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PRODUCTS OF GALOIS OBJECTS AND
THE PICARD INVARIANT MAP

Linpsay N. CHILDS

Throughout this paper, R is a commutative ring and H is a commutative,
cocommutative Hopf R-algebra which is a finitely generated projective R-module
with dual H* = Homs(H, R). Let Gal(H) be the abelian group of R-algebra,
H-module isomorphism classes of Galois H-objects, and Pic(H*) the group of
H*-module isomorphism classes of rank one projective H*-modules. In[9],
A. Nakajima studied the map 7' from Gal(H) to Pic(H*) induced by viewing a
Galois H-object as an H*-module, and showed that if H = H* as H*-modules,
then the map 7’ is a homomorphism. In this note we show that the map » from
Gal(H) to Pic(H*) defined by sending the class of S to the class of S* =
Homg (S, R) is a homomorphism. This result is implicit from the cohomological
description of Gal(H) found in [12] and [5], but here we give a direct proof.
Nakajima’s result is a special case of this result, as we show. We also give
another proof of Nakajima’s result along the lines of the proof of Garfinkel
and Orzech [7] for H the group ring of a finite abelian group. In order to
obtain these results, it is appropriate to show that various definitions of
the product of Galois extensions in the group Gal(H) given by Chase [2],
Beattie [1] and Nakajima [9], and, when H* = RG, G a finite abelian
group, by Harrison [8], are the same : this appears in the first section
of the paper.

All rings have unity, and unadorned tensor products are over R. Given
the Hopf algebra H, we consider only H-objects S which are associative,
commutative R-algebras with identity and which are finitely generated, pro-
jective R-modules. If S is a Galois H-object or a rank one projective H*-
module, the class of S in Gal(H) or in Pic(H*) will be denoted by [S].

For the Hopf algebra H, the multiplication, unit map, comultiplication,
counit and antipode will be denoted by x, i, A, ¢ and A, respectively. If S is
an H-object, the structure map is as: S > S® H. We use the Sweedler
notation :

A(h) = Z(mhu)@ ,142) for A in H;
d’s(x) = me«m® Xy, X,x0 € S, x0y € H.

Our basic reference for Hopf algebras is Sweedler [11] and for Galois ob-
jects, Chase and Sweedler [2].
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1. Products of Galois extensions. The set Gal(H) of R-algebra,
H*-module isomorphism classes of Galois H-objects is an abelian group via
[S]-[T] = [S-T] for S, T Galois H-objects. There are several ways in
which the product S- T of two Galois H-objects has been defined.

Chase’s definition [2] is

S T=|lu=2xQtu0h inSITOH|101Q(1® A)A(u) =
(1®7®1®1)(as ® ar ® 1)(u)l, (v = twist map)
an H-object via as.r where
as.r: S*T—> S T®Hisbyas.r =18 A.
Beattie [1] defined the product as

S T=lu=2x0tinSOT | X xye® t:® xyn) = 25 x:® ti0® i}
=luinS®T| (1® r)as ®1)(u) = (1® ar)(u)l,

an H-object via as.r where
as.7: S T—> S - T®Hisbyas.: =1® ay.
Nakajima’s two products [9] are
S-T=(S® T)" e

where hkery is the Hopf algebra kernel of x: H* ® H* - H*;
and

S- T = Hom}egu-(H*, S® T),

which is isomorphic to (S® T )" ™ by [9], 2.7.

Here hkeru= lw € H* @ H* | (1® u)A(w) = w®1 in H* @ H* ® H*|,
a Hopf R-algebra.

The Harrison product [8] when H* = RG, G a finite abelian group, is
given by S: T= (S® T)"¢ where DG = {(0,067") | 0 € G|. An obvious ana-
logue of DG for general H* is y(H*) € H* @ H*, where y: H* - H* ® H*
is defined by ¥(x) = (1 ® A)A(x). For H commutative and cocommutative y
is a 1 —1 Hopf algebra homomorphism. Thus the Harrison product general-
izes to

S-T=(S®T)™.

But this is the same as Nakajima’s first product, for we have:
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Lemma 1. 7y(H*)= hkeru.

Proof. That y(H*) € hkeru is an easy computation. For the opposite
inclusion, if 2 w ® x € hkery, then

w®x®1 =2 wn® xy, ® wexe.
Apply(1® 1)(1®1® A) to both sides, to get
2 0®x=2) wn® welx)
or

22w®x=Y1®)(2 w®x) = Y2 welx)).

Proposition 2. The products of Chase, Beattie and Nakajima are iso-
morphic.

Proof. First we show that the products of Chase and Beattie coincide.

We have the map 1® ar: S® T—> SQ® T Q® H with left inverse 1@ 1® «.
We restrict 1® ar and 1®1® ¢ to S- T (Beattie) and S- T (Chase), respec-
tively. Then 1 ® a maps S- T (Beattie) to S: T (Chase). For let > x® ¢ be
in S- T (Beattie), then

(2.1) Zm.’t@ t(o)® tyy = me;o, ®IR® Xi1ye

Applying(1®1®1®A)1®1® 7)(1® ar®1) to both sides of (2.1) (z =
switch map) shows that (1 ® ar)(2_ x® t) lies in S: T (Chase).

Also, 1®1® € maps S-T (Chase) to ST (Beattie). For let 2, x®t®4~
be in ST (Chase), then

(2.2) Z, .‘1}(0,@ t(o)®1‘m® tu)®h = Z I® t® hu)@h:z)@ hml

applying 1®1®1®c¢®cand1®1® ¢ ®1® ¢ to (2.2) shows quickly that
(1®1®¢)(D x®t® h) satisifies (2.1).

The identity D) e(h)x ® {0, ® tyy, = 2 x® t ® h obtained by applying
181® e®1® ¢ to (2.2) permits one to see quickly that (1®1® ¢) and
(1 ® a;) are inverse isomorphisms.

By Lemma 1 we may identify Nakajima's products with S-T=(S® T )"
We show ST (Beattie) = (SQ® T )",

In the remainder of the proof, S: T denotes S: T (Beattie).

Thus

S'T= 12 I®t I ZI{O)@t@Iﬂ; = ZI@ tm,@tu)‘.
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> x®t € ST, then for any f € H*,

(21 ® f3® {fi),) N (Do @ t @ xa)) =
(A1 ® f3® {fun ) (D x® to® ta),

But f-x =2 xo {f, x1,) for any x € S, f € H*. So we get
Zm.(x)-‘tw) (fm, 1‘(1)> ®f<é) = Zml‘®fé\1 (Z(n t(o.\(ftl), t(u))

or
DS x® fht=x® Linfr fur t = x® e( .

Hence S-TC (S® T )™,
This inclusion is an R-algebra, H*-module map where H* acts via the
action on S. Now(S® T )" is an H-object. If ¢ is any integral of H*, then

(SRT)Y) C (SR T)"" = R,

So if I is the space of integrals of H*, then I((S® T)"*") C R.
By [2], Corollary 9.7, the multiplication map

S TRHS® T)™) - (S® T)"™"

is an isomorphism. But since I((S® T)™¥") C R, it follows that S- T 2D
(S§® T)™", completing the proof.

2. The Picard invariant map. Now we prove

Theorem 3. Themapn: Gal(H) - Pic(H*), defined by n[S] = [S*]
for a Galois H-object S, is a homomorphism.

Proof. We must show that for S, T Galois H-objects, (S-T)* =
S* ®y. T* as H*-modules. We use Nakajima’s second product.

For G an R-algebra and W, X G-modules we have the adjoint associa-
tivity isomorphism

(3.1) @a: Hom(X®: W, R) = Homc(W, Homx(X, R))
by a(f)(h)(x) = f(x® h) for f € Homi(XQ®: W,R), hE W, xE€ X. W

is an H*-module, then with the usual induced H*-module structures on the
Homs, a is an H*-module map. Dualizing (3.1) and setting G = H* ® H*,
W=H* X=(S® T)*= S*®T*, we obtain

(Homy-g+ (H*, S® T))* = (§* ® T*) Qyeens H* = S* Qu- T*,
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the second isomorphism by (u® v) ® h = u® hv. It is straightforward to
verify that these isomorphisms are as H*-modules. That completes the proof.

Note that the kernel of 5 =1{[S] | S* = H* as H*modules|. If
f:8* - H* is an H*-module isomorphism, then f induces an H*-module
isomorphism

f* HZH* > §**=§

by f*(®) = @ f for € H**, Thus

kerp = |[S] | S= H as H*-modules} = {[S] | S is H*-isomorphic to the
trivial Galois H-object, H |.

This reinforces the observation of several authors [12], [6], [13], [4] that

the condition S = H as H*-modules is the natural generalization of the normal

basis condition for Galois extensions with Galois group G.

3. Nakajima’s map. Nakajima [9] proves that under the hypothesis
H= H* as H*-modules, then the map 7' : Gal(H) = Pic(H*) by 5'[S] =
[S] is a homomorphism. The hypothesis H= H* is necessary if 7' is to take
the identity element [H] of Gal(H) to the identity element [H*] of Pic(H*).
One can recover Nakajima’s result from Theorem 3. For by [10], H= H*
as H*-modules if and only if the space of integrals I of H* is a free R-module.
But we have proved in [3] that for any Galois H-object S, S* = S®1I as
H*.modules. Thus when H = H*, the maps 7 and ' coincide.

When H* = RG, Garfinkel and Orzech [7] have given a proof that 7' is
a homomorphism which makes use of the trace element 2 ,cco of RG. Based
on the idea that 2 ,eco generates the space of integrals of RG, here is a proof
of Nakajima’s result which follows the Garfinkel-Orzech proof.

Theorem 4. Suppose the space of integrals of H* I, = R¢, a free
R-module of rank one. Then the map

7' : Gal(H) — Pic(H*),
7'[S]1=1[S]. is a homomorphism.

Proof. Let S, T be Galois H-objects. We must show that as H*-modules,
(ST = SQuT.

Let e be an element of S with ge = 1. Define j: (SQT)"" 5 S ®,. T
by j(u) = p(ule ® 1)), where p: S® T » S®4- T is the canonical map.
Then j is an H*-module map, since the H* action on (S® T )" is the re-
striction of the H* action on S. To show j is an isomorphism, we find an
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inverse.
Let x: S® T (S® T )" by
#(a®b) = 2ippuia® ¢ b
Then for any f in H¥,

(Z fm®f{§\1)(7£(a® b)) =
1@ MNAS$)(a®b) =2 (/)1 ® X)A($)(a® b).

So x has its image in(S® T)™", Let@: SQu. T = (S® T)™" by (p(u))
= x(u). First, @ is well-defined. For p(u) = p(v) if and only if u—v =
20 (e ® fibi— fia; ® by) for f; € H*, a; € S, b; € T.

Now

x(a® fb) =(1® A)A¢(a® fb)

(Z ¢(1)® {béx_f)(a@ b)

(2 ¢a) @ pine(f) fin)(a® b)

2 (1@ )Age(fa)((1® f)(a® b)
2(1® 1A ® fu)a® b)
(Z ¢mfm ® ¢3Lfé\1fm)(a® b)

(Z ¢[uf-:1)5(ﬁ2)) ® ¢$))(a® b)
(Xpuf ® ¢4)(a® b)

x(fa®b).

Thus if p(u) = p(v), then x(u) = x(v), and @ is well-defined.
Now for » in (S® T)™", u= 31w, ® us,

Pj(u) = Po(u(e® 1)) = x(u(e® 1))
= Z ¢u:(’ul€) ® ¢3)u2
= 2 ¢(1)u1' ¢(2)€ ® ¢(§1u2
= 25 (Putr @ doyu) (pame ® 1)
Z (¢m)u (¢12)€®1)
(Z €(¢n) e ® 1)
u(pe®1) = wu.

[ | | O (A | R

|I ll Il

Thus @j(u) = u for u in(S® T)™".
For v in S®T, v= 2 v ® v,,

iPle(v)) = jlx(»))
= plx(v)(e®1))
= P((Z ¢(1)V1 ® ¢f§;v2) (e® 1))
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= P(Z‘J (¢(1|’V1)€® ¢3)V2)

=2 ¢a(guyvi)e) ® v, (where ® = &Qy-)
= Z ¢(A2)¢(ll'vl' ¢(’56® V2

= Z 5(¢(1))V1(¢é)e) ® v,

= 1(¢"e®1);

Since ¢ is an integral of H*, so is ¢* hence ¢”e is in R, and

JPp(v)) = (g7e)o(v).

Then for v in S® T

P(o(v)) = @j(P(p(v)) = @(jP(o(+))) = P((g%e)p(v)) = ¢™e)P(p(v)).

This is true for all v in S® T, so ¢*(e) = 1, and @ and j are inverse iso-
morphisms. That completes the proof.
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