MEAN AND POINTWISE ERGODIC THEOREMS FOR COSINE OPERATOR FUNCTIONS

Sen-Yen SHAW

1. Introduction. The purpose of this paper is to present a mean ergodic theorem and two pointwise ergodic theorems for a strongly continuous cosine operator function.

Let X be a Banach space and B(X) be the Banach algebra of all bounded linear operators on X. A one-parameter family $\{C(t): t \geq 0 \mid \text{in } B(X) \text{ is called a strongly continuous cosine function if it satisfies the three conditions:$

- (1) C(t+s)+C(t-s) = 2C(t)C(s) for all $t \ge s \ge 0$;
- (2) C(0) = I (the identity operator);
- (3) C(t) is strongly continuous in t on $[0,\infty)$.

The associated sine function $S(\cdot)$ is defined by $S(t)x = \int_0^t C(s)xds$ $(x \in X)$.

There exist constants w>0 and $M_w>0$ such that $\|C(t)\| \leq M_w e^{wt}$ for all $t\geq 0$. We shall denote by w_0 the infimum of the set of all such w and call it the type of $C(\cdot)$. Let A be the infinitesimal generator of $C(\cdot)$, defined as $Ax:=\lim_{t\to 0^+}2t^{-2}(C(t)-I)x$ in its natural domain D(A). Then

A is a densely defined closed operator, the resolvent set $\rho(A)$ contains all λ^2 with $\lambda > w_0$, and for each such λ

$$\lambda(\lambda^2 I - A)^{-1} = \int_0^\infty e^{-\lambda t} C(t) dt.$$

We shall use $L(\lambda)$ to denote this operator. For these and other fundamental properties of $C(\cdot)$ the reader is referred to [3] and [11].

The operators $t^{-1}S(t)$, t>0, and $\lambda L(\lambda)$, $\lambda>0$, are the Cesaro averages and the Abel averages of $C(\,\cdot\,)$, respectively. In section 2 we shall relate the convergence of $\lim_{t\to\infty}t^{-1}S(t)x$, $\lim_{\lambda\to0}\lambda L(\lambda)x$, and $\lim_{n\to\infty}n^{-1}\sum_{t=0}^{n-1}C(it)x$. In section 3, X is assumed to be a Lebesgue space $L_\rho(S,\sum,\mu;Y)$, $1\le p<\infty$, with Y a reflexive space. Under suitable conditions the almost everywhere convergence of $t^{-1}S(t)f$ for $f\in L_\rho\cap L_\infty$ and of $\lambda L(\lambda)f$ for f in L_ρ will be justified.

2. Mean ergodic theorems. Suppose $C(\cdot)$ is a strongly continuous cosine function such that $||C(t)|| \le M$ for all $t \ge 0$. Then $C(\cdot)$ has type $w_0 = 0$. We denote by $P_c[\text{resp. } P_a]$ the operator defined by

$$P_c x := \lim_{t \to \infty} t^{-1} S(t) x \text{ [resp. } P_a := \lim_{\lambda \to 0} \lambda L(\lambda) x \text{]},$$

with domain consisting of all those x for which the limit exists. Also we define for each t > 0 the operator P_t by

$$P_t x := \lim_{n \to \infty} n^{-1} \sum_{t=0}^{n-1} C(it) x.$$

The following theorem is proved in [10]; it characterizes the range $R(P_c)$, the null space $N(P_c)$, and the domain $D(P_c)$ of P_c , and also those of P_t .

Theorem A. Under the hypothesis: $||C(t)|| \le M$ for all $t \ge 0$, one has:

- $\begin{array}{ll} \text{(i)} & P_c = P_a \text{ and is a bounded linear projection with } R(P_c) = N(A) \\ & = \bigcap_{s>0} N(C(s)-I), \ N(P_c) = \overline{R(A)} = \overline{\bigcup_{s>0} R(C(s)-I)}, \ \text{and} \\ & D(P_c) = \bigcap_{s>0} N(C(s)-I) \oplus \overline{\bigcup_{s>0} R(C(s)-I)} \\ & = |x \in X; \ \exists \, |t_n| \to \infty \ \ni \ \text{w-} \lim_{n\to\infty} t_n^{-1} S(t_n) x \text{ exists} \, |. \end{array}$
- (ii) For each t > 0, P_t is a bounded linear projection with $R(P_t) = N(C(t) I)$, $N(P_t) = \overline{R(C(t) I)}$, and $D(P_t) = N(C(t) I) \oplus \overline{R(C(t) I)}$ $= |x \in X; \exists |n_k| \to \infty \ni w \lim_{k \to \infty} n_k^{-1} \sum_{i=0}^{n_{k-1}} C(it) x \text{ exists}|.$

We shall use the above theorem to prove the following theorem, which gives a sufficient condition for P_t to coincide with P_c . It is known that the same assertion holds for semigroups (cf. Sato [8]).

Theorem 1. Let $C(\cdot)$ be a strongly continuous cosine function of uniformly bounded operators. Suppose there exists a $\delta > 0$ such that C(t)+I is invertible (particularly, ||C(t)-I|| < 2) for all $t \in (0, \delta)$. Then $P_t = P_c$ for all $t \in (0, 2\delta)$.

Proof. Since by Theorem A one has that $R(P_c) \subset R(P_t)$ and $N(P_t) \subset N(P_c)$, it remains for us to show $R(P_t) \subset D(P_c)$ and $N(P_c) \subset N(P_t)$ for all t in $(0, 2\delta)$.

Using (1) we can easily show by induction that each C(it)-I is a polynomial of C(t) and is divisible by C(t)-I. Also we can write

$$\begin{split} \left(\left(n - \frac{1}{2}\right)t\right)^{-1} S\left(\left(n - \frac{1}{2}\right)t\right) \\ &= \left(\left(n - \frac{1}{2}\right)t\right)^{-1} \left\{\int_{0}^{\frac{1}{2}t} + \sum_{i=1}^{n-1} \left[\int_{(i-\frac{1}{2})t}^{it} + \int_{it}^{(i+\frac{1}{2})t} \right] \right\} C(s) bs \\ &= \left(\left(n - \frac{1}{2}\right)t\right)^{-1} \left\{S\left(\frac{1}{2}t\right) + \sum_{i=0}^{n-1} \int_{0}^{\frac{1}{2}t} \left[C(it - s) + C(it + s)ds\right] \right\} \\ &= \left(\left(n - \frac{1}{2}\right)t\right)^{-1} \left\{S\left(\frac{1}{2}t\right) + \sum_{i=1}^{n-1} \int_{0}^{\frac{1}{2}t} 2C(s)C(it)ds\right\} \\ &= \frac{2n}{2n-1} (t/2)^{-1} S(t/2) \left[n^{-1} \sum_{i=0}^{n-1} C(it)\right]. \end{split}$$

Hence, if $x \in R(P_t) = N(C(t) - I)$, then $x \in N(C(it) - I)$ so that

$$\left(\left(n-\frac{1}{2}\right)t\right)^{-1}S\left(\left(n-\frac{1}{2}\right)t\right)x = \frac{2n}{2n-1}(t/2)^{-1}S(t/2)x,$$

which converges to $(t/2)^{-1}S(t/2)x$ as $n \to \infty$. So, Theorem A(i) implies that x belongs to $D(P_c)$.

Next, let E be the set of all s>0 such that R(C(s)-I) is contained in $\overline{R(C(t)-I)}$. Then to show $N(P_c)\subset N(P_t)$ is equivalent to showing that $E=(0,\infty)$. We first prove $t/2\in E$. If $x\in R(C(t/2)-I)$, then we have

$$\begin{split} &\frac{1}{2}\bigg[I+C\bigg(\frac{t}{2}\bigg)\bigg]\bigg[\frac{1}{n}\sum_{i=0}^{n-1}C(it)\bigg]x\\ &=\frac{1}{2n}\bigg[\sum_{i=0}^{n-1}C(it)+C\bigg(\frac{t}{2}\bigg)+\frac{1}{2}\sum_{i=1}^{n-1}\bigg[C\bigg((2i+1)\frac{t}{2}\bigg)+C\bigg((2i-1)\frac{t}{2}\bigg)\bigg]\bigg]x\\ &=\frac{1}{2n}\sum_{j=0}^{2n-1}C\bigg(j\frac{t}{2}\bigg)x+\frac{1}{2n}\bigg[C\bigg(\frac{t}{2}\bigg)-C\bigg((2n-1)\frac{t}{2}\bigg)\bigg]x, \end{split}$$

which converges to $P_{t/2}x=0$ as $n\to\infty$. Since I+C(t/2) is invertible, we must have that $P_tx=\lim_{n\to\infty}n^{-1}\sum_{i=0}^{n-1}C(it)x=0$, i. e. $x\in\overline{R(C(t)-I)}$. Repeating the same process and noting that C(ms)-I is divisible by C(s)-I, we see that E contains all numbers of the form $(m/2^n)t$, m, n=1, $2,\ldots$, which form a dense subset of $(0,\infty)$. Then the strong continuity of $C(\cdot)$ shows that the whole set $(0,\infty)$ is contained in E. Hence the theorem is proved.

3. Pointwise ergodic theorems. Throughout this section, (S, Σ, μ) is

200 S.-Y. SHAW

a σ -finite measure space, $(Y, |\cdot|)$ is a reflexive Banach space, and $C(\cdot)$ is a strongly continuous cosine function of linear operators on $L_1 = L_1(S, \Sigma, \mu; Y)$. In addition, we assume that $||C(t)||_1 \le 1$ for all $t \ge 0$, and that for some constant $K \ge 1$ $\sup_{t>0} ||C(t)f||_{\infty} \le K ||f||_{\infty}$ for all $f \in L_1 \cap L_{\infty}$.

It is known that each C(t) can be extended so that it is defined on each $L_{\rho} = L_{\rho}(S, \sum, \mu; Y), \ 1 \leq p < \infty$ (see [1]), and the extended operator C(t) has norm $\|C(t)\|_{\rho} \leq K$, by the Riesz convexity theorem (see [2, VI. 10. 11]). Thus for each $1 \leq p < \infty$ $C(\cdot)$ is a cosine function of operators on L_{ρ} . Moreover, it is strongly continuous on $(0,\infty)$. To see this let $f \in L_1 \cap L_{\rho}$ so that the function $C(\cdot)f$ is continuous in L_1 and hence (C(t)f)(s) is [t, s]-measurable on $(0, \infty) \times S$ (cf. [2, III. 11. 16-(a)]). It follows from part (b) of the same lemma that $C(\cdot)f$ as a L_{ρ} -valued function is Lebesgue measurable on $(0, \infty)$. Since $L_1 \cap L_{\rho}$, $1 \leq p < \infty$, is dense in L_{ρ} , $C(\cdot)$ is strongly measurable on $(0, \infty)$ when regarded as operators on L_{ρ} . It follows that $C(\cdot)$ is strongly continuous on $(0, \infty)([3], [7])$ and hence is also right continuous at 0, by (1).

By Theorem III.11.17 of [2] there is for each $f \in L_p$ a Y-valued function g(t,s), defined on $(0,\infty)\times S$ and strongly measurable with respect to the product of Lebesgue measure and μ , such that for each fixed t>0 g(t,s) as a function of s belongs to the equivalence class of $C(t)f\in L_p$. We shall denote this function g(t,s) by the notation (C(t)f)(s). The same theorem also shows the existence of a μ -null set N(f), dependent on f but independent of f, such that for every f not in f with respect to Lebesgue measure, and the function f in the finite interval f in the finite interval f in the finite exists a f independent of f but independent of f is Bochner integrable on f but independent of f is Bochner integrable on f independent of f is Bochner integrable on f independent of f is Bochner integrable on f independent of f in the function f independent of f in Bochner integrable on f in f in Bochner integrable on f in f

The pointwise ergodic theorems are concerned with μ -almost everywhere convergence of $t^{-1}(S(t)f)(s)$ and $\lambda(L(\lambda)f)(s)$ as $t\to\infty$ and $\lambda\to0^+$, or as $t\to0^+$ and $\lambda\to\infty$. They are stated as follows.

Theorem 2. Let Y be a reflexive Banach space, (S, Σ, μ) a σ -finite measure space, and let $C(\cdot)$ be a strongly continuous cosine function of

linear contractions on $L_1(S, \Sigma, \mu; Y)$ such that, for some constant $K \ge 1$, $\sup_{t>0} \|C(t)f\|_{\infty} \le K \|f\|_{\infty}$ for all $f \in L_1 \cap L_{\infty}$. Then the following statements hold for all $1 \le p < \infty$:

- (i) For every $f \in L_p$ the Abel ergodic limit $f_1(s) := \lim_{\lambda \to 0^+} \lambda(L(\lambda)f)(s)$ exists almost everywhere on S.
- (ii) For every $f \in L_{\rho} \cap L_{\infty}$ the Cesàro ergodic limit $\lim_{t \to \infty} t^{-1}(S(t)f)(s)$ exists and equals $f_1(s)$ for almost all s in S.

Theorem 3. Let Y and $C(\cdot)$ be as assumed in Theorem 2. Then the following statements hold for all $1 \le p < \infty$:

- (i) For every $f \in L_p$ the Abel ergodic limit $f_2(s) := \lim_{\lambda \to \infty} \lambda(L(\lambda)f)(s)$ exists almost everywhere on S.
- (ii) For every $f \in L_{\rho} \cap L_{\infty}$ the local Cesàro ergodic limit $\lim_{t \to 0^+} t^{-1}$ (S(t)f)(s) exists and equals $f_2(s)$ for almost all s in S.

Since $\|C(t)\|_1 \le 1$ for all t > 0, $C(\cdot)$ has type $w_0 = 0$ so that the resolvent $R_{\lambda} = (\lambda I - A)^{-1} = \lambda^{-\frac{1}{2}} L(\lambda^{\frac{1}{2}})$ exists for all $\lambda > 0$. Moreover, we have $\|\lambda R_{\lambda}\|_1 \le 1$ and for all $f \in L_1 \cap L_{\infty}$ and almost all $s \in S$

$$|\lambda(R_{\lambda}f)(s)| = |\lambda^{\frac{1}{2}} \int_{0}^{\infty} e^{-\lambda^{\frac{1}{2}}t} (C(t)f)(s) dt| \leq \lambda^{\frac{1}{2}} \int_{0}^{\infty} e^{-\lambda^{\frac{1}{2}}t} |(C(t)f)(s)| dt$$

$$\leq \lambda^{\frac{1}{2}} \int_{0}^{\infty} e^{-\lambda^{\frac{1}{2}}t} ||C(t)f||_{\infty} dt \leq K ||f||_{\infty},$$

i. e. $\|\lambda R_{\lambda} f\|_{\infty} \leq K \|f\|_{\infty}$. Hence $\{R_{\lambda} : 0 < \lambda < \infty\}$ satisfies the conditions in the following pointwise ergodic theorem of Sato [9] for pseudo-resolvents, and consequently the Abel averages $\lambda(L(\lambda)f)(s)$ converge almost everywhere for all $f \in L_{p}$, as either $\lambda \to 0^{+}$ or $\lambda \to \infty$.

Theorem B. Let $\{J_{\lambda}: 0 < \lambda < \infty\}$ be a pseudo-resolvent of linear contractions on $L_1(S, \sum, \mu; Y)$ such that, for some constant $K \ge 1$, $\sup_{\lambda > 0} \|\lambda J_{\lambda} f\|_{\infty} \le K \|f\|_{\infty}$ for all $f \in L_1 \cap L_{\infty}$. Then for every $1 \le p < \infty$ and every $f \in L_p$ the limits

$$\lim_{\lambda \to 0^+} \lambda(J_{\lambda}f)(s)$$
 and $\lim_{\lambda \to \infty} \lambda(J_{\lambda}f)(s)$

exist almost everywhere on S.

202 S.-Y. SHAW

Finally, the validity of the assertions in Theorems 2 and 3 about the Cesàro limits is guaranteed by the following theorem, which is contained as a special case in Theorems 18.2.1 and 18.3.3 (and a remark following it) of [6].

Theorem C. Let g be a bounded and Lebesgue measurable Y-valued function on $(0, \infty)$. Then

$$\lim_{t\to\infty} t^{-1} \int_0^t g(s) ds = \lim_{\lambda\to 0} + \lambda \int_0^\infty e^{-\lambda t} g(t) dt$$

provided one of the limits exists. The same assertion still holds when " $t \to \infty$ " and " $\lambda \to 0^+$ " are replaced by " $t \to 0^+$ " and " $\lambda \to \infty$ ", respectively.

Remark. Since $L_P \cap L_\infty$ is dense in L_ρ , the conclusion (ii) of Theorems 2 and 3 might be extended to include all f in L_ρ provided that one could prove such a maximal ergodic inequality:

$$(*) \quad \mu(|s; \sup_{t>0} |t^{-1}(S(t)f)(s)| > a|) \leq Ca^{-\rho} \|f\|_{\rho}^{\rho} \quad (a>0, f\in L_{\rho}).$$

(cf. [4, Theorem 1.1]). A key to (*) would be the following cosine version of Chacon maximal ergodic inequality:

$$(**) \qquad \int_{e^*(ka)} (a - |f^{a-}(s)|) \, d\mu \le \int_{\mathcal{S}} |f^{a+}(s)| \, d\mu \quad (a > 0, \, f \in L_{\rho}),$$

where
$$e^*(ka) := \left\{ s : \sup_{n \ge 1} \left| \frac{1}{n} \sum_{i=0}^{n-1} (C(i)f)(s) \right| > ka \right\}, \ f^{a-}(s) := \frac{f(s)}{|f(s)|} \min(a, |f(s)|) \ \text{and} \ f^{a+}(s) := f(s) - f^{a-}(s).$$

if (**) is true, then one can use the same arguments in Theroem 2 of [5] to derive a continuous version of (**), from which then follows a dominated ergodic theorem (like Theorem 3 of [5]) and in particular (*). Moreover, this would enable one to directly prove the completed Theorems 2 & 3, without using Theorems B and C. At present, the author has not found a proof of (*) or (**) yet.

REFERENCES

- [1] R. V. CHACON: An ergodic theorem for operators satisfying norm conditions, J. Math. Mech. 11 (1962), 165-172.
- [2] N. DUNFORD and J. T. SCHWARTZ: Linear Operators, I: General Theory, Interscience, New

York, 1958, 1963.

- [3] H. O. FATTORINI: Ordinary differential equations in linear topological spaces. I, J. Differential Equations 5 (1969), 72-105.
- [4] A. GARSIA: Topics in Almost Everywhere Convergence, Markham Pub. Co., Chicago, 1970.
- [5] S. HASEGAWA, R. SATO and S. TSURUMI: Vector valued ergodic theorems for a one-parameter semigroup of linear operators, Tôhoku Math. J. 30 (1978), 95-106.
- [6] E. HILLE and R. S. PHILLIPS: Functional Analysis and Semigroups, Amer. Math. Soc. Colloq. Publ., Vol. 31, Amer. Math. Soc., Providence, R. I., 1957.
- [7] S. KUREPA: Semigroups and cosine functions, Functional Analysis, Proc, Conf., Dubrovnik/ Yugosl. 1981, Lect. Notes Math. 984 (1982), 47-72.
- [8] R. SATO: On a mean ergodic theorem, Proc. Amer. Math. Soc. 83 (1981), 563-564.
- [9] R. SATO: Individual ergodic theorems for pseudo-resolvents, Math. J. Okayama Univ. 23 (1981), 59-67.
- [10] S.-Y. SHAW: Strong and uniform ergodic theorems with rates, preprint.
- [11] M. SOVA: Cosine operator functions, Rozprawy Mat. 49 (1966), 1-47.

DAPARTMENT OF MATHEMATICS NATIONAL CENTRAL UNIVERSITY CHUNG-LI, TAIWAN, R. O. C.

(Received August 18, 1984.) (Revised October 23, 1984)