A CHARACTERIZATION OF QUADRATIC RESIDUE CODES

To Bertram Huppert on his 60th birthday

Noboru ITO

1. Introduction. Let n be an odd integer > 1, and V the space of row vectors of size n over GF(2). Let $u = (u_0, u_1, \dots, u_{n-1})$ and $v = (v_0, v_1, \dots, v_{n-1})$ be vectors of V. Then the weight of u, denoted by $\operatorname{wt}(u)$, is the number of i's such that $u_i = 1$, $0 \le i \le n-1$, and the distance between u and v, denoted by d(u, v), is the number of i's such that $u_i \ne v_i$, $0 \le i \le n-1$. Obviously, $d(u, v) = \operatorname{wt}(u-v)$.

(V, d) is a metric space. An automorphism τ of (V, d) is an automorphism of V preserving d, and so τ may be regarded as a permutation on n coordinate positions of vectors. Thus the automorphism group of (V, d) is the symmetric group S_n of all permutations on n coordinate positions of vectors.

A subspace C of V is called a binary code of length n. An automorphism τ of (V,d) such that $C\tau=C$ is called an automorphism of C. The set of all automorphisms of C forms a subgroup G(C) of S_n called the automorphism group of C.

C is called cyclic if G(C) contains an n-cycle s. Usually s is taken as the cyclic shift $(0,1,\cdots,n-1)$, and then V and u are identified with the ring $R_n = \mathrm{GF}(2)[x]/(x^n-1)$ and a polynomial $u_0 + u_1x + \cdots + u_{n-1}x^{n-1} \pmod{x^n-1}$ respectively. Under this circumstance a cyclic code C becomes an ideal of R_n and vice versa.

Let Z be the ring of integers and $Z_n = Z/(n)$. Then Z_n may be regarded as the set of n coordinate positions of vectors. Let a be an integer relatively prime to n. Let $\langle a \rangle$ be a multiplicative subgroup of Z_n generated by a. A multiplicative coset $\langle a \rangle i$, $i \in Z_n$, of Z_n with respect to $\langle a \rangle$ is called a cyclotomic coset with respect to a. Obviously, $\langle a \rangle 0 = |0|$. Further let μ_a be a permutation on Z_n defined by $i\mu_a = ia$, $i \in Z_n$.

Now R_n may be regarded as the group algebra over GF(2) of a cyclic group of order n. Since n is odd, R_n is semisimple and a cyclic code C is generated by an idempotent e. Let $e = \sum_{i \in S} x^i$, where S is a subset of Z_n . We notice that 2 is relatively prime to n. Then since e is an idempotent, $S\mu_2 = S$. Namely S is a union of cyclotomic cosets with respect to 2.

A partition of $Z_n - \{0\}$ into two subsets S and T, $Z_n - \{0\} = S \cup T$ and

 $S \cap T = \emptyset$, is called a splitting of Z_n if S and T are unions of cyclotomic cosets with respect to 2 and if there exists an integer a relatively prime to n such that $T = S\mu_a$. Now let C be a cyclic code and e the idempotent of C, $e = \sum_{i \in V} x^i$, where U is a subset of Z_n . If U = S, $\{0\} \cup S$, T or $\{0\} \cup T$, then C is called duadic (See [2]).

If n = p is a prime such that 2 is a quadratic residue mod p, then $Z_n - \{0\} = Q \cup N$, where Q and N denote the sets of quadratic residues and non-residues mod. p respectively, is a splitting of Z_p and the corresponding duadic codes are called quadratic residue codes. Thus duadic codes are generalization of quadratic residue codes.

Let u be a vector of length n. Then a vector \bar{u} of length n+1 defined by $\bar{u} = (u, \overline{\operatorname{wt}(u)})$, where $\overline{\operatorname{wt}(u)} = \operatorname{wt}(u)(\operatorname{mod} 2)$, is called the extension of u by an overall parity check. If C is a code of length n and $\bar{C} = \{\bar{u}, u \in C\}$, then \bar{C} is called the extension of C.

Now the purpose of the present paper is to prove the following theorem.

Theorem. Let C be a duadic cobe of length n and \overline{C} the extension of C. If the automorphism group $G(\overline{C})$ of \overline{C} is transitive on the set $\Omega = Z_n \cup \{\infty\}$ of n+1 coordinates positions and contains no regular normal subgroup, then n equals a prime p and C is equivalent to a quadratic residue code of length p.

- 2. Proof of Theorem. For the proof we use the following facts on duadic codes. For these see [2].
 - Fact 1. Any prime factor of n is congruent to $\pm 1 \pmod{8}$.
- Fact 2. Let $d(C) = \min_{0 \neq u \in C} |\operatorname{wt}(u)|$. d(C) is called the minimum weight of C. For duadic C $d(C) \geq 3$.
- Fact 3. The automorphism group G(C) of C contains an n-cycle (which is clear from the definition of C).

We may assume that G(C) is the stabilizer of ∞ in $G(\overline{C})$, the automorphism group of \overline{C} . So by Fact 3 $G(\overline{C})$ is 2-transitive on Ω . All 2-transitive groups without regular normal subgroups are known ([1]). So, in order to prove the theorem, we check the list one by one.

- (i) By Fact 1 we can eliminate immediately 2-transitive groups of sporadic and of twisted type of even degrees. Namely the Higman-Sims group has degree 176, the Conway group has degree 276, and Ree groups have degrees q^3+1 , where $q=3^{2\lambda+1}$ with $\lambda \geq 1$.
 - (ii) If $G(\overline{C})$ contains the alternating group of degree n+1, then $G(\overline{C})$

contains all 3-cycles. Then it is easy to see that C contains a vector of weight 2 against Fact 2.

- (iii) If G(C) is a 2-transitive group of unitary type, then $n+1=q^3+1$, where $q=p^s$ is odd. Let s_p be the p-part of s. Then the order of a Sylow p-subgroup P equals fp^{3s} , where f is a divisor of s_p . If P contains an n-cycle σ , then σ' belongs to a Sylow p-subgroup of the projective special unitary group $PSU(3, q^2)$ which has exponent p. Since the order of σ' equals p^{3s}/f , we have a contradiction.
- (iv) Now assume that $G(\overline{C})$ is a 2-transitive group of symplectic type. Then we have that $n+1=2^{\lambda-1}(2^{\lambda}+1)$ or $n+1=2^{\lambda-1}(2^{\lambda}-1)$, where $\lambda\geq 3$. In the first case, $n=(2^{\lambda}-1)(2^{\lambda-1}+1)$. If λ is even, then $n\equiv 0\pmod 3$. If $\lambda\equiv 3\pmod 4$, then $n\equiv 0\pmod 5$. So by Fact 1 we have that $\lambda\equiv 1\pmod 4$. In the second case, $n=(2^{\lambda}+1)(2^{\lambda-1}-1)$. Similarly as above we obtain that $\lambda\equiv 0\pmod 4$. By Fact 3G(C) contains an n-cycle Z. Since n is odd, the matrix Z of degree 2λ over GF(2) has an eigenvalue α which is a primitive n-th root of unity over GF(2). Let $GF(2^s)=GF(2)(\alpha)$.

Here and below we use the following theorem of Zsigmondy (For a proof see [3]): Let a and b be positive integers greater than 1. Then there exists a prime number p such that b equals the order of a modulo p. Exceptions occur only when a=2 and b=6, and a is a Mersenne prime and b=2.

Now in our first case there exist two primes p_1 and p_2 such that λ and $2(\lambda-1)$ are the orders of 2 modulo p_1 and modulo p_2 respectively. So we have that $s>2\lambda$. This is a contradiction. Similarly in our second case there exist two primes p_1 and p_2 such that 2λ and $\lambda-1$ are the orders of 2 modulo p_1 and modulo p_2 respectively. So we have again that $s>2\lambda$. This is a contradiction.

(v) Finally we assume that $G(\overline{C})$ is a 2-transitive group of linear type. So Ω may be identified with the set of points of the projective geometry of dimension $\lambda-1$ over GF(q) and we have that $PSL(\lambda, q) \subseteq G(\overline{C}) \subseteq P\Gamma L(\lambda, q)$, where $PSL(\lambda, q)$ and $P\Gamma L(\lambda, q)$ are the projective special linear group and the projective semi-linear group of degree λ over GF(q) respectively. Furthermore we have that $n+1=(q^{\lambda}-1)/(q-1)$ and $n=(q^{\lambda-1}-1)/(q-1)$. Since n+1 is even, $q=p^s$, where p is a prime, is odd and λ is even.

Let us assume that $\lambda \geq 4$. Let $\operatorname{PGL}(\lambda, q)$ denote the projective general linear group of degree λ over $\operatorname{GF}(q)$. Let $u = \langle (1, 0, \dots, 0) \rangle$ and $v = \langle (0, 1, 0, \dots, 0) \rangle$ be two points of Ω . By Fact 3 the stabllizer $(\operatorname{P}\Gamma L(\lambda, q))_u$ of u in $\operatorname{P}\Gamma L(\lambda, q)$ contains an n-cycle Z so that $(\operatorname{P}\Gamma L(\lambda, q))_u = (\operatorname{P}\Gamma L(\lambda, q))_{uv}$

 $\langle Z \rangle$ and $(P\Gamma L(\lambda, q))_{u,v} \cap \langle Z \rangle = \langle 1 \rangle$, where $(P\Gamma L(\lambda, q))_u$, is the stabilizer of u and v in $P\Gamma L(\lambda, q)$. Now $Z = Z_g Z_a$, where Z_g belongs to $(PGL(\lambda, q))_u$ and Z_a is a field automorphism. Let f be the order of Z_a . Then f is a divisor of s and Z^f belongs to $PGL(\lambda, q)$ and has order n/f. Clearly the p-part of n/f is greater than 1.

Since p is odd and $\lambda \geq 4$, by the above theorem of Zsigmondy there exists a prime number t such that $s(\lambda-1)$ is the order of p modulo t. Then $s(\lambda-1)$ is a divisor of t-1, and hence n/f is divisible by t.

Let A be an element of $GL(\lambda, q)$, the general linear group of degree λ over GF(q), corresponding to Z^f . Then A = PS = SP, where P and S denote the p-part and prime to p-part of A respectively. Then S has the form

$$\begin{pmatrix} a_1 & 0 & \cdots & 0 \\ a_2 & & & & \\ \vdots & & & & \\ a_1 & & & \end{pmatrix}, \text{ where } a_i \in \mathrm{GF}(q), \ 1 \le i \le \lambda \text{ and } S_1 \text{ has degree } \lambda - 1.$$

Since the order of S is divisible by t, the eigenvalues of S_1 , and hence of S, are all distinct. In fact, if λ (\neq 1) is an eigenvalue of S_1 then λ^{qt} , $1 \leq i \leq \lambda-1$, are eigenvalues of S_1 and they are distinct. Now since P commute with S, P must be diagonalizable. Since P is a p-element, then P = I, the identity. This is a contradiction. Thus we obtain that $\lambda = 2$.

Let s_p be the *p*-part of *s*. Then a Sylow *p*-subgroup of $P\Gamma L(2, q)$ has order $s_p p^s$, and a Sylow *p*-subgroup of PGL(2, q) is elementary Abelian of order p^s . Since $s_p p \langle p^s \text{ if } s \rangle 1$, Fact 3 implies that s = 1. Now we get the theorem by Theorem 6 of [2].

Remark. For n=23 there exists the famous Mathieu group M_{23} which is 4- and hence 2-transitive of sporadic type and the corresponding also famous Golay code. However, the Golay code is equivalent to a quadratic residue code.

References

- [1] P. J. CAMERON: Finite permutation group and finite simple group, Bull. London Math. Soc. 13 (1981), 1-22.
- [2] J. LEON, J. M. MASLEY and V. PLESS: Duadic code. LEEE Trans. on Inform. Theory, it-30 (1984), 709-714.
- [3] L. RÉDEI: Über die algebraischzahlentheoretische Verallgemeinerung eines elementarzahlentheoretischen Satzes von Zsigmondy, Acta Sci. Math. Szeged 19 (1958), 98-126.

DEPARTMENT OF APPLIED MATHEMATICS
KONAN UNIVERSITY,
KOBE, JAPAN 658
(Received April 10, 1986)