NOTES ON BIQUADRATIC CYCLIC EXTENSIONS OF A COMMUTATIVE RING

To the memory of Professor Akira Hattori

KAZUO KISHIMOTO

Throughout the present paper, we assume that A is a commutative ring of a prime characteristic p with an identity 1 and B is a commutative (σ) -cyclic extension of A with a cyclic Galois group (σ) of order p^2 . As is known [3, Theorem 1.4], B is obtained as a factor ring of a polynomial ring A[X, Y] by an ideal $I = (X^{p} - X - a, Y^{p} - Y - f(X))$ for some $a \in A$ and $f(X) \in A[X]$. Thus $B = A[x, y] = \sum_{i,i=0}^{p-1} \oplus x^i y^i A$ where $x = a \in A$ X+I and y=Y+I. In this case, B has a primitive element z, i.e. B= $A[z] = \sum_{i=0}^{p^2-1} \oplus z^i A$ for some $z \in B$ if B is a field. But the following example shows that this is not true if B is not a field. For let $B = \sum_{i=1}^4 \oplus A_i =$ $\{(a_1, a_2, a_3, a_4) ; a_i \in A_i\}$ where each $A_i = GF(2)$ and $A = \{(a_1, a_2, a_3, a_4) ; a_1 \in A_i\}$ $a_1 = a_2 = a_3 = a_4$ \cong GF(2). Then the map $\sigma: B \to B$ such that $\sigma(a_1, a_2, a_3, a_4)$ $a_4) = (a_4, a_1, a_2, a_3)$ gives an automorphism of B of order 4 whose fixed subring $B^{\sigma} = A$. If we put e_{i} is the identity of A_{i} then $\sum_{i=1}^{4} e_{i}\tau(e_{i}) = \delta_{i,\tau}$ for each $\tau \in (\sigma)$, and hence B/A is a (σ) -cyclic extension. Since B is a Boolean ring, B has no primitive element. In this paper, we shall study a necessary and sufficient condition for B to have a primitive element when p=2 and A/J(A) is an artinian ring where J(A) is Jacobson radical of A.

- 1. Prerequisites. (i) Let $T=B^{\sigma^2}$. Then T has an element x such that $\{1,x\}$ is a linearly independent A-basis for T, $x^2+x=\alpha\in A$ and $\sigma(x)=x+1$, and so $T=A[x]=A\oplus xA$. We say such an element x is a σ -generator of T/A. If x is a σ -generator of T/A then x+a is also a σ -generator for any $a\in A$ and conversely.
- (ii) Let $D = \sigma + 1$. Then D is a σ -derivation of B such that $D^4 = 0$ and $B^D = \{b \in B; D(b) = 0\} = A$. Since $B_A \oplus > A_A$, there exists an element $t \in B$ such that $D^3(t) = 1$. For a σ -generator x of T/A, $D(D^2(t) + x) = 0$ implies that $x = D^2(t) + \gamma = D^2(t + D(t)\gamma)$ for some $\gamma \in A$. If we put $v = t + D(t)\gamma$, then $D^3(v) = 1$, $D^2(v) = x$ and hence $(D^2(v))^2 + D^2(v) = x^2 + x$ $= \alpha \in A$. Moreover, in this case, $B = A[v, D(v), D^2(v)]$ and $\{D^i(v); 0 \le i \le 3\}$ is a linearly independent A-basis for B [1].
 - (iii) Let M be a maximal ideal of A. Then $A/M \cong GF(2)$ if and only

if $\{a^2 + a : a \in A\} \subseteq M$.

Let I be an ideal of A. Then IA' is an ideal of A' for each intermediate subring A' of B/A. In what follows, for each element $b \in A'$, we denote the coset b+IA' of A'/IA' by b again if it arises no confusion.

2. A sufficient condition. The following Lemma gives a sufficient condition for B to have a primitive element.

Lemma 1. B has a primitive element if there exists a σ -generator x of T/A such that $x^2 + x = \alpha \in U(A)$, the unit group of A. Moreover, if this is the case B is given by $A[Z]/(Z^4 + (1+\alpha)Z^2 + \alpha Z + \alpha^3 + \alpha \beta + \beta^2)$ for some $\beta \in A$ and $\sigma(z) = z + (z^2 + z + \beta)\alpha^{-1}$.

Proof. Let x be a σ -generator of T/A such that $x^2 + x = \alpha \in U(A)$. As is remarked in (ii), there exists an element $v \in B$ such that $D^3(v) = 1$, $D^2(v) = x$ and $B = A[v, D(v), D^2(v)]$. We now show that B = A[D(v)] and $\{1, D(v), D(v)^2, D(v)^3\}$ is a linearly independent A-basis for B. For,

$$D(D(v)^2) = D^2(v)^2 = D^2(v) + \alpha = D^2(v) + D^3(v)\alpha$$

implies $D(D(v)^2 + D(v) + D^2(v)\alpha) = 0$, and hence,

$$D^{2}(v)_{\alpha} = D(v)^{2} + D(v) + \beta$$
 for some $\beta \in A$.

Since $\alpha \in U(A)$, we obtain

$$D^{2}(v) = (D(v)^{2} + D(v) + \beta)\alpha^{-1} \in A[D(v)].$$

$$D(D(v) D^{2}(v)) = \sigma D(v) + D^{2}(v)^{2} = D^{2}(v) + D(v) + D^{2}(v)^{2}$$

$$= D(v) + \alpha = D(v) + D^{3}(v)\alpha$$

implies $v = D(v)D^2(v) + D^2(v)\alpha + \beta$ for some $\beta \in A$, and hence, $v \in A[D(v)]$

Therefore we obtain B = A[D(v)].

$$(D(v))^{4} = (D(v)^{2})^{2} = (D(v) + D^{2}(v)\alpha + \beta)^{2}$$

$$= D(v)^{2} + (D^{2}(v) + \alpha)\alpha^{2} + \beta^{2}$$

$$= D(v)^{2} + (D(v)^{2} + D(v) + \beta)\alpha^{-1} + \alpha)\alpha^{2} + \beta^{2}$$

$$= D(v)^{2}(1 + \alpha) + D(v)\alpha + \alpha^{3} + \alpha\beta + \beta^{2}.$$

If we note that

$$D^{3}(D(v)^{3}) = D(\sigma^{2}(D(v))D^{2}(D(v)^{2}) + D^{3}(v)D(v)^{2})$$

$$= D(\sigma^{2}(D(v)) + D(v)^{2}) = \sigma^{2}(D^{2}(v)) + D^{2}(v)^{2}$$

= $\sigma^{2}(D^{2}(v)) + D^{2}(v) + \alpha = \alpha$,

 $u = \sum_{i=0}^3 a_i D^i(v) = 0$ $(a_i \in A)$ implies $0 = D^3(u) = a_3 \alpha$ and hence $a_3 = 0$. Repeating the same procedure, we can see that $\{1, D(v), D(v)^2, D(v)^3\}$ is linearly independent over A and so $B = \sum_{i=0}^3 \oplus AD(v)^i \cong A[Z]/(Z^4 + (1+\alpha)Z^2 + \alpha Z + \alpha^3 + \alpha\beta + \beta^2)$. Furthermore, $\sigma(D(v)) = D^2(v) + D(v) = (D(v) + D(v)^2 + \beta)\alpha^{-1} + D(v)$ shows that $\sigma(z) = z + (z^2 + z + \beta)\alpha^{-1}$.

3. A necessary condition. The following Lemma gives a necessary condition for B to have a primitive element.

Lemma 2. Assume B has a primitive element. Then for any maximal ideal M of A there hold either

- (a) $A/M \neq GF(2)$, or
- (b) A/M = GF(2) and the factor ring $A[x]/M[x] \cong GF(4)$ for every σ -generator x of T/A where $T = A[x] = B^{\sigma^2}$.

Proof. Let z be a primtive element of B such that $z^4 = \sum_{i=0}^3 a_i z^i$ for $a_i \in A$ and let $D^3(z) = m \in A$. Then

$$D^{3}(z^{4}) = m^{4} = a_{1}m + a_{2}m^{2} + a_{3}D^{3}(z^{3}) \cdot \cdot \cdot \cdot \cdot (1)$$

We shall prove the assertion distinguishing following two cases.

Case (i) $D^3(z) = m \notin U(A)$: Let M be a maximal ideal of A such that $m \in M$. Then $a_3D^3(z^3) \in M$ by (1). If $D^3(z^3) \in M$, we have a contradiction that $A = D^3(B) \subseteq M$, and so $D^3(z^3) \notin M$ and $a_3 \in M$. Thus $A = AD^3(z^3) + M$ and hence $D^3(z^3)$ is a unit element modulo M. Now we consider the factor ring A[z]/M[z]. Then $A[z]/M[z] \cong A/M[z] \cong A/(M[Z]/(Z^4 + a_2Z^2 + a_1Z + a_0))$, $D^3(z^3)$ is a unit element in A/M and, by [2, Theorem 5.6], A/M[z] is a (σ) -cyclic extension over A/M. Let A/M = GF(2). Then $D^3(z^3) = 1$ in A/M and $A[x]/M[x] \cong GF(2)[x]$ for any σ -generator x of T/A. Hence $x^2 + x$ is either 0 or 1 in A/M. If $x^2 + x = 1$ then GF(2)[x] = GF(4), and hence we assume that $x^2 + x = 0$. Since $0 = D^3(z) = D^2(D(z))$, we have either

$$D(z) = \begin{cases} x + \varepsilon \\ \varepsilon & \text{in } A/M[z] = GF(2)[z], \text{ where } \varepsilon = 0 \text{ or } 1. \end{cases}$$

18

If $D(z) = \varepsilon$ then $z = x + \varepsilon$ or ε and this contradicts to linear independence of $|z^i|$; $0 \le i \le 3$ over A/M. Thus D(z) must be $x + \varepsilon$. Then $D(z^2) = D(z)^2 = (x + \varepsilon)^2 = x + \varepsilon$, and so $D(z^2 + z) = 0$. But this is also a contradiction since $z^2 + z + \varepsilon = 0$.

Case (ii) $D^3(z) \in U(A)$. $D^3(z)$ is a unit element in A/M[z] for any maximal ideal M of A. Let A/M = GF(2). Then $A[x]/M[x] \cong GF(2)[x]$ for any σ -generator x of T/A. If $x^2 + x = 1$ in GF(2)[x], then it coincides with GF(4), and hence we assume that $x^2 + x = 0$. Since $1 = D^3(z) = D(D^2(z))$ in A/M[z], we have

$$D^{2}(z) = x + \varepsilon$$
 where $\varepsilon = 0$ or 1 ······(2)

Since $(x+\varepsilon)^2 = x+\varepsilon$, $D(D(z^2)) = D(D(z)^2) = (D^2(z))^2 = D^2(z)$. This and (2) imply $D(D(z^2) + D(z)) = 0$ and hence

$$z^2 + z = \begin{cases} x + \varepsilon' \\ \varepsilon' \text{ where } \varepsilon' = 0 \text{ or } 1.\dots(3) \end{cases}$$

But $z^2 + z = \varepsilon'$ is also a contradiction by the same reason as in the case (i), and so $z^3 = z^2 + zx + z\varepsilon'$. Consequently, we have

$$D^{2}(z^{3}) = D^{2}(z^{2}) + D^{2}(z)x + D^{2}(z)\varepsilon'$$

$$= x + \varepsilon + (x + \varepsilon)x + (x + \varepsilon)\varepsilon'$$

$$= x(\varepsilon + \varepsilon') + \varepsilon(1 + \varepsilon').$$

(a) case $\varepsilon + \varepsilon' = 1$: $D^3(z^3) = x + \varepsilon$, and hence $D^2(z^3 + z) = 0$ by (2). Thus

$$z^{3}+z=\left\{ \begin{array}{l} x+\varepsilon''\\ \varepsilon'' \text{ where } \varepsilon''=0 \text{ or } 1. \ z^{3}+z=\varepsilon'' \end{array} \right.$$

is a contradiction. While if $z^3 + z = x + \varepsilon''$, then $z^3 + z^2 = z^3 + z + z^2 + z = 0$ or 1 and this is also a contradiction.

- (b) case $\varepsilon + \varepsilon' = 0$: Since $0 = \varepsilon + \varepsilon' = \varepsilon(\varepsilon + \varepsilon') = \varepsilon + \varepsilon \varepsilon' = \varepsilon(1 + \varepsilon')$, we have $D^2(z^3) = 0$ and so z^3 must be $x + \varepsilon''$ (ε'' is 0 or 1). Then, by (3), we have a contradiction that $z^3 + z^2 + z = 0$ or 1.
- 4. The case of a semi-primary ring. In this section, we assume that A is a ring such that A/J(A) is artinian. Hence we may assume that there exists a set of maximal ideals $\mathcal{M} = \{M_i : i = 1, 2, \dots, n\}$ of A such that $J(A) = \bigcap_{i=1}^n M_i$. By $\mathcal{M}_1(\text{resp.}\mathcal{M}_2)$ we denote the set of all $M_i \in \mathcal{M}$ such

that $A/M_i = GF(2)$ (resp. $A/M_i \neq GF(2)$).

Theorem 3. B has a primitive element if and only if A/M[x] = GF(4)for any $M \in \mathcal{M}_1$ and a σ -generator of T/A.

Let B have a primitive element z such that $z^4 = \sum_{i=0}^3 a_i z^i$ $\cdot (a_i \in A).$

Case I $D^3(z) \in J(A)$: We can see that $a_3 \in J(A)$ and $D^3(z^3) \notin M$ for any maximal ideal M of A by the same reason as in that of Lemma 2, and hence $D^3(z^3)$ is a unit element. For $M \in \mathcal{M}_1$, we can see A/M[x] = GF(4)for any σ -generator x of T/A by Lemma 2 [See, case (i)].

Case II $D^3(z) \notin J(A)$: There exists $M \in \mathcal{M}$ such that $D^3(z) \in M$. If $M \in \mathcal{M}_1$, then A/M[x] = GF(4) for any σ -generator x of T/A by Lemma 2. Further, for any $M \in \mathcal{M}_1$ such that $D^3(z) \in M$, we have $D^3(z^3) = 1$ in A/M by the same reason as in that of Lemma 2. Thus we obtain A/M[x] =GF(4) again by Lemma 2.

Conversely, assume that A/M[x] = GF(4) for any $M \in \mathcal{M}_1$ and a σ -generator x of T/A. Let $x^2+x=\alpha\in A$ for a σ -generator x of T/A. Since $A/J(A) = A/M_1 \oplus A/M_2 \oplus \cdots \oplus A/M_n$, we may put $\alpha = a_1 + a_2 + \cdots + a_n$ in A/J(A) where $a_i \in A/M_i$. If $A/M_i = GF(2)$, we may put $a_i = 1$, and if $a_i \in A/M_i \neq GF(2)$, then there exists $c_i \in A$ such that $c_i^2 + c_i + a_i$ is a unit element in A/M_i . Thus we can choose a σ -generator x of T/A such that $x^2+x=u$ is a unit element in A/J(A). But, for this x, x^2+x must be a unit element in A.

Let A be a local ring with the unique maximal ideal M. Then B is a local ring if and only if T = A[x] is a local ring, and T is a local ring if and only if M[x] is the unique maximal ideal of T[2, Lemma 1.4 and Theorem 1.8]. Combining this with Lemma 2, we have the following

Corollary 4. If B is a local ring then B has a primitive element.

Proof. Since $A[x] = A \oplus xA$ is a local ring for a σ -generator x of T/A, $M[x] = M \oplus xM$ is the unique maximal ideal of A[x]. If $x^2 + x \in M$ then $M \oplus xA$ becomes a proper ideal of A[x] which contains M[x]. This contradicts to the maximality of M[x]. Thus $x^2 + x$ must be a unit element.

Remark: The converse of Corollary 4 is not true. For let A = GF(2). Then $A[X]/(X^2+X+1) = A[x] = GF(4)$, and $B = GF(4)[Y]/(Y^2+Y)$ $\cong GF(4) \oplus GF(4)$ has a primitive element since $x^2 + x = 1 \in U(A)$.

REFERENCES

K. KISHIMOTO

- [1] K. KISHIMOTO: On relative sequences of homomorphisms and Galois extensions of rings, to appear in Math. J. Okayama Univ.
- [2] Y. MIYASHITA: Finite outer Galois theory of non-commutative rings, J. Fac. Sci. Hokkaido Univ., 19 (1966), 114-134.
- [3] T. NAGAHARA and A. NAKAJIMA: On cyclic extensions of commutative rings, Math. J. Okayama Univ., 15 (1971), 81-90.

DEPARTMENT OF MATHEMATICS
SHINSHU UNIVERSITY
MATSUMOTO 390, JAPAN

(Received May 2, 1986)