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Introduction. In [9] the author defined certain maps
®%: 0(4n)/Sp » €(P.R; O(4n)) and ¢3°: Sp(n)/0 - €(P:R; Sp(n))
whose direct limits
%2 . 0()/Sp - € (P,R; 0()) and 3* : Sp(©)/0 — € (P,R; Sp())

are homotopy equivalences, where P;R is the real projective plane and
%(X : Y) denotes the space of basepoint-preserving continuous maps from
X to Y. In the present paper, we consider a “unitary analogue” of the
matter treated in [9], and in what follows, we continue to use the notation
and conventions of [9].

Let U(n) be the group of nX n complex unitary matrices. In this paper
we define maps

L. U(2n)/AU » €(P.R: U(2n)) (n=1,2,...),

where U(2n)/AU are certain homogeneous spaces such that (as will be
shown by our theorem) the limit U{o0)/AU = lim U(2n)/AU is a classifying

space for the functor KU'(; Z/2). The definition of ¥5 is given in § 3,
and one of our purposes here is to prove (Theorem 3. 5) that the limit map

PL: U()/AU - €(P.R; U())
is a homotopy equivalence, and that the homomorphism
(¥« : 2(U(2n)/AU) > 7€ (P;R; U(2n)))

induced by ¥4 is isomorphic for r < 2n with (r, n) #+ (2,1).
Also, in § 5, we define certain maps

AY4Y . 0(4n)/Sp » U(4n)/AU and uy*Y : Sp(n)/0 - U(2n)/AU,
which correspond to the natural embeddings
O(4n) - U(4n) and Sp(n) —» U(2n).
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These maps are “compatible” with the maps ¥5, ¢4 and ¥5°, as we shall
show (see Proposition 5. 3).

1. Preliminaries. As noted in the introduction, we retain the notation
of [9]. Thus
0 _In
= [In 0 }

I being the nX n identity matrix. Given square matrices A and B, we often
write

diag (A, B) = [A O}.
In particular we put

T, = diag (I, —I) = [é _?]
We define the map ms, : U(n) X U{n) —» U(2n) by putting
mn(A, B) = P,diag (A, B)P;" for (A, B) € U(n)X U(n),

where P, is the 2aX 2n permutation matrix defined in [9; § 1]. Clearly
my is an injective homomorphism, and by this we embed the product group
U(n)X U(n) in U(2n). We consider the associated homogeneous space,
and write

U2n)/(UXU) = U(20)/my(U(n) X U(n)),

where my(U(n)X U(n)) is the image of U(n)X U(n) by mi. Also, we
consider the subgroup AU(n) = {(A,A) | A € Uln)} of Un)XU(n), and
put

U(2n)/AU = U(2n)/ma AU(n)),
where ma(AU(n)) = | Pydiag (A, A)P;' | A € Uln)l C m¥Un)X Un)).

The canonical surjections
U(2n) » U(2n)/(UXU) and U(2n) —» U(2n)/AU

are denoted by £5“*Y and £5/*Y respectively. Note that U(2n)/(UXU) is
just the space denoted by G, in [6:§ 1] and can be identified with the
complex Grassmann manifold of n-dimensional C-vector subspaces of C*".
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We define the limit spaces
U(eo)/(UxU) = lim U(2n)/(UX U) and U(e0)/AU = lim U(2n)/AU
in the usual way.
Further, we define the map vy : U(n) —» U(2n) by putting
vi(A) = Padiag (A, I)P;' for A € U(n),
and define AL : U(n) —» U(n)X U(n) to be the diagonal map. Note that the

sequences
WAl yy
(1.1) Uln) ——— U(2n)/AU ——— U(2a)/(UXU)
and
v Uv/au

v
mp°

(1.2) Uln) ——— U(2n) ———— U(2n)/AU

are fibration sequences, where the unlabelled map in (1. 1) is the canonical
surjection associated to the inclusion AU C UXU.

2. Bott maps for the unitary case. Here we recall well-known results
on the Bott maps for the unitary group. As usual let Q(X) denote the loop
space of X, and let Q(X) denote the arcwise-connected component of the
trivial loop. Let us consider the maps

wn: U2n)/(UXU) - 2(U(2n)),
w*%: Uln) » QUU(22)/(UXU))

defined as follows :
wnl EX* N PrAPR"))(2) = Pncomm(exp (ntiTy), A)P;'
where A € U(2n), t € [0,1];

WA (1) = &5 ""( P,comm (exp (% tJn). diag (4, In))P,Il)
= gL ”'( PLexp (% tJn)diag (A, I)exp ( —?” tJ,,) P,I')

where A € U(n), t € [0.1]. Here comm (A, B) = ABA™'B™', and exp is
the exponential map. Note that
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exp (8Ty) = Lncos (#)+iTxsin (1),
exp (tJn) = Lacos (8)+Jusin(2)
for every t € R. Taking the direct limits, we then get maps
we = lim wn : U(0)/(UXU) = Q(U(o0)),
wd Y = lim wd P U(oo) » Q(U(e0)/(UXU)),

and the Bott periodicity theorem for the unitary group is an immediate
consequence of the following :

Theorem 2.1 (see [1], [2], [3], [4], [5], and also [8; § 23]). The

UAUX 1)

maps wo and wd are homotopy equivalences.

3. The maps ¢Y. As in [9], let €(X: Y) denote the space of base-
point-preserving continuous maps from X to Y. For each n, we define the
map

U(2n)/AU - €(P.R; U(2n))
by
PrETUPLAPT )Y [0 2 w2 ua]) = Puecomm (uolon+ w1 iTn+ usJn, A) Py}

where A € U(2n), (4o, w1, u2) € R® and wd+u+ui = 1. Let €4(X;Y)
denote the arcwise-connected component of the basepoint in €(X; Y), and
consider the diagram

72 U
Uln) ———", U(20)/ AU —— U2a)/(UXU)

Jw;{/uixm

QU(2n)/(UXU)) wh

(3.1) j (3.1a) 5 (3.1b)

Q(wn)

Q*(U(2n)) Q(U(2n))

[ I

& (P,R/P.R; U(2n)) -» €(P,R: U(2n)) - &4(P.R; U(2n))

where the top row is just the fibration sequence (1.1) in § 1 and the bottom
row is induced by the cofibration sequence
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PzR/PlR « PzR — P]R.

Passing to the direct limit and writing 2 = lim ¥5. etc., we then get the
g in g

diagram
e 2
U(co) ———— U(0)/AU —— U(o0)/(UXU)

V[wcl;:/(l,’)(m

QU()/(UXU)) we

(3.2) j (3. 2a) $s  (3.2b)

QA wd)

Q*(U(0)) Q(U(0))

Il ) Il

@ (P;R/P,R; U()) - €(P,R; U(w)) » €,(P,R; U())

and, in the next section, we shall prove :

Proposition 3.3. The diagrams (3.1) and (3. 2) are homotopy-commu-
tative. In particular, (3.1b) and (3. 2b) are strictly commutative.

On the other hand, we have :

Proposition 3.4. The homomorphism m(U(2n)/AU) — n(U(0)/AU)
induced by the canonical injection is isomorphic for r < 2n.
Proof. Consider the commutative diagram
mYo AY v/av
U(o0) ————— U(o0) ———— U(o0)/AU

I mlo AL ] gurav ]

Uln) ————— U(2n) — > U(2n)/AU

where the bottom row is the fibration sequence (1.2) in § 1 and the top row
is the direct limit of (1. 2), and where the vertical maps are the canonical
injections. Then since the homomorphism

m(U(n)) = ={U(c0))

induced by the canonical injection is an isomorphism for r < 2n—1 and
an epimorphism for r = 2n, the proposition follows immediately by the
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five-lemma.
Combining Theorem 2.1 and Proposition 3. 3, and noting Proposition
3.4, we obtain the following, which is a “unitary version” of Theorem 3. 6

of [9] :

Theorem 3.5. The map P is a homotopy equivalence, and the homo-
morphism (P5)x : m(U(2n)/AU) = n{€(P,R; U(2n))) induced by ¥5 is
isomorphic for r < 2n with (r,n) = (2, 1).

Proof. By the same five-lemma argument as in the proof of Theorem
3.6 of [9], it follows from Theorem 2.1 and Proposition 3.3 that .
induces isomorphisms of homotopy groups in all dimensions. Thus, by
J. H. C. Whitehead's theorem (and by [7 ; Theorem 3]), the first part of the
theorem follows.

It remains to prove the result about the homomorphism induced by ;.
Let us consider the commutative diagram

€ (P,R/P,R: U(x)) » €(P,R; U(x)) > @,(P\R; U(c))

[ I
Q*(U(0)) Qu(U(0))
Q*(U(2n)) Q(U(2n))

[ I

€ (P.R/P,R; U(2n)) - @(P:R; U(2n)) > @,(P,R; U(2a))
where the rows are induced by the cofibration sequence
PgR/P]R — PzR «— P]R

and the vertical arrows are the maps induced by the canonical injection
U(2n) - U(oo). Then noting that (U(o0), U(2n)) is 4n-connected, we see
by the five-lemma that the canonical homomorphism

(€ (P,R; U(2n))) - m(€ (P;R; U(0)))

is isomorphic for r < 4n—3. Next, consider the commutative diagram

u

(P) ~
r(U(0)/AU) —— m( @ (P.R; U(0)))

T (PH)* T

{U(2n)/AU) —— m(@(P,R; U(2n)))
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where the vertical homomorphisms are induced by the canonical injections.
Then noting Proposition 3. 4 (and the fact that 2n < 4n—3 for n = 2), we
obtain the remaining part of the theorem.

Remark. For (r, n) = (g, 1), it is easy to see that the group
m(U(2)/AU) is trivial and m(@ (P,R; U(2))) is a cyclic group of order 2.

Thus the homomorphism
(1) : m(U(2)/AU) - m(@ (P.R; U(2)))

is trivial and not epimorphic.

4. Proof of Propoesition 3.3. The proof of Proposition 3.3 is ana-
logous to that of Proposition 3.5 of [9], but we present this here. First,
note that

PUEY Y (PrAPR))([cos (i) : sin(xt)cos (ms) : sin(xt)sin(xs)])

T

= P,comm (exp (i siTnJ,,)exp (ntiTn)exp( 5

5 siTan), A )P;‘

where A € U(2n), s € [0.1], t € [0,1]. Then we can easily check the
commutativity of (3.1b) and (3. 2b).

To prove the homotopy-commutativity of (3.1a) and (3. 2a), let us now
put

Er.s, t)

= exp(% riTn) exp(% siT,.J,,) exp(mtiTy) exp( —% siTan> exp( —% riTn) ,

and consider the family of maps
Ox(r) : Uln) » Q*(U(2n)) (r € [0.1])
defined by
O(r)(A)(s)(t)

= Puexp (3” 'ran)comm(En(r, s, t), diag (A, In))exp(—%tran)P;‘

where A € U(n), s € [0,1]. t € [0.1]. Then the diagram
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vzav UU

Uln)———" U(2n)/AU
[ 65(0)

QHU(2n))
l
& (P;R/P:R: U(2n)) » € (P,R; U(22))

e

commutes, where as in (3. 1a) the bottom map is induced by the canonical
surjection P,R = P,R/P;R. On the other hand, noting

Eq1,s.t) = exp ( —7” an) exp (ntiTy) exp (—;— an),

we see, by a direct calculation, that
Ou(1) = Q(wn) e wa"™".

Thus the homotopy-commutativity of (3. 1a) follows, and if we consider the
direct limit ©I(r) = li_r)n ©%(r), we see that (3. 2a) is also homotopy-

commutative,

5. Compatibility. Let us now consider the canonical embeddings
&:0(n) = Uln) and x5 : Sp(n) = U(2n)
defined by putting
(MA) = A for A € O(n),
and
xn(A) = Pndeq(A)P;' for A € Sp(n),

with deq (A ) being as in [9; § 1]. Further, let us define the maps

A2 0(4n)/Sp-— U(4n)/AU and /%" : Sp(n)/0 - U(2n)/ AU
as follows :

A QuAQRY))

N o ]. IZn iIzn] 1 |: Izn L]nj' - )
__ pUl/av - - 1
= & (Q“ fz'[i.l,, Jn A V2 | —ilw —Ja Qn

where A € 0(4n);
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LAY (ESPIO(A)) = ¢Y4Y(Padeq(A)PR")
where A € Sp(n). Here, as in [9], Q, = Pandiag (Pn, Ps). Then we have

diagrams

U/av
0(4n)/Sp A, U(d4n)/AU
(5.1) 1503 lfPS'n
€(P.R; O(4n)) > €(P:R; U(4n))
and
ﬂg/au
Sp(n)/0 —— U(2a)/AU
(5.2) 1 n lwz

& (P:R; Sp(n)) » € (P:R; U(21))

where $2 and $5° are the maps defined in [9; § 3] and where the bottom map
of (5.1) (resp. of (5.2)) is induced by the canonical embedding

Y 0(4n) -» U(4n) (resp. xn: Sp(n) » U(2n)).
The following proposition shows that “complexification” and “dequater-
nionification” are compatible (up to homotopy) with the maps ¢4, ¥5 and 93°.
Proposition 5.3. The diagram (5.1) is homotopy-commutative, and the
diagram (5. 2) is strictly commutative.

Proof. The proof of the commutativity of (5. 2) is straightforward, and
we leave this to the reader. The homotopy-commutativity of (5.1) can be
seen as follows. Put

b/

Za(t) = diag (Izn, exp( 3 t.]n))exp (Iﬂ tiJngn),
so that

_ 1 Izn iIZn -1 1 1211 iJn
Z1) = Jz_[u Jn ]a"d(z”“” - ﬁ[—ilm —J,.]'

Further, consider the family of maps

®(t): 0(4n)/Sp » € (P.R; U(4n)) (t € [0,1])
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defined by
Ba(2)(E7°7(QrAQ ")) [ : i 2 wa))

= QnZn(t )Comm (uolm“” wdent+ -uanexp (?ﬂ thn), A )(Zn(t ))' lQ;rl

where A € 0(4n), (4o, 1, u2) € R® and ui+ui+ui = 1. Then $,(0) is
just the composite

]

Pr - -
0(4n)/Sp—> «(P,R; O(4n)) » «(P.R; U(4n))
(where the second map is the bottom of (5. 1)), while
Bn(1) = Pino AF/2Y,

So ( ®x(t))rer0.1) provides the required homotopy.

Appendix : remarks on the maps m%and v.. It is easy to see that for
every n the map v, defined in § 1 is homotopic to the canonical injection

A diag (A, L) : U(r) = U(2n),
and that the limit map vd = lim v is a homotopy self-equivalence of U(co).

In fact, one can further show the following : Let G denote either U, SU, O,
SO, or Sp (so that G(n) is one of the classical Lie groups U(n), SU(n),
O(n), SO(n), or Sp(n)), and let us define the maps

ve: Gln) - G22)(n=1,2,..)

by putting v5(A) = Pndiag (A, I,)P;' for A € G(n), and consider the limit
map

vé = lim va: G(o) » G(oo0).

Then

Lemma A.1. The map v is homotopic to the identity map 1., of
G(c0).

This implies that the map £Y4Yo yY in the top row of (3. 2) is homotopic
to the canonical surjection £22Y from U(co) onto U(co)/AU.
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We leave the proof of Lemma A.1 to the reader.” Note that Lemma
A.1 can be used to show the following well-known fact : For G = U, SU,
0, SO or Sp, let us define the maps

my: G(n)XG(n) » G(22) (n=1,2,...)
by putting ms(A, B) = P.diag (A, B)P;"' for (A, B) € G(n)X G(n), and

consider the limit map

me = ljgnmﬁ: G(0) X G(o0) = G(o0).
Let I. be the identity element of the group G(cc), Then
Proposition A.2 (see for instance [5; § 1]). The map mS defines

a Hopf space structure on G(c0) with L. being the basepoini. In other words,
L. is a homotopy unit under the multiplication mS,.

Remark. Lemma A.1 shows that under mS the element I, acts as
a homotopy right unit.
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