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ON SOME COHEN-MACAULAY SUBSETS OF
.A PARTIALLY ORDERED ABELIAN GROUP

To the memory of Professor Gishiro Maruyama
Anprzes NOWICKI, Kazuo KISHIMOTO and Takasi NAGAHARA

This paper is about some Cohen-Macaulay subsets of a partially ordered
abelian group which are useful in the study of Galois extensions of higher
derivation type (cf. Remark and [4]).

Let N=1{1,...,n}),and Z={...—2, —1,0, 1, 2,...). Now, if G=
(f1) X ++- X(fa) is an abelian group which is the direct product of infinite
cyclic groups (f,) generated by f; then G becomes a partially ordered group by

(#): NAE fFfi=20lfff o Xhesi=22txtiforallkeN.

This partially ordered group G will be denoted by (G, #). Clearly (G, #)
can be regarded as the partially ordered additive group (Z* #) = Z, X ---
X Zn, where Z,= Z for all i€ N. As it is seen later on, (Z" #) is a
modular lattice.

For u;, v;€ Z withu;, £ v; (i € N), we set

A=T% [u,v] ={a,..han) ;i S, = v;,, a, € Z)

which is a subposet of (Z7, #).

Our purpose of this note is to prove that A is a modular lattice under
the ordering in (Z", #) (Theorem 7), and if, in particular, u;, < v; for all
i € N then A is a modular sublattice of (Z" #) (Theorem 6).

In what follows, we shall use the following conventions :

Let A be a poset with order = and A a subposet of A. Then, for g,
b€ Aand c,d € A,

a> bifand only if a = b and a + b.

a> b(resp. ¢ >, d) if and only if a > b (resp. ¢ > d) and there are
not elements e in A (resp. e’ in A) such that a> e > b(resp. ¢ > e > d).

For a= (ai,...,an) €(Z" #), this is sometimes abbreviated to a =
(ay), and for any k € N, 2.7-x as is denoted by tx(a).

Let (Z" *) be a vector group with order = defined by

(%): (a) =2(b) < a;=b, forall i€ N(cf. [3]).
Then, one will easily see that (Z™ *) is a modular lattice. We consider

7



8 A. NOWICK], K. KISHIMOTO and T. NAGAHARA

here the mapping

¢: (Z7 #) (Z7" *)
defined by ¢(a) = (ta)). Clearly ¢(a+b) = ¢(a)+ (b) for a, b €(Z", #).

By our definition, ¢ is injective. Moreover. since, for (x;) € (Z", %),
(21— 22, T2 — 23, vy Tno1 — L, Xn)) = (21, .00y Xn),

¢ is surjective. Hence ¢ is a group isomorphism which preserves orders,
and so, (Z" #) is a modular lattice. 7

Now, let a = (@), b = (b)) €(Z"#), and a> b. Then {c € (Z™#);
a=c¢ = b) is a finite set whose cardinal number is

IOE (tle)—tdb)+1) = T, (i (as—by)+1).

By f(a), we denote 2.7, t(a). Then one will easily see that f{a) =
Zlun=1 ia;.
Additionally, let a> b, and ¢(a) = (x1,...,x2). Then ¢(a) > @(b),

and whence
¢(b) = (xls“'yxi—l, xi—'l, xi+],...,.’rn)
for some 1 = ; = n. Hence, it follows that there holds either

b=1(ar,ece, @2, a1 +1, ai—1, a1s1,.e,an) (2= i< n) or

b=(a—1, as,....an).
Moreover, we see that f(b) = 2 0k, t{b) = 2 xi—1 = fla)—1.
Our study starts with the following
Lemma 1. Leta= (a), b= (b) €(Z" #), anda> b. If
a=a">d"> .- >ad?’=b (d€(Z"#))
then p = 2.0k, i(a;i—b;), whence the length p is uniquely determined by a > b.
Proof.

E?:l i(az_bz) = Ztn=1 iat—Z:{L: ib, = f(a)—f(b)
— Zf;t} (f(am) —f(a(””)) =p.

The above p will be denoted by |a > b |.

Lemma 2. Let A =TI~ [ui, vi] where us, i€ Z and u, < v, (i €
N). fa,be Aand a>>, bthena> b.
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Proof. Let a={(a;)and b = (b;). One will easily see that our assertion
is true for (Z, #). Hence we assume that our lemma holds for (Z" !, #).
For any r = (ry, ..., rn) € (Z", #). we set C)(r) = (r,, ..., rs), and Cy(A)
= {Cy(r) ; r € A). Then C,(A) can be regarded as a subset of (Z"!, #),
and Cy(a), Cy(b) € C,(A). Clearly Cy(a) = Cy(b). In case Cy(a) = C,(b),
one will easily see that b =(a,—1, a,, ..., ap) where a, > u,, and so,
a > b. Hence, let Cy(a) > C,(b). Then, there exists an element e’ in
C,(A) such that

Cz(a) >c,(a) e = Cz(b)

By the induction assumption, we have C,(a) > e'. Hence e’ coincides with
either

f': (a2v--~sak—2‘ak—1+1-«ak_1valc+l ..... an)
where 3 = k=< n, ar_, < vi_1 and ax > ui (in case k= 3, f' is taken as
(a,+1, a;—1, aq,...,ay)), or

g = (a,—1, as,...,a,)
where a, > u,. In case e' = f', we set

f= (111‘ Azyeeis@rozy Qg+ 1. ax—1, Qrerseens @n).
Then fe A, t,(f) = ti(a) = t,(b), C(f) = e 2 C,(b), and whence
a>f=bin A. Hence f=050, and so, a > b. In case e’ = g', we set

g=(a1+1.a,—1, as,....an).
If a; < v, then there exists a chain a > g = b in A, whence g = b, and so,
a> b. If ax = v, then there is a chain

a> (a—1, az,...,an) > (a1, a:—1, as,...,an) = bin A

which is a contradiction. This completes the proof.

By virtue of the results of Lemma 1 and Lemma 2, we obtain the following

Theorem 3. Let A= H?:] [u;. ’V;] where Uz, Vi € Z and U < vy (l e
N). Then, ifa= (a), b= (b) €A, a> b, and

a=d">,d">, - 2,ad"=b (dPe€A)
theng= |a> b| = 21, ila:—b), and ' > a** for t = 0,1,...,¢—1.
Lemma 4. Let A =TI~ [ui.v] where us, viE Z and w, < v; (i €

N). Let b=(b), ¢, d€A, c*+d, ¢c>b d>b, ande=c\Ud in the
lattice (Z™, #). Then

e€EA eDcDb, e>d>b,
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and forr€E A withr 2 cand r 2 d,
r=eand |r=e|l = |r>b|-2.

Proof. We have the two cases (1) and (2) :
(1) ¢=(bi+1, bs,...,bs) and
d= (b19---,bj—21 bJ—l_]., bj+1, bj+1,...,bn) (2 = _] = n);
(2) c = (b],...,bz_z, bt_l—]., b,:+1, bz+1,...,bn) (2 § lé n) and
d=(bryecesbs_z, bio1—1, bs+1, bjsr, ..., bn) (i £ j—1 < n).
In case (1) and j—1 > 1, we set
e’ =(bi+1, bsy.c,bs_z, bso1—1, bysr+1, bsiz,...,bn).
In case (1) and j—1 =1, we set
e'= (bl, b2+1, ba,...,bn).
In case (2) and j—1 > i, we set
e' - (bl,...,bi_z, bt_l'—l, bi+1, bi+1,...
venbi_ay, bii—1, 0541, bisr,.an, ba).
In case (2) and j—1 = i, we set
e = (bl,---, bz, biov—1, by, by +1, bi+z,...,bn).
Then we have

e €A e>Dc>b ande > d>b.

Since (Z", #) is a lattice, e’coincides with ¢ U d in (Z™ #), that is, e =
e. Moreover, for r € A with r = ¢ and r 2 d, we see that

r2eand |[r2e| = |r>b|—2.

Lemma 5. Let A=1II%~, [us, vi] where us,vi€ Z and w, < v; (i €
N). Letc,d€ A e=cUd, and f= c N d in the lattice (Z", #). Then
e, f€ A.

Proof. Clearly u=(u;) €4, c=u, and d = u. Hance, we have
e= u and a finite length |e= u|. Letm(c,d)be the smallest integer
in{le2w|;c=2w,d=w, weA}. f mc,d) =0then ¢c=d=e. By
the induction with respect to m(c, d), we shall prove that e € A. Hence, let
m(c,d) =1t 21, and assume that ¢’ U d' € A for ¢, d'€ A with m(c', d') < t.
If either ¢ 2 d or d 2 ¢ then our assertion holds trivially. Hence, let
c® dandd 2 c. Let w, be an element of A such that |e = wy| = m(e, d),
and consider the following chains (note Theorem 3):

eZc=c">e"> o> =w (e A),
e=d=d">d"> .- >d?= w (d¥ € A).
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Clearly ¢'» " # d'“"". To prove e € A, we shall distinguish the following
cases : '

(1) ¢> wo, d> wo;

(2) > wo, d=dT?(¢=22);

(3) e=2c*"? d=2dv?(p=2, ¢g=2).

In case (1), we have e = ¢ U d € A by Lemma 4.

In case (2), we set w; = ¢ U d'“". Then, we have w, € A by Lemma
4, and w; U d = e. Moreover, w; = d9°", d = 4", and so, m(w,, d) <
t. Hence, we have w; U d € A by the induction assumption, that is, e € A.

In case (3), we set w, = ¢® " U d'“". Then, we have w, € A by
Lemma 4, and (¢ U w1) U (w;, U d) = e. Since m(c, wi) < t and m(w,, d)
< t, we have ¢ U w; € A and wi U d € A. Moreover, since m(c U w;, w,
U d) < t, it follows that (¢ U wy) U (wy U d) € A, that is, e€ A. By the
duality of the lattice (Z", #), we have f€ A. This completes the proof.

Now, by virtue of the result of Lemma 5, we obtain the following theorem
which is our main result.

Theorem 6. Let A = II %, [u:, v(] where us, vi€ Z and u; < v, (i €
N). Then A is a modular sublattice of (Z", #).

By the general theory of modular lattices, it has been known that for
any modular lattice with both chain conditions and for any chain a =2 b in its
lattice, the composition chains a > --- > b has a unique length (cf. Lemma
1, Theorem 3, Theorem 6, [1], [2], and [5]). Now, we shall prove the

following

Theorem 7. Let A = IT %~ [us, vi] where usp,vi€E Z and w; < v, (i €
N). Then A is a modular lattice under the ordering in (Z", #), and whence
it is a Cohen-Macaulay poset. Ifa = (a)), b = (b)) € A, a> b and

a= a(o) >d a(ll >>A >>/J a{ql —_ b (a(tle A)

then g = |a>b|— X% i(0)(a;—by) = 2% (i—i(0))(a,—b:) where i0)
is the cardinal number of the set{jE N; us = vy, j < i].

Proof. Let {e(1),....,e(m)] ={i € N; us < v;} where (1) < .- <
e(m). Then, there is an ordered isomorphism

g[/: A = HZ‘:] [ui, ’Vt] _— H}n=l [ue(J), 'Vs:(."l] (C (Zm; #))
such that ¢{(di, ..., dn)) = (deay, .-, deem). By Theorem 6, ¢(A) is a mod-
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ular sublattice of (Z™ #). Hence A is a modular lattice under the ordering
in (Z™ #). Since uey < vew for j=1,...,m and ¢(a"”) Dea ¢(a**") in
HA) for t =0,1,...,¢g—1, we have ¢ = 231, j(@aesy—bew) by Theorem 3.
Hence, it follows from Lemma 1 that

Ia >b I = 2?:1 i(a;—b;) = Z}‘Ll (]+ E(j)(o))(ae(!)'—asli))
= Z?:) j(asLil_ble))+Z}n=l E(j)(o)(ae(dl_be(i))
= q+2.3%, #0)(a:—by).

Remark. Let B be a ring with an identity 1 and A a subring of B with
common identity 1 of B. In [4], a sequence of additive A-endomorphisms
{fo =1, fi,....fa) of B is said to be a relative sequence of homomorphisms
with ¥ if it satisfies the following conditions : for every j€ N={1,2,...,n},

(1) fifx=ffr and f(1)= 0 for all k€ N.

(2) There exists ¥; = {g(fi, f;) ; 0 = i = j} C End(B,) such that
(i) filzy) = Zieo g(fi, f)2) fly) for x, y € B,

(ii) g(fi, fo) = fi,

(iii) g(fs, fi) is a ring isomorphism.

As is easily seen, for an A-automorphism o of B, if we put D = o—1,
then ® ={D° =1, D,...,D") becomes a relative sequence of homomorphisms

with ¥ such that
U, =(g(D’, D) = ('::)U‘DJ"‘; 0=si<jl.

A subset ¢ = {d, = 1,d,,...,d,} of End(B,) is said to be an A-higher
derivation of B if d(xy) = 210 d;_{x)d{y) for x, y € B. Then @ becomes
a relative sequence of homomorphisms with ¥ such that ¥, = (g(d;, d;) =
d;_; ;0= i< j].

Now, for a relative sequence of homomorphisms @ = {f, = 1, f2,..., fa)
with ¥, we consider the multiplication subsemigroup L of End(B,) which is
generated by @, and assume the following conditions on L :

(1) There exists a positive integer g such that (fx)? =0 and (fx)* +0
forallkeNand0 = s=¢g—1.

(2) MX. ft+0if0=<s5,<qg—1forall ieN.

(3) Q=ML fi**andA =1k, fi"(0 < s5;,,7: < g—1), then Q=
A if and only if s, = r; for all i € N.

Then L = UU {0} where U={IT~, f;%; 0 < s, = ¢—1) becomes a
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commutative finite multiplicative subsemigroup of End(B,), and U becomes a
modular lattice as is shown in Theorem 6.

Further, in this case, we can see that

(i)*: Qxy) = Xirca8(Q I')(x)I(y)

for x, y € B where g(Q, I') is obtained as a sum of products of g( fi, fi.)'s
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[5] R

fis = Qand Il s fiy = I'. One of the authors made a study on Galois
of B/A where A= B*={be€ B: A(b) =0 for all A(+1) € U}
In that paper, (i)* and the uniqueness of | 2 > 1| play important
One of motivations of this paper comes from this study of Galois
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