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MEAN AND POINTWISE ERGODIC THEOREMS
FOR COSINE OPERATOR FUNCTIONS

SEN-YEN SHAW

1. Introduction. The purpose of this paper is to present a mean
ergodic theorem and two pointwise ergodic theorems for a strongly continu-
ous cosine operator function.

Let X be a Banach space and B(X) be the Banach algebra of all bounded
linear operators on X. A one-parameter family {C(¢) ; t = 0} in B(X) is
called a strongly continuous cosine function if it satisfies the three condi-
tions:

(1) C(t+s)+C(t—s) =2C(t)C(s) forallt = 5 =0 ;

(2) C{(0) = I(the identity operator) :

(3) C(t) is strongly continuous in ¢ on [0,00),

4
The associated sine function S(-) is defined by S(i)x = _/;C(s)xds

(x € X).

There exist constants w > 0 and M, > 0 such that IC(i)ll < M e™
for all t = 0. We shall denote by w, the infimum of the set of all such w and
call it the type of C(+). Let A be the infinitesimal generator of C( - ),
defined as Ax:= ,]lf]rl 2t7%(C(t)—I)x in its natural domain D(A). Then

A is a densely defined closed operator, the resolvent set p(A ) contains all A*
with A > w,, and for each such A

ARI—A) = fe-”cu)dt.

We shall use L(A) to denote this operator. For these and other fundamental
properties of C{ +) the reader is refered to [3] and [11].

The operators ¢7'S(t), t > 0, and AL(1), A > 0, are the Cesaro av-
erages and the Abel averages of C( - ), respectively. In section 2 we shall

relate the convergence of ltim t7'S(1)x, 'l\mnl AL(A)x, and lim n™! ’_Z:.:C(it)x.

In section 3, X is assumed to be a Lebesgue space L,(S, 2, ¢; Y), 1 <
p < o, with Y a reflexive space. Under suitable conditions the almost ev-
erywhere convergence of i7'S(¢)f for f € L, NL.. and of AL{A)f for f in
L, will be justified.
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2. Mean ergodic theorems. Suppose C(:) is a strongly continuous
cosine function such that (IC(¢)ll < M for all t > 0. Then C( ) has type
w, = 0. We denote by P [resp. P,] the operator defined by

P.x:= ltim t7'S(t)x [resp. P, := }llllol AL(A)x],

with domain consisting of all those x for which the limit exists. Also we
define for each ¢ > 0 the operator P, by

P ox:=lima! EC(it )x.

N— o

The following theorem is proved in [10] ; it characterizes the range
R(P.), the null space N(P,.), and the domain D(P,) of P,, and also those of
P,. '

Theorem A. Under the hypothesis: IC(t)Il < M for all t > 0, one
has :
(i) Pc= P, and is a bounded linear projection with R(P.) = N(A)
= SO()N(C(s)—I), N(P;) = R(A) = sL)JOI'Z(C(.(;)—I), and
D(P.) = QﬂN(C(s)—I) ® sL))oR(C(s)-—I)

={x € X; 3|ty 5 00 > w—lim ;'S (t,)x exists!.
N—co

(ii) For eacht > 0, P, is a bounded linear projection with
D(P,) = N(C(t)—1I)e® R(C(i)—1I)

K
=|x€ X; ng} > 0> w—}lim ng' ;,)C(it)x exists}.

We shall use the above theorem to prove the following theorem, which
gives a sufficient condition for P, to coincide with P.. It is known that the
same assertion holds for semigroups (cf. Sato [8]).

Theorem 1. Let C(-) be a strongly continuous cosine function of uni-
Jormly bounded operators. Suppose there exists a & > 0 such that C(3)+1 is
invertible (particularly, | C(¢)—1I1l < 2) for all t € (0, §). Then P, = P,
Jor allt € (0, 26).

Proof. Since by Theorem A one has that R(P,) C R(P;) and N(P,) C
N(P.), it remains for us to show R(P;) C D(P.) and N(P,) C N(P,) for all
tin (0, 2¢).
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Using (1) we can easily show by induction that each C(it)—1I is a poly-
nomial of C(¢) and is divisible by C(t)—1. Also we can write

(=2 )) s+~ ))

(r=2)t) | f*+z[f( fﬂ]%)m

= ({2 ) [s(z
(bgk) el

1 (#/2)7'S(t/2)|n? ZC(zt)]

+ C(zt—s)-!—C zt—l—s]ds,

3
)+% f 2C()Cit)ds |
|

Hence, if x € R(P,) = N(C(t )—1I), then x € N(C(it)—1I) so that

N

which converges to (t/2)7'S(¢/2)x as n = oo, So, Theorem A(i) implies
that x belongs to D(P,.).

Next, let E be the set of all s > 0 such that R(C(s)—1I) is contained
in R(C(¢)—1). Then to show N(P.) C N(P,) is equivalent to showing that
E = (0, ). We first prove t/2 € E. If x € R(C(t/2)—1), then we have

el )3 e

_51_[2(; (it) +c( ) %';‘:_}][C((ZH—1)%)—%—(3((211—1)*;‘)]]35

=i
1 227 1 t t
- 20 5 0lg gl o3 )-olenng) =
which converges to P,,,x = 0 asn - . Since I+ C(t/2) is invertible, we

must have that P,xzr}imn“ E.:C(it)x——* 0, i. e. x € R(C(t)—1I). Repeat-

ing the same process and noting that C(ms )—1I is divisible by C(s)—1I, we
see that E contains all numbers of the form (m/2%t, m, n = 1, 2,..., which
form a dense subset of (0, o). Then the strong continuity of C( + ) shows
that the whole set (0, ©0) is contained in E. Hence the theorem is proved.

3. Pointwise ergodic theorems. Throughout this section,(S, 2/, u) is
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a o-finite measure space, (Y, | + |) is a refiexive Banach space, and C( - )
is a strongly continuous cosine function of linear operators on L, = L,(S,
>, u; Y). In addition, we assume that | C(¢)ll, < 1 for all = 0, and that
for some constant K > 1 sup |l Ct)fll. < Kllfll, forall f€ L, () Lo.

It is known that each C(¢) can be extended so that it is defined on each
L,=L,S, X, u;Y), 1<p< oo (see[1]), and the extended operator
C(t) has norm | C(¢)ll, < K, by the Riesz convexity theorem (see [2, VI.
10. 11]). Thus for each 1 < p < o C(+) is a cosine function of opera-
tors on L,. Moreover, it is strongly continuous on (0,%). To see this let
f€ L, L, so that the function C(-)f is continuous in L, and hence
(C(t)AH(s) is [t, s]-measurable on (0, )X S (cf. [2, III. 11. 16-(a)]). It
follows from part (b) of the same lemma that C( + )f as a L,-valued function
is Lebesgue measurable on (0, o). Since L, () L,, 1 < p< o, is dense
in L,, C(+) is strongly measurable on (0, ) when regarded as operators
on L,. It follows that C( ) is strongly continuous on (0, c)([3],[7]) and
hence is also right continuous at 0, by {1).

By Theorem I11.11.17 of [2] there is for each f € L, a Y-valued func-
tion g(¢,s), defined on (0, )X S and strongly measurable with respect to
the product of Lebesgue measure and 4, such that for each fixed > 0 g(¢, s)
as a function of s belongs to the equivalence class of C(t )f € L,. We shall
denote this function g(¢, s) by the notation (C(¢)f)(s). The same theorem
also shows the existence of a u-null set N(f), dependent on f but independent
of t, such that for every s not in N(f) (C( + )f)(s) is Bochner integrable on
every finite interval [0, #] with respect to Lebesgue measure, and the func-

tion: s = (S(t)f)(s) := [t(C(u ) )(s )du belongs to the equivalence class

of S(t)f € L,. Similarly, there exists a g-null set N(f), dependent on f
but independent of t, such that for every s not in N'(f) the function: ¢ =
e *(C(t)f)(s) is Bochner integrable on (0, c©), and the function s —

(L{(A)f)(s) : = [me‘”(C(t)f)(s)dt belongs to the equivalence class of
L(A)f € L,.

The pointwise ergodic theorems are concerned with w-almost every-
where convergence of t~(S(t)f)(s) and A(L(A)f)(s) as ¢t = o and A— 0%,
orast — 0" and A » oo, They are stated as follows.

Theorem 2. Let Y be a reflexive Banach space, (S, X, u) a o-finite

measure space, and let C(+) be a strongly continuous cosine function of
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linear contractions on L,(S, 2, u; Y) such that, for some constant K > 1,
sup NC(t)flle < Kl flle for all f € Li(\ L. Then the following stale-

ments hold for all1l < p< o :
(i) For every f € L, the Abel ergodic limit fi(s) ::Alim AL(A)f)(s)

exists almost everywhere on S.
(ii) For every f € L,( ) L.. the Cesaro ergodic limit llim (S ()f)s)

exists and equals fi(s) for almost all s in S.
Theorem 3. Let Y and C( - ) be as assumed in Theorem 2. Then the

Jollowing statements hold for all 1 < p< oo :
(i) For every f € L, the Abel ergodic limit fy(s) :;lim AML(A)f)(s)

exists almost everywhere on S.
(i1) For every f€ L,(\ L. the local Cesaro ergodic limit lim+t_1
-0

(S(¢)f)(s) exists and equals f,(s) for almost all s in S.

Since IC() I, <1 for all t > 0, C(-+) has type wo, = 0 so that the
resolvent Ry = (AI—A)~' = XIL(A}) exists for all A > 0. Moreover, we
have IARAll, < 1 and for all f€ L,() L. and almost all s € S

AR = 12 [T eI )al < & [TeH(cnis) | a
< x[TeHuc) i< Kigi,

i. e. 1ARA\fllo < K Il fll.. Hence {R5; 0 < A < oof satisfies the conditions
in the following pointwise ergodic theorem of Sato [9] for pseudo-resolvents,
and consequently the Abel averages A(L(A)f)(s ) converge almost everywhere
for all f € L,, as either A= 0¥ or A = oo,

Theorem B. Let {J,; 0 < A< | be a pseudo-resolvent of linear
contractions on L.(S, X3, u; Y) such that, for some constant K =1,
ig;gll/\J,\fllm < Kl flly for all f € L, () Lwo. Then for every 1 < p< o0

and every f € L, the limits

lim AUaf)(s) and lim AULS)(s)

exist almost everywhere on S.
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Finally, the validity of the assertions in Theorems 2 and 3 about the
Cesiaro limits is guaranteed by the following theorem, which is contained as
a special case in Theorems 18.2.1 and 18. 3.3 (and a remark following it)
of [6].

Theorem C. Let g be a bounded and Lebesgue measurable Y-valued
Sfunction on (0, ). Then

t o0
lim t"f g(s)ds = lim+ Af e Mg(t)di
taroo 0 A-0 0

provided one of the limits exists. The same assertion still holds when "t — o0
and “A = 07" are replaced by “t = 0*” and “A = o, respectively.

Remark. Since Ly () L. is dense in L,, the conclusion (ii) of Theo-
rems 2 and 3 might be extended to include all f in L, provided that one could
prove such a maximal ergodic inequality :

(%) wls; S;lglt"(S(t)f)(S)l >al) < Ca?lflig (a>0, f€ L,).

(cf. [4, Theorem1.1]). A key to (*) would be the following cosine version
of Chacon maximal ergodic inequality :

(o) [ @l dus [1P%6)lde @> 0, f€ L),

O
>ka],f“ (s) := Iﬂs)lmm

OIS
(a,f(s)]) and f2*(s) := f(s)—f>(s).

if (#*) is true, then one can use the same arguments in Theroem 2 of
(5] to derive a continuous version of (** ), from which then follows a domi-
nated ergodic theorem (like Theorem 3 of [5]) and in particular (*). More-
over, this would enable one to directly prove the completed Theorems 2 & 3,
without using Theorems B and C. At present, the author has not found a
proof of (%) or (**) yet.

where e*(ka) : = [s; sup
n=1
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