ON THE SPACES $U(2n)/\Delta U$ AND THE BOTT MAPS

Dedicated to Professor Nobuo Shimada on his 60th birthday

MINATO YASUO

Introduction. In [9] the author defined certain maps

$$\varphi_n^o: O(4n)/Sp \to \widetilde{\mathscr{C}}(P_2R; O(4n)) \text{ and } \varphi_n^{sp}: Sp(n)/O \to \widetilde{\mathscr{C}}(P_2R; Sp(n))$$

whose direct limits

$$\mathscr{C}^{o}_{\infty}: O(\infty)/S_{p} \to \widetilde{\mathscr{C}}(\mathbf{P}_{2}\mathbf{R}; O(\infty)) \text{ and } \mathscr{C}^{S_{p}}_{\infty}: S_{p}(\infty)/O \to \widetilde{\mathscr{C}}(\mathbf{P}_{2}\mathbf{R}; S_{p}(\infty))$$

are homotopy equivalences, where P_2R is the real projective plane and $\widetilde{\mathscr{C}}(X;Y)$ denotes the space of basepoint-preserving continuous maps from X to Y. In the present paper, we consider a "unitary analogue" of the matter treated in [9], and in what follows, we continue to use the notation and conventions of [9].

Let U(n) be the group of $n \times n$ complex unitary matrices. In this paper we define maps

$$\mathcal{G}_n^U: U(2n)/\Delta U \to \widetilde{\mathscr{C}}(P_2R; U(2n)) (n = 1, 2, ...),$$

where $U(2n)/\Delta U$ are certain homogeneous spaces such that (as will be shown by our theorem) the limit $U(\infty)/\Delta U = \lim_{\longrightarrow} U(2n)/\Delta U$ is a classifying

space for the functor KU^1 (; $\mathbb{Z}/2$). The definition of \mathcal{P}_n^v is given in § 3, and one of our purposes here is to prove (Theorem 3.5) that the limit map

$$\mathcal{P}_{\infty}^{v}:\,U(\infty)/\Delta U\to\,\widetilde{\mathscr{C}}(\mathbf{P_{2}R}\,;\,U(\infty))$$

is a homotopy equivalence, and that the homomorphism

$$(\varphi_n^U)_* : \pi_r(U(2n)/\Delta U) \to \pi_r(\widetilde{\mathscr{C}}(P_2R; U(2n)))$$

induced by \mathcal{G}_n^U is isomorphic for $r \leq 2n$ with $(r, n) \neq (2, 1)$.

Also, in § 5, we define certain maps

$$\lambda_n^{U/\Delta U}: O(4n)/Sp \to U(4n)/\Delta U$$
 and $\mu_n^{U/\Delta U}: Sp(n)/O \to U(2n)/\Delta U$,

which correspond to the natural embeddings

$$O(4n) \rightarrow U(4n)$$
 and $Sp(n) \rightarrow U(2n)$.

These maps are "compatible" with the maps \mathcal{P}_n^{ν} , \mathcal{P}_n^{o} and $\mathcal{P}_n^{s\rho}$, as we shall show (see Proposition 5.3).

1. Preliminaries. As noted in the introduction, we retain the notation of [9]. Thus

$$J_n = \begin{bmatrix} 0 & -I_n \\ I_n & 0 \end{bmatrix},$$

 I_n being the $n \times n$ identity matrix. Given square matrices A and B, we often write

$$\operatorname{diag}(A, B) = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}.$$

In particular we put

$$T_n = \operatorname{diag}(I_n, -I_n) = \begin{bmatrix} I_n & 0 \\ 0 & -I_n \end{bmatrix}.$$

We define the map $m_n^U: U(n) \times U(n) \to U(2n)$ by putting

$$m_n^U(A, B) = P_n \operatorname{diag}(A, B) P_n^{-1} \text{ for } (A, B) \in U(n) \times U(n),$$

where P_n is the $2n \times 2n$ permutation matrix defined in [9; § 1]. Clearly m_n^U is an injective homomorphism, and by this we embed the product group $U(n) \times U(n)$ in U(2n). We consider the associated homogeneous space, and write

$$U(2n)/(U\times U) = U(2n)/m_n^U(U(n)\times U(n)),$$

where $m_n^{\nu}(U(n)\times U(n))$ is the image of $U(n)\times U(n)$ by m_n^{ν} . Also, we consider the subgroup $\Delta U(n)=\{(A,A)\mid A\in U(n)\}$ of $U(n)\times U(n)$, and put

$$U(2n)/\Delta U = U(2n)/m_n^U(\Delta U(n)),$$

where $m_n^{U}(\Delta U(n)) = \{P_n \operatorname{diag}(A, A)P_n^{-1} \mid A \in U(n)\} \subset m_n^{U}(U(n) \times U(n)).$ The canonical surjections

$$U(2n) \rightarrow U(2n)/(U \times U)$$
 and $U(2n) \rightarrow U(2n)/\Delta U$

are denoted by $\xi_n^{\nu/(\nu \times \nu)}$ and $\xi_n^{\nu/\Delta\nu}$ respectively. Note that $U(2n)/(U \times U)$ is just the space denoted by G_n in $[6; \S 1]$ and can be identified with the complex Grassmann manifold of *n*-dimensional C-vector subspaces of \mathbb{C}^{2n} .

We define the limit spaces

$$U(\infty)/(U \times U) = \lim_{\longrightarrow} U(2n)/(U \times U)$$
 and $U(\infty)/\Delta U = \lim_{\longrightarrow} U(2n)/\Delta U$

in the usual way.

Further, we define the map $\nu_n^U: U(n) \to U(2n)$ by putting

$$\nu_n^U(A) = P_n \operatorname{diag}(A, I_n) P_n^{-1} \text{ for } A \in U(n),$$

and define $\Delta_n^v: U(n) \to U(n) \times U(n)$ to be the diagonal map. Note that the sequences

$$(1.1) \quad U(n) \xrightarrow{\frac{\xi_n^{U/\Delta U} \circ \nu_n^U}{}} U(2n)/\Delta U \longrightarrow U(2n)/(U \times U)$$

and

$$(1.2) \quad U(n) \xrightarrow{m_n^U \circ \Delta_n^U} U(2n) \xrightarrow{\xi_n^{U/\Delta U}} U(2n)/\Delta U$$

are fibration sequences, where the unlabelled map in (1.1) is the canonical surjection associated to the inclusion $\Delta U \subset U \times U$.

2. Bott maps for the unitary case. Here we recall well-known results on the Bott maps for the unitary group. As usual let $\Omega(X)$ denote the loop space of X, and let $\Omega_0(X)$ denote the arcwise-connected component of the trivial loop. Let us consider the maps

$$\omega_n^U: U(2n)/(U\times U) \to \Omega_0(U(2n)),$$
 $\omega_n^{U/(U\times U)}: U(n) \to \Omega(U(2n)/(U\times U))$

defined as follows:

$$\omega_n^{U}(\xi_n^{U/U\times U}(P_nAP_n^{-1}))(t) = P_n \operatorname{comm}(\exp(\pi t i T_n), A) P_n^{-1}$$

where $A \in U(2n), t \in [0, 1];$

$$\begin{split} \omega_n^{U/(U \times U)}(A)(t) &= \xi_n^{U/(U \times U)} \bigg(P_n \text{comm} \left(\exp\left(\frac{\pi}{2} t J_n\right), \operatorname{diag}(A, I_n) \right) P_n^{-1} \bigg) \\ &= \xi_n^{U/(U \times U)} \bigg(P_n \exp\left(\frac{\pi}{2} t J_n\right) \operatorname{diag}(A, I_n) \exp\left(-\frac{\pi}{2} t J_n\right) P_n^{-1} \bigg) \end{split}$$

where $A \in U(n)$, $t \in [0,1]$. Here comm $(A,B) = ABA^{-1}B^{-1}$, and exp is the exponential map. Note that

$$\exp(tiT_n) = I_{2n}\cos(t) + iT_n\sin(t),$$

$$\exp(tJ_n) = I_{2n}\cos(t) + J_n\sin(t)$$

for every $t \in \mathbf{R}$. Taking the direct limits, we then get maps

$$\begin{split} &\omega_{\infty}^{\it U} = \lim_{\longrightarrow} \omega_{\it n}^{\it U}: \, U(\infty)/(U \times U) \, \rightarrow \, \varOmega_0(U(\infty)), \\ &\omega_{\infty}^{\it U/(U \times \it U)} = \lim_{\longrightarrow} \omega_{\it n}^{\it U/(U \times \it U)}: \, U(\infty) \, \rightarrow \, \varOmega(U(\infty)/(U \times \it U)), \end{split}$$

and the Bott periodicity theorem for the unitary group is an immediate consequence of the following:

Theorem 2.1 (see [1], [2], [3], [4], [5], and also [8; § 23]). The maps ω_{∞}^{U} and $\omega_{\infty}^{U/(U \times U)}$ are homotopy equivalences.

3. The maps \mathscr{P}_n^v . As in [9], let $\mathscr{C}(X; Y)$ denote the space of base-point-preserving continuous maps from X to Y. For each n, we define the map

$$\varphi_n^v: U(2n)/\Delta U \to \widetilde{\mathscr{C}}(\mathbf{P_2R}; U(2n))$$

by

$$\mathcal{C}_n^{U}(\xi_n^{U/\Delta U}(P_nAP_n^{-1}))([u_0:u_1:u_2]) = P_n \operatorname{comm}(u_0I_{2n} + u_1iT_n + u_2J_n, A)P_n^{-1}$$

where $A \in U(2n)$, $(u_0, u_1, u_2) \in \mathbb{R}^3$ and $u_0^2 + u_1^2 + u_2^2 = 1$. Let $\widetilde{\mathscr{C}}_0(X; Y)$ denote the arcwise-connected component of the basepoint in $\widetilde{\mathscr{C}}(X; Y)$, and consider the diagram

$$U(n) \xrightarrow{\frac{\xi_{n}^{U/\Delta U} \circ \nu_{n}^{U}}{}} U(2n)/\Delta U \xrightarrow{} U(2n)/(U \times U)$$

$$\downarrow \omega_{n}^{U/(U \times U)} \qquad \qquad \downarrow \omega_{n}^{U}$$

$$(3.1) \qquad \downarrow \Omega(U(2n)/(U \times U)) \qquad \qquad \downarrow \omega_{n}^{U}$$

$$\Omega^{2}(U(2n)) \qquad \qquad \downarrow \Omega_{0}(U(2n))$$

$$\parallel \qquad \qquad \qquad \square$$

$$\mathscr{C}(\mathbf{P}_{2}\mathbf{R}/\mathbf{P}_{1}\mathbf{R}; U(2n)) \rightarrow \mathscr{C}(\mathbf{P}_{2}\mathbf{R}; U(2n)) \rightarrow \mathscr{C}_{0}(\mathbf{P}_{1}\mathbf{R}; U(2n))$$

where the top row is just the fibration sequence (1.1) in § 1 and the bottom row is induced by the cofibration sequence

$$P_2R/P_1R \leftarrow P_2R \leftarrow P_1R$$
.

Passing to the direct limit and writing $\varphi_{\infty}^{\upsilon} = \lim_{n \to \infty} \varphi_{n}^{\upsilon}$, etc., we then get the diagram

$$U(\infty) \xrightarrow{\begin{array}{c} \xi_{\infty}^{U/\Delta U} \circ \nu_{\infty}^{U} \\ \downarrow \omega_{\infty}^{U/(U \times U)} \\ \downarrow \omega_{\infty}^{U/(U \times U)} \\ \downarrow \Omega(U(\infty)/(U \times U)) \\ \downarrow \Omega(\omega_{\infty}^{U}) \\ \downarrow \Omega(U(\infty)) \\ \downarrow U(\infty) \\ \downarrow \Omega(U(\infty)) \\ \downarrow U(\infty) \\$$

and, in the next section, we shall prove:

Proposition 3.3. The diagrams (3.1) and (3.2) are homotopy-commutative. In particular, (3.1b) and (3.2b) are strictly commutative.

On the other hand, we have:

Proposition 3.4. The homomorphism $\pi_r(U(2n)/\Delta U) \to \pi_r(U(\infty)/\Delta U)$ induced by the canonical injection is isomorphic for $r \leq 2n$.

Proof. Consider the commutative diagram

$$U(\infty) \xrightarrow{m_{\infty}^{U} \circ \Delta_{\infty}^{U}} U(\infty) \xrightarrow{\xi_{\infty}^{U/\Delta U}} U(\infty) / \Delta U$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$U(n) \xrightarrow{m_{n}^{U} \circ \Delta_{n}^{U}} U(2n) \xrightarrow{\xi_{n}^{U/\Delta U}} U(2n) / \Delta U$$

where the bottom row is the fibration sequence (1.2) in § 1 and the top row is the direct limit of (1.2), and where the vertical maps are the canonical injections. Then since the homomorphism

$$\pi_{\tau}(U(n)) \to \pi_{\tau}(U(\infty))$$

induced by the canonical injection is an isomorphism for $r \leq 2n-1$ and an epimorphism for r = 2n, the proposition follows immediately by the

five-lemma.

Combining Theorem 2.1 and Proposition 3.3, and noting Proposition 3.4, we obtain the following, which is a "unitary version" of Theorem 3.6 of $\lceil 9 \rceil$:

Theorem 3.5. The map \mathcal{G}_{∞}^{U} is a homotopy equivalence, and the homomorphism $(\mathcal{G}_{n}^{U})_{*}: \pi_{r}(U(2n)/\Delta U) \to \pi_{r}(\widetilde{\mathscr{C}}(\mathbf{P}_{2}\mathbf{R}; U(2n)))$ induced by \mathcal{G}_{n}^{U} is isomorphic for $r \leq 2n$ with $(r, n) \neq (2, 1)$.

Proof. By the same five-lemma argument as in the proof of Theorem 3.6 of [9], it follows from Theorem 2.1 and Proposition 3.3 that $\mathcal{P}_{\infty}^{\,v}$ induces isomorphisms of homotopy groups in all dimensions. Thus, by J. H. C. Whitehead's theorem (and by [7; Theorem 3]), the first part of the theorem follows.

It remains to prove the result about the homomorphism induced by \mathcal{G}_n^{υ} . Let us consider the commutative diagram

where the rows are induced by the cofibration sequence

$$P_2R/P_1R \leftarrow P_2R \leftarrow P_1R$$

and the vertical arrows are the maps induced by the canonical injection $U(2n) \to U(\infty)$. Then noting that $(U(\infty), U(2n))$ is 4n-connected, we see by the five-lemma that the canonical homomorphism

$$\pi_r(\widetilde{\mathscr{C}}(\mathbf{P}_2\mathbf{R};U(2n))) \to \pi_r(\widetilde{\mathscr{C}}(\mathbf{P}_2\mathbf{R};U(\infty)))$$

is isomorphic for $r \leq 4n-3$. Next, consider the commutative diagram

$$\pi_{r}(U(\infty)/\Delta U) \xrightarrow{(\varphi_{\infty}^{U})_{*}} \pi_{r}(\widetilde{\mathscr{C}}(\mathbf{P}_{2}\mathbf{R}; U(\infty)))$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\pi_{r}(U(2n)/\Delta U) \xrightarrow{(\varphi_{n}^{U})_{*}} \pi_{r}(\widetilde{\mathscr{C}}(\mathbf{P}_{2}\mathbf{R}; U(2n)))$$

where the vertical homomorphisms are induced by the canonical injections. Then noting Proposition 3.4 (and the fact that $2n \le 4n-3$ for $n \ge 2$), we obtain the remaining part of the theorem.

Remark. For (r, n) = (2, 1), it is easy to see that the group $\pi_2(U(2)/\Delta U)$ is trivial and $\pi_2(\widetilde{\mathscr{C}}(\mathbf{P}_2\mathbf{R}; U(2)))$ is a cyclic group of order 2. Thus the homomorphism

$$(\varphi_1^U)_*: \pi_2(U(2)/\Delta U) \to \pi_2(\widetilde{\mathscr{C}}(\mathbf{P}_2\mathbf{R}; U(2)))$$

is trivial and not epimorphic.

4. Proof of Proposition 3.3. The proof of Proposition 3.3 is analogous to that of Proposition 3.5 of [9], but we present this here. First, note that

$$\begin{aligned} & \mathcal{Q}_n^{\textit{U}}(\xi_n^{\textit{U}/\Delta \textit{U}}(P_nAP_n^{-1}))(\left[\cos\left(\pi t\right):\sin\left(\pi t\right)\cos\left(\pi s\right):\sin\left(\pi t\right)\sin\left(\pi s\right)\right]) \\ & = P_n\text{comm}\left(\exp\left(\frac{\pi}{2}\,siT_nJ_n\right)\exp\left(\pi tiT_n\right)\exp\left(-\frac{\pi}{2}\,siT_nJ_n\right),\,A\right)P_n^{-1} \end{aligned}$$

where $A \in U(2n)$, $s \in [0,1]$, $t \in [0,1]$. Then we can easily check the commutativity of (3.1b) and (3.2b).

To prove the homotopy-commutativity of (3.1a) and (3.2a), let us now put

$$E_n(r, s, t)$$

$$=\exp\left(\frac{\pi}{4}\,riT_n\right)\exp\left(\frac{\pi}{2}\,siT_nJ_n\right)\exp\left(\pi tiT_n\right)\exp\left(-\frac{\pi}{2}\,siT_nJ_n\right)\exp\left(-\frac{\pi}{4}\,riT_n\right),$$

and consider the family of maps

$$\Theta_n^{U}(r):U(n)\to\Omega^2(U(2n))\ (r\in[0,1])$$

defined by

$$\Theta_n^v(r)(A)(s)(t)$$

$$= P_n \mathrm{exp}\left(\frac{\pi}{2} \, rs J_n\right) \mathrm{comm}\left(E_n(r,\, s,\, t\,),\, \mathrm{diag}\left(A,\, I_n\right)\right) \mathrm{exp}\left(-\frac{\pi}{2} \, rs J_n\right) P_n^{-1}$$

where $A \in U(n)$, $s \in [0,1]$, $t \in [0,1]$. Then the diagram

$$U(n) \xrightarrow{\xi_{n}^{U/\Delta U} \circ \nu_{n}^{U}} U(2n)/\Delta U$$

$$\downarrow \Theta_{n}^{U}(0) \qquad \qquad \downarrow \varphi_{n}^{U}$$

$$\Omega^{2}(U(2n)) \qquad \qquad \downarrow \varphi_{n}^{U}$$

$$\parallel \qquad \qquad \downarrow (\mathbf{P}_{2}\mathbf{R}/\mathbf{P}_{1}\mathbf{R}; U(2n)) \rightarrow \widetilde{\mathscr{C}}(\mathbf{P}_{2}\mathbf{R}; U(2n))$$

commutes, where as in (3.1a) the bottom map is induced by the canonical surjection $P_2R \to P_2R/P_1R$. On the other hand, noting

$$E_n(1, s, t) = \exp\left(-\frac{\pi}{2} s J_n\right) \exp\left(\pi t i T_n\right) \exp\left(\frac{\pi}{2} s J_n\right),$$

we see, by a direct calculation, that

$$\Theta_n^{U}(1) = \Omega(\omega_n^{U}) \circ \omega_n^{U/(U \times U)}.$$

Thus the homotopy-commutativity of (3.1a) follows, and if we consider the direct limit $\Theta_{\infty}^{U}(r) = \lim_{\longrightarrow} \Theta_{n}^{U}(r)$, we see that (3.2a) is also homotopy-commutative.

5. Compatibility. Let us now consider the canonical embeddings

$$\iota_n^U: O(n) \to U(n)$$
 and $\iota_n^U: Sp(n) \to U(2n)$

defined by putting

$$\iota_n^{v}(A) = A \text{ for } A \in O(n),$$

and

$$\chi_n^{\nu}(A) = P_n \operatorname{deg}(A) P_n^{-1} \text{ for } A \in \operatorname{Sp}(n),$$

with deq(A) being as in [9; § 1]. Further, let us define the maps

$$\lambda_n^{U/\Delta U}: O(4n)/Sp \rightarrow U(4n)/\Delta U \text{ and } \mu_n^{U/\Delta U}: Sp(n)/O \rightarrow U(2n)/\Delta U$$

as follows:

$$\lambda_n^{U/\Delta U}(\xi_n^{O/Sp}(Q_nAQ_n^{-1})) = \xi_{2n}^{U/\Delta U} \left(Q_n \frac{1}{\sqrt{2}} \begin{bmatrix} I_{2n} & iI_{2n} \\ iJ_n & J_n \end{bmatrix} A \frac{1}{\sqrt{2}} \begin{bmatrix} I_{2n} & iJ_n \\ -iI_{2n} & -J_n \end{bmatrix} Q_n^{-1} \right)$$

where $A \in O(4n)$;

$$\mu_n^{U/\Delta U}(\xi_n^{SP/O}(A)) = \xi_n^{U/\Delta U}(P_n \operatorname{deq}(A)P_n^{-1})$$

where $A \in Sp(n)$. Here, as in [9], $Q_n = P_{2n} \operatorname{diag}(P_n, P_n)$. Then we have diagrams

$$(5.1) \qquad \begin{matrix} O(4n)/Sp \xrightarrow{\lambda_n^{U/\Delta U}} & U(4n)/\Delta U \\ \varphi_n^o & & & \downarrow \varphi_{2n}^v \\ \widetilde{\mathscr{C}}(\mathbf{P}_2\mathbf{R}; O(4n)) \to \widetilde{\mathscr{C}}(\mathbf{P}_2\mathbf{R}; U(4n)) \end{matrix}$$

and

$$Sp(n)/O \xrightarrow{\mu_n^{U/\Delta U}} U(2n)/\Delta U$$

$$(5.2) \qquad \qquad \downarrow \varphi_n^{Sp} \qquad \qquad \downarrow \varphi_n^{U}$$

$$\widetilde{\mathscr{C}}(\mathbf{P}_2\mathbf{R}; Sp(n)) \to \widetilde{\mathscr{C}}(\mathbf{P}_2\mathbf{R}; U(2n))$$

where \mathcal{P}_n^o and \mathcal{P}_n^{sp} are the maps defined in [9; § 3] and where the bottom map of (5.1) (resp. of (5.2)) is induced by the canonical embedding

$$\iota_{4n}^{U}: O(4n) \to U(4n) \text{ (resp. } \kappa_{n}^{U}: Sp(n) \to U(2n)).$$

The following proposition shows that "complexification" and "dequaternionification" are compatible (up to homotopy) with the maps φ_n^v , φ_n^o and φ_n^{sp} .

Proposition 5.3. The diagram (5.1) is homotopy-commutative, and the diagram (5.2) is strictly commutative.

Proof. The proof of the commutativity of (5.2) is straightforward, and we leave this to the reader. The homotopy-commutativity of (5.1) can be seen as follows. Put

$$Z_n(t) = \operatorname{diag}\left(I_{2n}, \exp\left(\frac{\pi}{2}tJ_n\right)\right) \exp\left(\frac{\pi}{4}tiJ_{2n}T_{2n}\right)$$

so that

$$Z_n(1) = \frac{1}{\sqrt{2}} \begin{bmatrix} I_{2n} & iI_{2n} \\ iJ_n & J_n \end{bmatrix}$$
 and $(Z_n(1))^{-1} = \frac{1}{\sqrt{2}} \begin{bmatrix} I_{2n} & iJ_n \\ -iI_{2n} & -J_n \end{bmatrix}$.

Further, consider the family of maps

$$\Phi_n(t): O(4n)/Sp \to \widetilde{\mathscr{C}}(\mathbf{P}_2\mathbf{R}; U(4n)) \ (t \in [0,1])$$

defined by

$$\begin{split} & \Phi_n(t)(\xi_n^{O/Sp}(Q_nAQ_n^{-1}))([u_0:u_1:u_2]) \\ & = Q_nZ_n(t)\operatorname{comm}\left(u_0I_{4n} + u_1J_{2n} + u_2K_n\exp\left(\frac{\pi}{2}tJ_{2n}\right),A\right)(Z_n(t))^{-1}Q_n^{-1} \end{split}$$

where $A \in O(4n)$, $(u_0, u_1, u_2) \in \mathbb{R}^3$ and $u_0^2 + u_1^2 + u_2^2 = 1$. Then $\Phi_n(0)$ is just the composite

$$O(4n)/Sp \xrightarrow{\varphi_n^0} \widetilde{\mathscr{C}}(P_2R; O(4n)) \to \widetilde{\mathscr{C}}(P_2R; U(4n))$$

(where the second map is the bottom of (5.1)), while

$$\Phi_n(1) = \mathcal{G}_{2n}^{U} \circ \lambda_n^{U/\Delta U}$$
.

So $(\Phi_n(t))_{t\in[0,1]}$ provides the required homotopy.

Appendix: remarks on the maps m_{∞}^{υ} and ν_{∞}^{υ} . It is easy to see that for every n the map ν_{n}^{υ} defined in § 1 is homotopic to the canonical injection

$$A \mapsto \operatorname{diag}(A, I_n) : U(n) \to U(2n),$$

and that the limit map $\nu_{\infty}^{U} = \lim_{n \to \infty} \nu_{n}^{U}$ is a homotopy self-equivalence of $U(\infty)$.

In fact, one can further show the following: Let G denote either U, SU, O, SO, or Sp (so that G(n) is one of the classical Lie groups U(n), SU(n), O(n), SO(n), or Sp(n)), and let us define the maps

$$\nu_n^G: G(n) \to G(2n) (n = 1, 2, ...)$$

by putting $\nu_n^G(A) = P_n \operatorname{diag}(A, I_n) P_n^{-1}$ for $A \in G(n)$, and consider the limit map

$$\nu_{\infty}^{c} = \lim_{n \to \infty} \nu_{n}^{c} : G(\infty) \to G(\infty).$$

Then

Lemma A.1. The map ν_{∞}^{G} is homotopic to the identity map $1_{G(\infty)}$ of $G(\infty)$.

This implies that the map $\xi_{\infty}^{U/\Delta U} \circ \nu_{\infty}^{U}$ in the top row of (3.2) is homotopic to the canonical surjection $\xi_{\infty}^{U/\Delta U}$ from $U(\infty)$ onto $U(\infty)/\Delta U$.

We leave the proof of Lemma A.1 to the reader. Note that Lemma A.1 can be used to show the following well-known fact: For G = U, SU, O, SO or Sp, let us define the maps

$$m_n^G: G(n) \times G(n) \rightarrow G(2n) (n = 1, 2, ...)$$

by putting $m_n^G(A, B) = P_n \operatorname{diag}(A, B) P_n^{-1}$ for $(A, B) \in G(n) \times G(n)$, and consider the limit map

$$m_{\infty}^{G} = \lim_{n \to \infty} m_{n}^{G} : G(\infty) \times G(\infty) \to G(\infty).$$

Let I_{∞} be the identity element of the group $G(\infty)$. Then

Proposition A.2 (see for instance $[5; \S 1]$). The map m_{∞}^{G} defines a Hopf space structure on $G(\infty)$ with I_{∞} being the basepoint. In other words, I_{∞} is a homotopy unit under the multiplication m_{∞}^{G} .

Remark. Lemma A.1 shows that under m_{∞}^{c} the element I_{∞} acts as a homotopy right unit.

REFERENCES

- [1] R. BOTT: The space of loops on a Lie group, Michigan Math. J. 5 (1958), 35-61.
- [2] R. BOTT: The stable homotopy of the classical groups, Ann. of Math. (2) 70 (1959), 313-337.
- [3] R. Bott: Quelques remarques sur les théorèmes de périodicité, Bull. Soc. Math. France 87 (1959), 293-310.
- [4] H. CARTAN et al.: Séminaire H. Cartan, 12e année: 1959/60, Secrétariat Mathématique, Paris, 1961.
- [5] E. DYER and R. LASHOF: A topological proof of the Bott periodicity theorems, Ann. Mat. Pura Appl. (4) 54 (1961), 231-254.
- [6] A. Kono and K. Kozima: The space of loops on a symplectic group, Japan. J. Math. (N.S.) 4 (1978), no. 2, 461-486.
- [7] J. MILNOR: On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc. 90 (1959), 272-280.
- [8] J. MILNOR: Morse theory, Ann. of Math. Studies, No. 51, Princeton Univ. Press, Princeton, N. J., 1963.

¹⁾ The reader who has a reading acquaintance with Japanese may consult Chapter

^{4, § 3} of the following book, in which Lemma A.1 is proved in a more general setting:

H. Toda and M. Mimura, The topology of Lie groups (Japanese), Vol. 1, Kinokuniya Sûgaku Sôsho 14-A, Kinokuniya Book-Store, Tokyo, 1978.

[9] M. YASUO: On the spaces O(4n)/Sp and Sp(n)/O, and the Bott maps, Publ. Res. Inst. Math. Sci. 19 (1983), no. 1, 317-326.

DEPARTMENT OF MATHEMATICS
YAMANASHI UNIVERSITY

(Received June 1, 1985)