)} h_{(1)} \otimes h_{(2)} \text{ for } h \text{ in } H;$$

$$\alpha_{S}(x) = \sum_{(x)} x_{(0)} \otimes x_{(1)}, \ x, x_{(0)} \in S, \ x_{(1)} \in H.$$

Our basic reference for Hopf algebras is Sweedler [11] and for Galois objects, Chase and Sweedler [2].

1. Products of Galois extensions. The set Gal(H) of R-algebra, H^* -module isomorphism classes of Galois H-objects is an abelian group via $[S] \cdot [T] = [S \cdot T]$ for S, T Galois H-objects. There are several ways in which the product $S \cdot T$ of two Galois H-objects has been defined.

Chase's definition [2] is

$$S \cdot T = |u| = \sum x_i \otimes t_i \otimes h_i \text{ in } S \otimes T \otimes H | 1 \otimes 1 \otimes (1 \otimes \Delta) \Delta(u) = (1 \otimes \tau \otimes 1 \otimes 1)(\alpha_S \otimes \alpha_T \otimes 1)(u) |, (\tau = \text{twist map})$$

an H-object via α_{S-T} where

$$\alpha_{S \cdot T} : S \cdot T \to S \cdot T \otimes H \text{ is by } \alpha_{S \cdot T} = 1 \otimes \Delta.$$

Beattie [1] defined the product as

$$S \cdot T = \{ u = \sum x_i \otimes t_i \text{ in } S \otimes T \mid \sum x_{i,(0)} \otimes t_i \otimes x_{i,(1)} = \sum x_i \otimes t_{i,(0)} \otimes t_{i,(1)} \}$$

= \{ u \text{ in } S \otimes T \cdot (1 \otimes \tau)(\alpha_S \otimes 1)(u) = (1 \otimes \alpha_T)(u) \},

an H-object via α_{S-T} where

$$\alpha_{S \cdot T} : S \cdot T \to S \cdot T \otimes H$$
 is by $\alpha_{S \cdot T} = 1 \otimes \alpha_T$.

Nakajima's two products [9] are

$$S \cdot T = (S \otimes T)^{hker\mu}$$

where hker μ is the Hopf algebra kernel of $\mu: H^* \otimes H^* \to H^*$; and

$$S \cdot T = \operatorname{Hom}_{H \bullet \otimes H \bullet}^{\mu} (H^*, S \otimes T).$$

which is isomorphic to $(S \otimes T)^{hker\mu}$ by [9], 2.7.

Here $\text{hker}\mu = |\omega \in H^* \otimes H^* | (1 \otimes \mu)\Delta(\omega) = \omega \otimes 1 \text{ in } H^* \otimes H^* \otimes H^* |$, a Hopf R-algebra.

The Harrison product [8] when $H^* = RG$, G a finite abelian group, is given by $S \cdot T = (S \otimes T)^{DG}$ where $DG = \{(\sigma, \sigma^{-1}) \mid \sigma \in G \mid A$ nobvious analogue of DG for general H^* is $\gamma(H^*) \subseteq H^* \otimes H^*$, where $\gamma: H^* \to H^* \otimes H^*$ is defined by $\gamma(x) = (1 \otimes \lambda)\Delta(x)$. For H commutative and cocommutative γ is a 1-1 Hopf algebra homomorphism. Thus the Harrison product generalizes to

$$S \cdot T = (S \otimes T)^{\gamma(H^*)}$$

But this is the same as Nakajima's first product, for we have:

Lemma 1. $\gamma(H^*) = h \ker \mu$.

Proof. That $\gamma(H^*) \subseteq \operatorname{hker} \mu$ is an easy computation. For the opposite inclusion, if $\sum \omega \otimes x \in \operatorname{hker} \mu$, then

$$\sum \omega \otimes x \otimes 1 = \sum \omega_{(1)} \otimes x_{(1)} \otimes \omega_{(2)} x_{(2)}$$

Apply $(1 \otimes \mu)(1 \otimes 1 \otimes \lambda)$ to both sides, to get

$$\sum \omega \otimes x = \sum \omega_{(1)} \otimes \omega_{(2)}^{\lambda} \varepsilon(x)$$

or

$$\sum \omega \otimes x = \gamma(1 \otimes \varepsilon)(\sum \omega \otimes x) = \gamma(\sum \omega \varepsilon(x)).$$

Proposition 2. The products of Chase, Beattie and Nakajima are isomorphic.

Proof. First we show that the products of Chase and Beattie coincide.

We have the map $1 \otimes \alpha_T : S \otimes T \to S \otimes T \otimes H$ with left inverse $1 \otimes 1 \otimes \varepsilon$. We restrict $1 \otimes \alpha_T$ and $1 \otimes 1 \otimes \varepsilon$ to $S \cdot T$ (Beattie) and $S \cdot T$ (Chase), respectively. Then $1 \otimes \alpha$ maps $S \cdot T$ (Beattie) to $S \cdot T$ (Chase). For let $\sum x \otimes t$ be in $S \cdot T$ (Beattie), then

(2.1)
$$\sum_{(t)} x \otimes t_{(0)} \otimes t_{(1)} = \sum_{(x)} x_{(0)} \otimes t \otimes x_{(1)}$$

Applying $(1 \otimes 1 \otimes 1 \otimes \Delta)(1 \otimes 1 \otimes \tau)(1 \otimes \alpha_{\tau} \otimes 1)$ to both sides of (2.1) $(\tau = \text{switch map})$ shows that $(1 \otimes \alpha_{\tau})(\sum x \otimes t)$ lies in $S \cdot T$ (Chase).

Also, $1 \otimes 1 \otimes \varepsilon$ maps $S \cdot T$ (Chase) to $S \cdot T$ (Beattie). For let $\sum x \otimes t \otimes h$ be in $S \cdot T$ (Chase), then

$$(2.2) \quad \sum x_{(0)} \otimes t_{(0)} \otimes x_{(1)} \otimes t_{(1)} \otimes h = \sum x \otimes t \otimes h_{(1)} \otimes h_{(2)} \otimes h_{(3)}:$$

applying $1 \otimes 1 \otimes 1 \otimes \varepsilon \otimes \varepsilon$ and $1 \otimes 1 \otimes \varepsilon \otimes 1 \otimes \varepsilon$ to (2.2) shows quickly that $(1 \otimes 1 \otimes \varepsilon)(\sum x \otimes t \otimes h)$ satisfies (2.1).

The identity $\sum \varepsilon(h)x \otimes t_{(0)} \otimes t_{(1)} = \sum x \otimes t \otimes h$ obtained by applying $1 \otimes 1 \otimes \varepsilon \otimes 1 \otimes \varepsilon$ to (2.2) permits one to see quickly that $(1 \otimes 1 \otimes \varepsilon)$ and $(1 \otimes \alpha_T)$ are inverse isomorphisms.

By Lemma 1 we may identify Nakajima's products with $S \cdot T = (S \otimes T)^{\gamma(H^{\bullet})}$. We show $S \cdot T$ (Beattie) = $(S \otimes T)^{\gamma(H^{\bullet})}$.

In the remainder of the proof, $S \cdot T$ denotes $S \cdot T$ (Beattie). Thus

$$S \cdot T = \{ \sum x \otimes t \mid \sum x_{(0)} \otimes t \otimes x_{(1)} = \sum x \otimes t_{(0)} \otimes t_{(1)} \}.$$

If $\sum x \otimes t \in S \cdot T$, then for any $f \in H^*$,

$$\begin{array}{l} (\sum_{(\mathcal{I})} 1 \otimes f_{(2)}^{\lambda} \otimes \langle f_{(1)}, \rangle) (\sum_{(\mathcal{S})} x_{(0)} \otimes t \otimes x_{(1)}) = \\ (\sum_{(\mathcal{I})} 1 \otimes f_{(2)}^{\lambda} \otimes \langle f_{(1)}, \rangle) (\sum_{(\mathcal{I})} x \otimes t_{(0)} \otimes t_{(1)}), \end{array}$$

But $f \cdot x = \sum x_{(0)} \langle f, x_{(1)} \rangle$ for any $x \in S$, $f \in H^*$. So we get

$$\sum_{(x)(x)} x_{(0)} \langle f_{(1)}, x_{(1)} \rangle \otimes f_{(2)}^{\lambda} \cdot t = \sum_{(x)} x \otimes f_{(2)}^{\lambda} (\sum_{(t)} t_{(0)} \langle f_{(1)}, t_{(1)} \rangle)$$

or

$$\sum_{(x)} f_{(1)} \cdot x \otimes f_{(2)}^{\lambda} \cdot t = x \otimes \sum_{(x)} f_{(2)}^{\lambda} \cdot f_{(1)} \cdot t = x \otimes \varepsilon(f) t.$$

Hence $S \cdot T \subseteq (S \otimes T)^{\gamma(H^{\bullet})}$.

This inclusion is an R-algebra, H^* -module map where H^* acts via the action on S. Now $(S \otimes T)^{\gamma(H^*)}$ is an H-object. If ϕ is any integral of H^* , then

$$\phi((S \otimes T)^{\gamma(H^*)}) \subseteq (S \otimes T)^{\gamma(H^*)H^*} = R.$$

So if I is the space of integrals of H^* , then $I((S \otimes T)^{\gamma(H^*)}) \subseteq R$.

By [2], Corollary 9.7, the multiplication map

$$S \cdot T \otimes I((S \otimes T)^{\gamma(H^*)}) \rightarrow (S \otimes T)^{\gamma(H^*)}$$

is an isomorphism. But since $I((S \otimes T)^{\gamma(H^{\bullet})}) \subseteq R$, it follows that $S \cdot T \supseteq (S \otimes T)^{\gamma(H^{\bullet})}$, completing the proof.

2. The Picard invariant map. Now we prove

Theorem 3. The map η : $Gal(H) \to Pic(H^*)$, defined by $\eta[S] = [S^*]$ for a Galois H-object S, is a homomorphism.

Proof. We must show that for S, T Galois H-objects, $(S \cdot T)^* \cong S^* \otimes_{H^*} T^*$ as H^* -modules. We use Nakajima's second product.

For G an R-algebra and W, X G-modules we have the adjoint associativity isomorphism

$$(3.1) \quad \alpha: \operatorname{Hom}_{R}(X \otimes_{G} W, R) \cong \operatorname{Hom}_{G}(W, \operatorname{Hom}_{R}(X, R))$$

by $\alpha(f)(h)(x) = f(x \otimes h)$ for $f \in \operatorname{Hom}_{\mathbb{R}}(X \otimes_{\mathbb{G}} W, R)$, $h \in W$, $x \in X$. If W is an H^* -module, then with the usual induced H^* -module structures on the Homs, α is an H^* -module map. Dualizing (3.1) and setting $G = H^* \otimes H^*$, $W = H^*$, $X = (S \otimes T)^* \cong S^* \otimes T^*$, we obtain

$$(\operatorname{Hom}_{H^{\bullet} \otimes H^{\bullet}} (H^{*}, S \otimes T))^{*} \cong (S^{*} \otimes T^{*}) \otimes_{H^{\bullet} \otimes H^{\bullet}} H^{*} \cong S^{*} \otimes_{H^{\bullet}} T^{*},$$

the second isomorphism by $(u \otimes v) \otimes h \rightarrow u \otimes hv$. It is straightforward to verify that these isomorphisms are as H^* -modules. That completes the proof.

Note that the kernel of $\eta=\{[S]\mid S^*\cong H^*\text{ as }H^*\text{-modules}\}$. If $f\colon S^*\to H^*$ is an H^* -module isomorphism, then f induces an H^* -module isomorphism

$$f^*: H \cong H^{**} \rightarrow S^{**} \cong S$$

by $f^*(\varphi) = \varphi \cdot f$ for $\varphi \in H^{**}$. Thus

 $\ker \eta = |[S] \mid S \cong H$ as H^* -modules $| = |[S] \mid S$ is H^* -isomorphic to the trivial Galois H-object, $H \mid$.

This reinforces the observation of several authors [12], [6], [13], [4] that the condition $S \cong H$ as H^* -modules is the natural generalization of the normal basis condition for Galois extensions with Galois group G.

3. Nakajima's map. Nakajima [9] proves that under the hypothesis $H \cong H^*$ as H^* -modules, then the map $\eta' : \operatorname{Gal}(H) \to \operatorname{Pic}(H^*)$ by $\eta'[S] = [S]$ is a homomorphism. The hypothesis $H \cong H^*$ is necessary if η' is to take the identity element [H] of $\operatorname{Gal}(H)$ to the identity element $[H^*]$ of $\operatorname{Pic}(H^*)$. One can recover Nakajima's result from Theorem 3. For by [10], $H \cong H^*$ as H^* -modules if and only if the space of integrals I of H^* is a free R-module. But we have proved in [3] that for any Galois H-object S, $S^* \cong S \otimes I$ as H^* -modules. Thus when $H \cong H^*$, the maps η and η' coincide.

When $H^* = RG$, Garfinkel and Orzech [7] have given a proof that η' is a homomorphism which makes use of the trace element $\sum_{\sigma \in G} \sigma$ of RG. Based on the idea that $\sum_{\sigma \in G} \sigma$ generates the space of integrals of RG, here is a proof of Nakajima's result which follows the Garfinkel-Orzech proof.

Theorem 4. Suppose the space of integrals of H^* , $I_1 = R\phi$, a free R-module of rank one. Then the map

$$\eta': \operatorname{Gal}(H) \to \operatorname{Pic}(H^*),$$

 $\eta'[S] = [S], \text{ is a homomorphism.}$

Proof. Let S, T be Galois H-objects. We must show that as H^* -modules, $(S \otimes T)^{\gamma_{(H^*)}} \cong S \otimes_{H^*} T$.

Let e be an element of S with $\phi e = 1$. Define $j: (S \otimes T)^{\gamma_{(H^{\bullet})}} \to S \otimes_{H^{\bullet}} T$ by $j(u) = \rho(u(e \otimes 1))$, where $\rho: S \otimes T \to S \otimes_{H^{\bullet}} T$ is the canonical map. Then j is an H^{\bullet} -module map, since the H^{\bullet} action on $(S \otimes T)^{\gamma_{(H^{\bullet})}}$ is the restriction of the H^{\bullet} action on S. To show j is an isomorphism, we find an

inverse.

Let
$$x: S \otimes T \to (S \otimes T)^{\gamma(H^*)}$$
 by
$$x(a \otimes b) = \sum_{(\varphi)} \phi_{(1)} a \otimes \phi_{(2)}^{\lambda} b.$$

Then for any f in H^* ,

$$(\sum f_{(1)} \otimes f_{(2)}^{\lambda})(\chi(a \otimes b)) = (1 \otimes \lambda)\Delta(f\phi)(a \otimes b) = \sum \varepsilon(f)(1 \otimes \lambda)\Delta(\phi)(a \otimes b).$$

So κ has its image in $(S \otimes T)^{\gamma_{(H^{\bullet})}}$. Let $\varphi \colon S \otimes_{H^{\bullet}} T \to (S \otimes T)^{\gamma_{(H^{\bullet})}}$ by $\varphi(\rho(u)) = \kappa(u)$. First, φ is well-defined. For $\rho(u) = \rho(v)$ if and only if $u - v = \sum (a_i \otimes f_i b_i - f_i a_i \otimes b_i)$ for $f_i \in H^*$, $a_i \in S$, $b_i \in T$. Now

$$\chi(a \otimes fb) = (1 \otimes \lambda) \Delta \phi(a \otimes fb)
= (\sum \phi_{(1)} \otimes \phi_{(2)}^{\lambda} f)(a \otimes b)
= (\sum \phi_{(1)} \otimes \phi_{(2)}^{\lambda} \varepsilon(f_{(1)}) f_{(2)})(a \otimes b)
= \sum (1 \otimes \lambda) \Delta (\phi \varepsilon(f_{(1)})((1 \otimes f_{(2)})(a \otimes b))
= \sum (1 \otimes \lambda) \Delta (\phi f_{(1)})(1 \otimes f_{(2)})(a \otimes b)
= (\sum \phi_{(1)} f_{(1)} \otimes \phi_{(2)}^{\lambda} f_{(2)}^{\lambda} f_{(3)})(a \otimes b)
= (\sum \phi_{(1)} f_{(1)} \varepsilon(f_{(2)}) \otimes \phi_{(2)}^{\lambda})(a \otimes b)
= (\sum \phi_{(1)} f \otimes \phi_{(2)}^{\lambda})(a \otimes b)
= \chi(fa \otimes b).$$

Thus if $\rho(u) = \rho(v)$, then $\kappa(u) = \kappa(v)$, and φ is well-defined. Now for u in $(S \otimes T)^{\gamma(H^*)}$, $u = \sum u_1 \otimes u_2$,

$$\begin{split} \varphi j(u) &= \varphi \rho(u(e \otimes 1)) = \chi(u(e \otimes 1)) \\ &= \sum \phi_{(1)}(u_1 e) \otimes \phi_{(2)}^{\lambda} u_2 \\ &= \sum \phi_{(1)} u_1 \cdot \phi_{(2)} e \otimes \phi_{(3)}^{\lambda} u_2 \\ &= \sum (\phi_{(1)} u_1 \otimes \phi_{(2)}^{\lambda} u_2) (\phi_{(3)} e \otimes 1) \\ &= \sum \varepsilon(\phi_{(1)}) u \cdot (\phi_{(2)} e \otimes 1) \\ &= u(\sum \varepsilon(\phi_{(1)}) \phi_{(2)} e \otimes 1) \\ &= u(\phi e \otimes 1) = u. \end{split}$$

Thus $\varphi_j(u) = u$ for u in $(S \otimes T)^{\gamma_{lH^*}}$. For v in $S \otimes T$, $v = \sum v_1 \otimes v_2$,

$$j\varphi(\rho(v)) = j(\chi(v))$$

$$= \rho(\chi(v)(e \otimes 1))$$

$$= \rho((\sum \phi_{(1)}v_1 \otimes \phi_{(2)}^{\lambda}v_2)(e \otimes 1))$$

$$= \rho(\sum (\phi_{(1)}v_1)e \otimes \phi_{(2)}^{\lambda}v_2)$$

$$= \sum \phi_{(2)}^{\lambda}((\phi_{(1)}v_1)e) \otimes v_2 \text{ (where } \otimes = \bigotimes_{H^{\bullet}})$$

$$= \sum \phi_{(2)}^{\lambda}\phi_{(1)}v_1 \cdot \phi_{(3)}^{\lambda}e \otimes v_2$$

$$= \sum \varepsilon(\phi_{(1)})v_1(\phi_{(2)}^{\lambda}e) \otimes v_2$$

$$= v(\phi^{\lambda}e \otimes 1);$$

Since ϕ is an integral of H^* , so is ϕ^{λ} , hence $\phi^{\lambda}e$ is in R, and

$$i\varphi(\rho(v)) = (\phi^{\lambda}e)\rho(v).$$

Then for v in $S \otimes T$

$$\varphi(\rho(v)) = \varphi(\varphi(\rho(v))) = \varphi(\varphi(\rho(v)) = \varphi(\varphi(\rho(v))) = \varphi(\varphi(\rho(v))) = \varphi(\varphi(\rho(v)) = \varphi(\varphi(\rho(v)) = \varphi(\varphi(\rho(v))) = \varphi(\varphi(\rho(v)) = \varphi(\varphi(\rho(v)) = \varphi(\varphi(\rho(v)) = \varphi(\varphi(\rho(v))) = \varphi(\varphi(\varphi(\rho(v))) = \varphi(\varphi(\varphi(\rho(v))) = \varphi(\varphi(\varphi(\rho(v))) = \varphi(\varphi(\varphi(\rho(v))) = \varphi(\varphi(\varphi(\rho(v))) = \varphi(\varphi(\varphi(\varphi(\varphi(v))) = \varphi(\varphi(\varphi(\varphi(v))) = \varphi(\varphi(\varphi(\varphi(v))) = \varphi(\varphi(\varphi(\varphi(v))) = \varphi(\varphi(\varphi(\varphi(v))) = \varphi(\varphi(\varphi(\varphi(\varphi(v))) = \varphi(\varphi(\varphi(\varphi(v))) = \varphi(\varphi(\varphi(\varphi(v))) = \varphi(\varphi(\varphi(\varphi(v))) = \varphi(\varphi(\varphi(\varphi(v))) = \varphi(\varphi(\varphi(\varphi(v))) = \varphi(\varphi(\varphi(\varphi(v))) = \varphi$$

This is true for all v in $S \otimes T$, so $\phi^{\lambda}(e) = 1$, and φ and j are inverse isomorphisms. That completes the proof.

References

- M. Beatte: A direct sum decomposition for the Brauer group of dimodule algebras, J. Algebra 43 (1976), 686-693.
- [2] S. U. CHASE and M. E. SWEEDLER: Hopf Algebras and Galois Theory, Springer Lecture Notes in Mathematics 97 (1969).
- [3] L. N. CHILDS: Taming wild extensions with Hopf algebras, Trans. Amer. Math. Soc. (to appear).
- [4] L. N. CHILDS and S. HURLEY: Tameness and local normal bases for objects of finite Hopf algebras, Trans. Amer. Math. Soc. 298 (1986), 763-778.
- [5] L. N. CHILDS and A. R. MAGID: The Picard invariant of a principal homogeneous space, J. Pure Appl. Algebra 4 (1974), 273-286.
- [6] T. E. EARLY and H. F. KREIMER: Galois algebras and Harrison cohomology, J. Algebra 58 (1979), 136-147.
- [7] G. GARFINKEL and M. ORZECH: Galois extensions as modules over the group ring, Canad. J. Math. 22 (1970), 242 - 248.
- [8] D. K. HARRISON: Abelian extensions of commutative rings, Memoirs Amer. Math. Soc. 52 (1965), 1-14.
- [9] A. NAKAJIMA: Galois objects as modules over a Hopf algebra, Math J. Okayama Univ. 18 (1975/6), 159-169.
- [10] B. Pareigis: When Hopf algebras are Frobenius algebras, J. Algebra 18 (1971), 588-596.
- [11] M.E. SWEEDLER: Hopf Algebras, Benjamin, 1969.
- [12] W. C. WATERHOUSE: Principal homogeneous spaces and group scheme extensions, Trans. Amer. Math. Soc. 153 (1971), 181-189.
- [13] H. W. LENSTRA: A normal basis theorem for infinite Galois extensions, Indag. Math. 47 (1985), 221-228.

36 L. N. CHILDS

DEPARTMENT OF MATHEMATICS STATE UNIVERSITY OF NEW YORK AT ALBANY ALBANY, NY 12222, U.S.A.

(Received March 16, 1986)