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1. Introduction. Let n be an odd integer > 1, and V the space of row
vectors of size n over GF(2). Let u = (uo, u1,***, tn_1) and v = (vo, v,
va_1) be vectors of V. Then the weight of u, denoted by wt(u), is the number
of i’s such that w, = 1, 0 < i < n—1, and the distance between » and »,
denoted by d(u, v), is the number of i’s such that u, #+ v;, 0 < i < n—1.
Obviously, d(u, v) = wtlu—w).

(V, d) is a metric space. An automorphism 7 of (V, d) is an automor-
phism of V preserving d, and so 7 may be regarded as a permutation on n
coordinate positions of vectors. Thus the automorphism group of (V,d) is the
symmetric group S, of all permutations on n coordinate positiqns of vectors.

A subspace C of V is called a binary code of length n. An automorphism
r of (V,d) such that Cr = C is called an automorphism of C. The set of all
automorphisms of C forms a subgroup G(C) of S, called the automorphism
group of C.

C is called cyclic if G(C) contains an n-cycle s. Usually s is taken as
the cyclic shift (0,1,-:-, n—1), and then V and u are identified with the ring
Rn. = GF(2)[x]/(x®"—1) and a polynomial ue+wx++**+ up_rx™" (mod ("
—1)) respectively. Under this circumstance a cyclic code C becomes an
ideal of R, and vice versa.

Let Z be the ring of integers and Z, = Z/(n). Then Z, may be regard-
ed as the set of n coordinate positions of vectors. Let a be an integer
relatively prime to n. Let {(a) be a multiplicative subgroup of Z, generated
by a. A multiplicative coset {(a)i, i € Z,, of Z, with respect to {a) is
called a cyclotomic coset with respect to a. Obviously, {a)0 = {0]. Further
let xqo be a permutation on Z, defined by i, = ia, i € Z,.

Now R, may be regarded as the group algebra over GF(2) of a cyclic
group of order n. Since n is odd, R, is semisimple and a cyclic code C is
generated by an idempotent e. Let e = 2 ,csx’, where S is a subset of Z,.
We notice that 2 is relatively prime to n. Then since e is an idempotent,
Sy: = S. Namely S is a union of cyclotomic cosets with respect to 2.

A partition of Z,—|0} into two subsets S and T, Z,—{0} =S U T and
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SN T= @, is called a splitting of Z, if S and T are unions of cyclotomic
cosets with respect to 2 and if there exists an integer a relatively prime to
n such that T = Su,. Now let C be a cyclic code and e the idempotent of C,
e = 2 ;eyx’, where Uis asubsetof Z,, f U= S,{0lU S, Tor|0}U T,
then C is called duadic (See[2]).

If n= p is a prime such that 2 is a quadratic residue mod p, then Z,—
{0} = QU N, where Q and N denote the sets of quadratic residues and non-
residues mod. p respectively, is a splitting of Z, and the corresponding
duadic codes are called quadratic residue codes. Thus duadic codes are
generalization of quadratic residue codes.

Let u be a vector of length n. Then a vector # of length n+1 defined
by @ = (u, wt(u)), where wt(u) = wt{u)(mod 2), is called the extension of
u by an overall parity check. If C is a code of length n and C= | &, u € C},
then C is called the extension of C.

Now the purpose of the present paper is to prove the following theorem.

Theorem. Let C be a duadic cobe of length n and C the extension of C.
If the automorphism group G{(C) of C is transitive on the set Q = Z, U {0}
of n+1 coordinates positions and contains no regular normal subgroup, then n
equals a prime p and C is equivalent to a quadratic residue code of length p.

2. Proof of Theorem. For the proof we use the following facts on
duadic codes. For these see[2].

Fact 1. Any prime factor of n is congruent to +1 (mod 8).
Fact 2. Let d(C) = o%ié’c‘ wt(u)]. d(C) is called the minimum weight

of C. For duadic C d(C) = 3.
Fact 3. The automorphism group G(C) of C contains an n-cycle (which
is clear from the definition of C).

We may assume that G(C) is the stabilizer of o in G(C), the automor-
phism group of C. So by Fact 3 G(C) is 2-transitive on Q. All 2-transitive
groups without regular normal subgroups are known ([1]). So, in order to
prove the theorem, we check the list one by one.

(i) By Fact 1 we can eliminate immediately 2-transitive groups of
sporadic and of twisted type of even degrees. Namely the Higman-Sims group
has degree 176, the Conway group has degree 276, and Ree groups have
degrees ¢*+1, where ¢ = 3***' with A > 1.

(ii) If G(C) contains the alternating group of degree n+1, then G(C)
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contains all 3-cycles. Then it is easy to see that C contains a vector of
weight 2 against Fact 2.

(iii) If G(C) is a 2-transitive group of unitary type, then n+1 =
¢*+1, where ¢ = p° is odd. Let s, be the p-part of s. Then the order of a
Sylow p-subgroup P equals fp*°, where f is a divisor of s,. If P contains an
n-cycle o, then o” belongs to a Sylow p-subgroup of the projective special
unitary group PSU(3, ¢?) which has exponent p. Since the order of ¢’
equals p*®/f, we have a contradiction.

(iv) Now assume that G(C) is a 2-transitive group of symplectic type.
Then we have that n+1 = 2*'(2*+1) or n+1 = 2*'(2*—1), where A =
3. In the first case, n=(2*—1)(2*'+1). If A is even, then n = 0 (mod 3).
If A=3(mod4), then n = 0(mod 5). So by Fact 1 we have that A =
1(mod 4). In the second case, n = (2*+1)(2*'—1). Similarly as above
we obtain that A = 0 (mod 4). By Fact 3 G(C) contains an n-cycle Z. Since
n is odd, the matrix Z of degree 2\ over GF(2) has an eigenvalue a which
is a primitive n-th root of unity over GF(2). Let GF(2°%) = GF(2)(a).

Here and below we use the following theorem of Zsigmondy (For a proof
see[3]): Let a and b be positive integers greater than 1. Then there exists
a prime number p such that b equals the order of @ modulo p. Exceptions
occur only when a = 2 and b = 6, and @ is a Mersenne prime and b = 2.

Now in our first case there exist two primes p, and p, such that A and
2(A—1) are the orders of 2 modulo p, and modulo p. respectively. So we
have that s > 2A. This is a contradiction. Similarly in our second case
there exist two primes p, and p, such that 2X and A—1 are the orders of 2
modulo p, and modulo p. respectively. So we have again that s > 2A. This
is a contradiction.

(v) Finally we assume that G(C) is a 2-transitive group of linear
type. So 2 may be identified with the set of points of the projective geo-
metry of dimension A—1 over GF(¢) and we have that PSL(A, ¢) S G(C) &
PI'L(A, ¢), where PSL(A, g) and PI'L(A, ¢) are the projective special
linear group and the projective semi-linear group of degree A over GF(g)
respectively. Furthermore we have that n+1 = (¢*—1)/(¢—1) and n=

(g*'—1)/(g—1). Since n+1 is even, ¢ = p°, where p is a prime, is odd
and A is even.

Let us assume that A > 4. Let PGL(A, ¢) denote the projective general
linear group of degree A over GF(g). Let u = ((1, 0,-:+, 0)) and v = {(0,
1,0,:>-, 0)) be two points of Q. By Fact 3 the stabllizer (PI"L(A, ¢)) of
in PI"L(A, ¢) contains an n-cycle Z so that (PI"L(A, ¢)), = (PC'L(A, ¢))us
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(Z) and (PT"L(A, ¢))us N {Z) = (1), where (PI"L(A, q))u, is the stabilizer
of w and v in PI'L(A, ¢). Now Z= Z,Z,, where Z, belongs to (PGL(A, 7)),
and Z; is a field automorphism. Let f be the order of Z,. Then f is a di-
visor of s and Z” belongs to PGL(A, ¢) and has order n/f. Clearly the
p-part of n/f is greater than 1.

Since p is odd and A = 4, by the above theorem of Zsigmondy there
exists a prime number # such that s{(A—1) is the order of p modulo . Then
s(A—1) is a divisor of t—1, and hence n/f is divisible by .

Let A be an element of GL(A, ¢), the general linear group of degree A
over GF(¢), corresponding to Z7. Then A = PS = SP, where P and S
denote the p-part and prime to p-part of A respectively. Then S has the form

a 0---0

a2
S, |, where a; € GF(g), 1 < i< A and S, has degree A—1.

ay

Since the order of S is divisible by ¢, the eigenvalues of S,, and hence of
S, are all distinct. In fact, if A (% 1) is an eigenvalue of S; then A%,
1 < i< A—1, are eigenvalues of S, and they are distinct. Now since P
commute with S, P must be diagonalizable. Since P is a p-element, then
P =1, the identity. This is a contradiction. Thus we obtain that A = 2.

Let s, be the p-part of s. Then a Sylow p-subgroup of PI'L(2, ¢) has
order s,p°, and a Sylow p-subgroup of PGL(2, ¢) is elementary Abelian of
order p°. Since spp (p° if s) 1, Fact 3 implies that s = 1. Now we get
the theorem by Theorem 6 of [2].

Remark. For n = 23 there exists the famous Mathieu group M, which
is 4- and hence 2-transitive of sporadic type and the corresponding also
famous Golay code. However, the Golay code is equivalent to a quadratic
residue code.
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