SOME INTEGRAL FORMULAS FOR RIEMANNIAN MANIFOLDS

Макото YAWATA

1. Introduction. Let (M, g) be a compact n-dimensional Riemannian manifold with positive definite metric tensor $g = (g_{ij})$ and ∇ the Levi-Civita connection. By $R = (R_{hij}{}^k)$, $\rho(R) = (R_{ij})$ and $\tau(R) = R$, we denote the Riemannian curvature tensor, the Ricci curvature tensor and the scalar curvature, respectively.

In his paper [2], T. Sakai obtained the following integral formula:

$$(1. 1) \int_{\mathbf{R}} K d\mathbf{M} = \int_{\mathbf{R}} (\|(\nabla \tau)(\mathbf{R})\|^2 - 4\|(\nabla \rho)(\mathbf{R})\|^2 + \|\nabla \mathbf{R}\|^2) d\mathbf{M},$$

where dM is the volume element of (M, g) and

(1. 2)
$$K = 4 R^{hi} R_{h}{}^{a} R_{ia} - 4 R^{hi} R^{jk} R_{hjkl} - 2 R^{ab} R_{ahij} R_{b}{}^{hij} - 4 R^{hijh} R_{aikb} - R^{hijh} R_{hiab} R_{jk}{}^{ab}.$$

In this note, we define a generalized curvature tensor field $T = (T_{hij}^{k})$ by

(1.3)
$$T_{hijk} = -\frac{1}{4} \left(R_h{}^a R_{aijk} + R_i{}^a R_{hajk} + R_j{}^a R_{hiak} + R_k{}^a R_{hija} \right) + R^a{}_{hi}{}^b R_{jkab} - R^a{}_{hj}{}^b R_{aikb} + R^a{}_{ij}{}^b R_{ahkb}.$$

where $T_{hijk} = T_{hij}{}^a g_{ak}$. Then, as for T, we shall prove the following theorems.

Theorem A. Let (M, g) be a compact Riemannian manifold and C the 3-dimensional Weyl's conformal curvature tensor field. Then the following formula holds:

$$2\int_{\mathbf{M}}\left(\mathbf{C},\ \mathbf{T}\right)\ d\mathbf{M} = \int_{\mathbf{M}}\left(\parallel(\ \nabla\tau)(\mathbf{R})\parallel^2 - 4\parallel(\ \nabla\rho)(\mathbf{R})\parallel^2 + \parallel\ \nabla\mathbf{R}\parallel^2\right)\ d\mathbf{M}.$$

Theorem B. Let (M, g) be a locally symmetric Riemannian manifold. Then the generalized curvature tensor field T is identically zero.

Theorem C. Let (M, g) be a compact Riemannian manifold. If the Ricci curvature tensor satisfies the Codazzi equation $\nabla_h R_{ij} = \nabla_i R_{hj}$, then we

have

$$\int_{\mathbf{w}} (\mathbf{R}, \ \mathbf{T}) \ d\mathbf{M} \ge 0.$$

The equality holds on M if (M, g) is a locally symmetric Riemannian manifold.

2. Notations and definitions. We denote the contravariant components of g by $g^{\mathcal{U}}$ and follow the summation convention for repeated indices. Let (,) denote inner product and $\| \ \|$ norm.

The Riemannian curvature tensor $R = (R_{hij}{}^k)$ is defined by $R(X, Y)Z = [\nabla_X, \nabla_Y]Z - \nabla_{[X,Y]}Z$ for vector fields X, Y and Z and $R(\partial_h, \partial_i)\partial_j = R_{hij}{}^k\partial_k$. Let us denote the covariant components of R by $R_{hijk} = g(R(\partial_h, \partial_i)\partial_j, \partial_k)$. Then the components of the Ricci curvature tensor $\rho(R)$ and the scalar curvature $\tau(R)$ are given, respectively, by $R_{ij} = g^{ab}R_{aljb}$ and $R = g^{ab}R_{ab}$.

A (1, 3)-tensor field $\mathbf{D} = (D_{hij}^{k})$ is called a generalized curvature tensor field if it satisfies the conditions:

(2. 1)
$$D_{hij}{}^{k} = -D_{ihj}{}^{k},$$

$$(2. 1) \qquad (2) \quad D_{hijk} = -D_{hikj} \quad (D_{hijk} = D_{hij}{}^{a}g_{ak}),$$

$$(3) \quad D_{hij}{}^{k} + D_{ijh}{}^{k} + D_{jhi}{}^{k} = 0$$

We denote the Ricci curvature tensor and the scalar curvature associated with \mathbf{D} by $\rho(\mathbf{D}) = (D_{ij}) = (g^{ab}D_{aijb})$ and $\tau(\mathbf{D}) = D = g^{ab}D_{ab}$, respectively. By virtue of the first Bianchi identity, we can find that \mathbf{T} has the properties $(1) \sim (3)$ in (2, 1). The Ricci curvature tensor $\rho(\mathbf{T}) = (T_{ij})$ and the scalar curvature $\tau(\mathbf{T}) = T$ associated with the tensor field \mathbf{T} are given, respectively, by

(2. 2)
$$T_{ij} = \frac{1}{2} (R^{ab} R_{aijb} - R_i{}^a R_{aj}), \qquad T = 0.$$

If we define the (1, 3)-tensor fields $E = (E_{hij}^{k})$ and $F = (F_{hij}^{k})$, in the covariant form, by

(2.3)
$$E_{hijk} = -\frac{1}{4} (R_h{}^a R_{aijk} + R_i{}^a R_{hajk} + R_j{}^a R_{hiak} + R_k{}^a R_{hija}),$$
$$F_{hijk} = R_{hi}{}^b R_{jkab} - R_{hi}{}^b R_{gikb} + R_{ij}{}^b R_{gikb}.$$

then the tensor fields E and F are also generalized curvature tensor fields. Obviously, T = E + F. The Ricci curvature tensors $\rho(E) = (E_{ij})$ and $\rho(F) = (F_{ij})$ are given, respectively, by

(2.4)
$$E_{ij} = -\frac{1}{2} (R^{ab}R_{aijb} + R_i^a R_{aj}),$$
$$F_{ij} = R^{ab}R_{aijb},$$

and the scalar curvatures $\tau(E)=E$ and $\tau(F)=F$ are given by

$$(2. 5) F = -E = R^{ab}R_{ab}.$$

3. Proof of the theorems. Transvecting (1, 3) with R^{hBk} and using the first Bianchi identity, we obtain

$$(3.1) 2(T, R) = -R^{hijk}R_{hiab}R_{jk}^{ab} - 4R^{hijk}R_{ahjb}R^{a}_{ik}^{b} - 2R^{ab}R_{aijk}R_{b}^{ijk}.$$

and transvecting (2. 2) with R^{u} , we have

$$(3, 2) 2(\rho(T), \rho(R)) = R^{hl}R^{jk}R_{hjkl} - R_{l}{}^{a}R_{aj}R^{ij}.$$

Substituting (3. 1) and (3. 2) into (1. 2), we can find that K is written as

(3.3)
$$K = 2(T, R) - 8(\rho(T), \rho(R)).$$

On the other hand, the covariant components of the 3-dimensional Weyl's conformal curvature tensor field $C = (C_{hij}^k)$ are given by

(3.4)
$$C_{hijk} = R_{hijk} - (g_{hk}R_{ij} - g_{ik}R_{hj} + R_{hk}g_{ij} - R_{ik}g_{hj}) + \frac{R}{2}(g_{hk}g_{ij} - g_{ik}g_{hj})$$

Transvecting (3.4) with T^{hUk} and using (2.2), we have

(3. 5)
$$(C, T) = (R, T) - 4(\rho(R), \rho(T)).$$

By (3. 3), K is rewritten as K = 2(C, T). Thus, we obtain Theorem A. Next, we define a (0, 6)-tensor field $H = (H_{hijk,pq})$ by

$$(3. 6) H_{hijk,\rho q} = -(\nabla_{\rho} \nabla_{q} R_{hijk} - \nabla_{q} \nabla_{\rho} R_{hijk}).$$

Then, $H_{hijk,pq}$ is expressed in the form

$$(3.7) H_{hijk,pq} = R_{pqh}{}^a R_{aijk} + R_{pqi}{}^a R_{hajk} + R_{pqj}{}^a R_{hijk} + R_{pqi}{}^a R_{hija},$$

By contracting h with q in (3, 7) and using (2, 3), we have

(3.8)
$$H^{a}_{ijk,pa} = R_{p}{}^{a}R_{aijk} - F_{jkpi}.$$

220 M. YAWATA

If (\mathbf{M}, \mathbf{g}) is a locally symmetric manifold, then the equation $\mathbf{H} = \mathbf{O}$ holds. By (3. 8), we have $R_h{}^a R_{aijk} = F_{hijk}$. Substituting this equation into the first equation in (2. 3), we have $\mathbf{T} = \mathbf{O}$. Thus, we obtain theorem B.

Finally, we shall prove Theorem C. The following integral formula is well known (cf. $\lceil 1 \rceil$):

$$(3. 9) \qquad 2 \int_{\mathbf{M}} (\nabla_{h} R_{ij} - \nabla_{i} R_{hj}) (\nabla^{h} R^{ij} - \nabla^{i} R^{hj}) - R^{hijk} H^{a}_{ijk,ha} d\mathbf{M}$$
$$= \int_{\mathbf{M}} ||\nabla R||^{2} d\mathbf{M}$$

where dM is the volume element of (M, g). On the other hand, by (3.8), we have

(3. 10)
$$R^{hijk}H^a_{ijk,ha} = -R^{hijk}T_{hijk}$$

Therefore, if the Ricci curvature tensor $\rho(\mathbf{R}) = (R_{ij})$ satisfies the condition $\nabla_h R_{ij} = \nabla_i R_{hj}$, then the formula (3. 9) can be reduced to

(3. 11)
$$2 \int (\mathbf{R}, \mathbf{T}) d\mathbf{M} = \int_{\mathbf{M}} ||\nabla \mathbf{R}||^2 d\mathbf{M}.$$

Theorem C is an immediate consequence of (3. 11).

REFERENCES

- A. LICHNEROWICZ: Geometry of groups of transformations, Noordhoff international publising, 1977.
- [2] T. SAKAI: On eigenvalues of Laplacian and curvature of Riemannian manifold, Tôhoku Math. J., 23 (1971), 589-603.
- [3] K. Yano: Differential geometry on complex and almost complex spaces, Pergamon Press,

DEPARTMENT OF MATHEMATICS
CHIBA INSTITUTE OF TECHNOLOGY
NARASHINO, 275, JAPAN

(Received April 1, 1985)