ON OPERATORS RELATED TO *p*-STABLE MEASURES IN BANACH SPACES

YASUJI TAKAHASHI and YOSHIAKI OKAZAKI

1. Introduction and notations. Let E be a Banach space with the dual space E' and p be a real number such that 0 . We say that E is ofstable type p if for each sequence $|x_n|$ in E, $\sum_n ||x_n||^p < \infty$ implies the series $\sum_{n} x_n \theta_n^{(p)}$ converges almost surely (a.s.); and E is of stable cotype p if for each sequence $|x_n|$ in E such that the series $\sum_n x_n \theta_n^{(p)}$ converges a.s., there holds $\sum_{n} \|x_{n}\|^{p} < \infty$. Here $\{\theta_{n}^{(p)}\}$ denotes the sequence of independent identically distributed real random variables with the characteristic function (ch. f.) $\exp(-|t|^p)$, $t \in R$. Let us denote by L(E, F) the set of all continuous linear operators from E into a Banach space F. For an operator T in L(E, F), we say that T is S_{ρ} -factorizable (resp. SQ_{ρ} factorizable) if it is factorizable through a subspace (resp. a subspace of a quotient) of some L_{ρ} . Let us recall that a sequence $|x_n|$ in E is weakly p-summable if $\sum_n |\langle x_n, x' \rangle|^{\rho} < \infty$ for all $x' \in E'$. For an operator T in L(E, F), we say that T is of stable type p if for each sequence $|x_n|$ in E, $\sum_{n} \|x_n\|^{\rho} < \infty$ implies the series $\sum_{n} T(x_n) \theta_n^{(\rho)}$ converges a.s. in F; T is γ_{p} -summing if for each weakly p-summable sequence $|x_{n}|$ in E, the series $\sum_{n} T(x_n) \theta_n^{(p)}$ converges a.s. in F; and T is p-summing if for each weakly p-summadle sequence $|x_n|$ in E, $\sum_n ||T(x_n)||^{\rho} < \infty$. We denote by $\prod_{\gamma_\rho} (E, F)$ (resp. $\Pi_p(E, F)$), the set of all γ_p -summing operators (resp. p-summing operators) from E into F. Let X be a Banach space and 1 . In thefollowing we shall write with $X' \subset L_{\rho}$ if X' is linearly isometric to a subspace of L_p . For such a space X, we say that an operator T in L(X, E) is γ_{ρ} -Radonifying if $\exp(-\|T'(x')\|^{\rho})$, $x' \in E'$, is the ch. f. of a Radon measure on E, where T' denotes the adjoint of T. The set of all γ_{ρ} -Radonifying oparators from X into E will be denoted by $R_{\rho}(X, E)$. It is known that a symmetric Radon probability measure μ on E is p-stable if and only if there exist a Banach space X with $X' \subset L_{\rho}$ and an operator T in $R_{\rho}(X, E)$ such that $\exp(-\|T'(x')\|^p)$, $x' \in E'$, is the ch. f. of μ (see [4, Prop. 3]).

Then the main results of this paper are the following:

- (1) Let 1 . Then the following properties of a Banach space <math>E are equivalent.
 - (1a) For each Banach space X with $X' \subset l_p$, we have

$$R_{\rho}(X, E) \subset \Pi_{\rho}(X, E).$$

(1b) If $|x_n|$ and $|y_n|$ are two sequences in E such that

$$\sum_{n} | \langle y_n, x' \rangle |^{\rho} \le \sum_{n} | \langle x_n, x' \rangle |^{\rho} \text{ for all } x' \in E',$$

and the series $\sum_{n} x_{n} \theta_{n}^{(p)}$ converges a.s. in E, then $\sum_{n} ||y_{n}||^{p} < \infty$.

- (2) Let 1 and suppose that a Banach space <math>E has the property (1a). Then for each Banach space F, every operator of stable type p from F into E is S_p -factorizable. In particular, if E is of type (B_p) , 1 , in the sense of [1], then every operator of stable type <math>p from F into E is S_p -factorizable; and if E is of stable cotype 2 and F is of stable type 2, then every continuous linear operator from F into E is Hilbertian.
- (3) Let 1 and let <math>E be a Banach space satisfying the condition $R_{\rho}(l_{\rho'}, E) \subset \Pi_{\rho}(l_{\rho'}, E)$, where 1/p+1/p'=1. Then for each reflexive Banach space F, every operator of stable type p from F into E is SQ_{ρ} -factorizable. In particular, if E belongs to the class $V_{\rho}(i)$ in the sense of [5], then every operator of stable type p, 1 , from a reflexive Banach space <math>F into E is SQ_{ρ} -factorizable.
- (4) Let E be a Banach space and 1 . Then <math>E is of stable type p if and only if for each Banach space F, every p-summing operator from F into E is γ_p -summing; and E is of finite dimension if and only if every operator of stable type p from l_p into E is γ_p -Radonifying.
- (5) Let 1 and let <math>T be a continuous linear operator from a Banach space F into a Banach space E. Then T is S_p -factorizable if and only if for each Banach space X with $X' \subset l_p$ and each $S \in L(X, F)$ with $\sum_n \|S(f_n)\|^p < \infty$, TS is p-summing. Here $f_n = J'(e_n)$, where J is an isometric imbedding from X' into l_p and e_n is the n-th unit vector of l_p . Furthermore, if we assume that F is reflexive, then T is SQ_p -factorizable if and only if for each $S \in L(l_p, F)$ with $\sum_n \|S(e_n)\|^p < \infty$, TS is p-summing.

Remark. In Section 2, the equivalence of (1a) and (1b) is proved, and some examples of Banach spaces E having the property (1a) are given. For the case p=2, it is well-known that E has the property (1a) if and only if it is of stable cotype 2, and on the other hand, every Banach space is of stable cotype p with p < 2 (see [6]). We also prove that a Banach space E belongs to the class $V_p(i)$, $1 , if and only if <math>R_p(l_{p'}, E) \subset \Pi_{\gamma_p}(l_{p'}, E)$. It is easy to see that every Banach space belongs to the class $V_2(i)$; and a

Banach space of stable type p, $1 , belongs to the class <math>V_p(i)$ if and only if it is of SQ_p type in the sense of [2], i.e. it is isomorphic to a subspace of a quotient of some L_p . This extends a result of [5].

In Section 3, (4) is proved. We also prove that every r-summing operator is of stable type p, where $0 and <math>0 < r < \infty$.

In Section 4, the results (2), (3) and (5) are proved. We note that (2) extends the results of [1], [5] and [7]; (3) extends the results of [4] and [5]; and (5) is an analogue of the results of [2] and [7]. Let us recall that a Banach space E is of S_p type if it is isomorphic to a subspace of some L_p . As a consequence of (2), we obtain that a Banach space E is of stable type p and of S_p type, 1 , if and only if for each Banach space <math>X with $X' \subset l_p$, there holds $R_p(X, E) = \prod_p(X, E)$. This extends a result of [1].

The paper is motivated from the works of [1], [2], [4], [5] and [7].

2. Banach spaces having the property (1a). We first prove the equivalence of (1a) and (1b) mentioned in Section 1.

Theorem 1. Let 1 . Then the following properties of a Banach space <math>E are equivalent.

(1) For each Banach space X with $X' \subset l_p$, we have

$$R_{\rho}(X, E) \subset \Pi_{\rho}(X, E).$$

(2) If $\{x_n \mid and \mid y_n\}$ are two sequences in E such that

$$\sum_{n} |\langle y_n, x' \rangle|^p \leq \sum_{n} |\langle x_n, x' \rangle|^p$$
 for all $x' \in E'$,

and the series $\sum_{n} x_{n} \theta_{n}^{(p)}$ converges a.s. in E, then $\sum_{n} \|y_{n}\|^{p} < \infty$.

Proof. For the case p=2, the equivalence of (1) and (2) easily follows from the fact that E is of stable cotype 2 if and only if $R_2(l_2, E) \subset \Pi_2(l_2, E)$ (see [6]). Hence we may prove only the case 1 .

 $(1) \Rightarrow (2)$: Let us assume that (1) is satisfied and let $|x_n|$ and $|y_n|$ be two sequences in E such that

$$\sum_{n} |\langle y_n, x' \rangle|^p \leq \sum_{n} |\langle x_n, x' \rangle|^p$$
 for all $x' \in E'$,

and the series $\sum_n x_n \theta_n^{(\rho)}$ converges a.s. in E. Since every Banach space is of stable cotype p with p < 2, we have $\sum_n \|x_n\|^{\rho} < \infty$. Then there is a continuous linear operator S from $l_{\rho'}$ into E such that $S(e_n) = x_n$ for all n, where e_n is the n-th unit vector of $l_{\rho'}(1/p+1/p'=1)$. Evidently, S is

 γ_{ρ} -Radonifying and there holds $S'(x') = (\langle x_n, x' \rangle)_{n=1}^{\infty}$ for all $x' \in E'$. Let X = Y', where Y = S'(E'). Obviously, X is a Banach space whose dual X' is a closed subspace of l_{ρ} , and the operator S can be factorized as follows;

$$l_{o'} \stackrel{J'}{\to} X \stackrel{T}{\to} E,$$

where J denotes the natural injection from X' into l_p . Then T is clearly γ_p -Radonifying since S is so. From the assumption (1) it follows that T is p-summing. We note here that S'(E') is a dense subspace of X'. Define the operator $V: X' \to l_p$ by

$$V: (\langle x_n, x' \rangle)_{n=1}^{\infty} \to (\langle y_n, x' \rangle)_{n=1}^{\infty} \text{ for all } x' \in E'.$$

Then V is a continuous linear operator and there holds $TV'(e_n) = y_n$ for all n. Since TV' is p-summing, we have $\sum_n ||y_n|| < \infty$.

 $(2) \Rightarrow (1)$: Let us assume that (2) is satisfied and let X be a Banach space with $X \subset l_p$ and $T \in R_p(X, E)$. To prove that T is p-summing, let $\{x_n\}$ be an weakly p-summable sequence in X. Then there is a continuous linear operator S from l_p into X such that $S(e_n) = x_n$ for all n. Evidently, we have

$$\|S'T'(x')\|^p = \sum_n |\langle S'T'(x'), e_n \rangle|^p = \sum_n |\langle T(x_n), x' \rangle|^p, \ x' \in E',$$
 and

$$||T'(x')||^p = ||JT'(x')||^p = \sum_n |\langle TJ'(e_n), x' \rangle|^p, x' \in E',$$

where J is an isometric imbedding from X' into l_p . Hence

$$\sum_{n} |\langle T(x_n), x' \rangle|^{\rho} \le ||S'||^{\rho} \sum_{n} |\langle TJ'(e_n), x' \rangle|^{\rho}, x' \in E'.$$

Since $TJ': l_{\rho} \to E$ is clearly γ_{ρ} -Radonifying, the series $\sum_{n} TJ'(e_{n}) \, \theta_{n}^{(\rho)}$ converges a.s. in E. From the assumption (2) it follows that $\sum_{n} \|T(x_{n})\|^{\rho} < \infty$ proving $T \in H_{\rho}(X, E)$. Thus the proof is completed.

Now we give some examples of Banach spaces E having the property (1a). Let us recall that for p=2, E has the property (1a) if and only if it is of stable cotype 2.

Following [1], we say that a Banach space E is of type (B_{ρ}) , 1 , if for each Banach space <math>X with $X' \subset l_{\rho}$, there holds $R_{\rho}(X, E) = \prod_{r_{\rho}} (X, E)$. Of course every Banach space is of type (B_{2}) (see [1]). For $1 , every Banach space of type <math>(B_{\rho})$ has the property (1a) since γ_{ρ} -summing operators are p-summing.

Following [8], we say that a Banach space E is of type (S) if there exists an S-topology on E'. It is well-known that if E has the approximation property, then E is of type (S) if and only if it is isomorphic to a subspace of some L_0 . Obviously, every Banach space of type (S) has the property (1a) for 1 .

Following [12], we say that a Banach space E belongs to the class (V_p) , $1 \le p \le 2$, if for each p-stable Radon probability measure μ and each stable cylindrical measure ν on E, the inequality

$$|1 - \hat{\nu}(x')| \le |1 - \hat{\mu}(x')|, \ x' \in E',$$

implies ν is a Radon measure on E. Here $\hat{\mu}(\text{resp. }\hat{\nu})$ denotes the ch. f. of $\mu(\text{resp. }\nu)$. It is easy to see that every Banach space belonging to the class (V_p) has the property $(1\,\text{a})$ for 1 .

Finally, we give some examples of Banach space E satisfying the condition $R_p(l_{p'}, E) \subset \Pi_p(l_{p'}, E)$, $1 . Evidently, every Banach space having the property (1a) satisfies this condition, but the converse is not true. It is known that every Banach space of <math>SQ_p$ type satisfies this condition (see [4]). Note that for p=2, E satisfies this condition if and only if it is of stable cotype 2. In the following we give another example of Banach spaces E satisfying this condition.

Let E be a Banach space and $1 . Denote by <math>\Lambda_{\rho}(E', l_{\rho})$ the set of all continuous linear operators T from E' into l_{ρ} such that $\exp(-||T(x')||^{\rho})$, $x' \in E'$, is the ch. f. of a Radon measure on E. It is known that for an operator T in $L(E', l_{\rho})$, $T \in \Lambda_{\rho}(E', l_{\rho})$ if and only if there exists an operator S in $R_{\rho}(l_{\rho'}, E)$ such that T = S' (see [3, Th. 5]). Following [5], we say that E belongs to the class $V_{\rho}(i)$ if $T \in \Lambda_{\rho}(E', l_{\rho})$ implies $ST \in \Lambda_{\rho}(E', l_{\rho})$ for all $S \in L(l_{\rho}, l_{\rho})$.

Proposition 1. A Banach space E belongs to the class $V_p(i)$, $1 , if and only if the inclusion <math>R_p(l_{p'}, E) \subset \prod_{r_p}(l_{p'}, E)$ holds.

Proof. Let us first assume that E belongs to the class $V_{\rho}(i)$ and let $T \in R_{\rho}(l_{p'}, E)$. In order to prove that T is γ_{ρ} -summing, take an weakly p-summable sequence $|x_n|$ in $l_{\rho'}$. Then there is an operator S in $L(l_{\rho'}, l_{\rho'})$ such that $S(e_n) = x_n$ for all n. By the assumption, $T' \in \Lambda_{\rho}(E', l_{\rho})$ implies $S'T' \in \Lambda_{\rho}(E', l_{\rho})$. But this means that TS is γ_{ρ} -Radonifying, and so the series $\sum_n TS(e_n) \ \theta_n^{(\rho)} = \sum_n T(x_n) \ \theta_n^{(\rho)}$ converges a. s. in E(see[1] or [4]). Hence we get $T \in \Pi_{\gamma_{\rho}}(l_{\rho'}, E)$. On the other hand, suppose that the inclusion

 $R_{\rho}(l_{\rho'}, E) \subset \Pi_{\gamma_{\rho}}(l_{\rho'}, E)$ holds. Let $T \in \Lambda_{\rho}(E', l_{\rho})$. Then there is an operator V in $R_{\rho}(l_{\rho'}, E)$ such that T = V'. By the assumption, V is γ_{ρ} -summing. Let S be any operator in $L(l_{\rho}, l_{\rho})$. Since $\{S'(e_n)\}$ is an weakly p-summable sequence in $l_{\rho'}$, the series $\sum_{n} VS'(e_n) \theta_n^{(\rho)}$ converges a. s. in E. But this means that VS' is γ_{ρ} -Radonifying, and so we get $ST = (VS')' \in \Lambda_{\rho}(E', l_{\rho})$. Thus E belongs to the class $V_{\rho}(i)$, and the proof is completed.

Corollary 1. Suppose that a Banach space E is of stable type p, $1 . Then E belongs to the class <math>V_{\rho}(i)$ if and only if it is of SQ_{ρ} type.

Proof. The assertion follows from Proposition 1 and [4, Th. 3].

3. Operators of stable type p and γ_p -summing operators. Let us first remark that every operator factorizable through a Banach space of stable type p is always of stable type p. It is well known that for $2 \le r < \infty$, L_r is of stable type 2, and in particular, it is of stable type p for all $p \in (0, 2]$.

Proposition 2. For $0 and <math>0 < r < \infty$, every r-summing operator is of stable type p.

Proof. The assertion easily follows from the facts that every r-summing operator is s-summing for r < s, and every r-summing operator is factorizable through a subspace of some L_r (see [10]).

Remark. Every γ_{ρ} -summing operator, $0 , is always <math>\rho$ -summing, but in general, the converse is not true. It is known that if a Banach space E is of stable type p, 0 , then for each Banach space <math>F, every ρ -summing operator from F into E is γ_{ρ} -summing (see [1]). The following result shows that the converse is true for 1 .

Proposition 3. Let 1 . Then the following properties of a Banach space E are equivalent.

- (1) E is of stable type p.
- (2) $\Pi_{\rho}(l_{\rho'}, E) = \Pi_{r_{\rho}}(l_{\rho'}, E).$
- (3) For each Banach space F, we have $\Pi_p(F, E) = \Pi_{r_0}(F, E)$.

Proof. Since every γ_{ρ} -summing operator from $l_{\rho'}$ into E is γ_{ρ} -Radonifying, the assertion follows from [4, Th. 2].

Remark. Proposition 3 becomes false in the case p = 2. In this case, one of the properties (2) and (3) is equivalent to the fact that E is of stable cotype 2 (see [1], [6]).

Finally, we investigate the relationship among operators of stable type p, γ_{ρ} -summing and γ_{ρ} -Radonifying operators.

Theorem 2. Let 1 . Then the following properties of a Banach space E are equivalent.

- (1) E is of finite dimension.
- (2) Every operator of stable type p from l_p into E is γ_p -summing.
- (3) Every operator of stable type p from l_p into E is γ_p -Radonifying.

Proof. Of course, we only have to prove $(3) \Rightarrow (1)$. Let us assume that (3) is satisfied. Then E is of stable type p (see Prop. 2 and [4], Th. 2]). Let $|x_n|$ be an weakly p-summable sequence in E. Then there is an operator T in $L(l_p, E)$ such that $T(e_n) = x_n$ for all n. Since E is of stable type p, T is of stable type p. From the assumption (3) it follows that T is γ_p -Radonifying, and so the series $\sum_n T(e_n) \, \theta_n^{(p)} = \sum_n x_n \theta_n^{(p)}$ converges a.s. in E. Since every Banach space is of stable cotype p with p < 2 (see [6]), we have $\sum_n \|x_n\|^p < \infty$. But this means that the identity map on E is p-summing, and so E is a nuclear Banach space (see [10]). Thus E is of finite dimension, and the proof is completed.

4. S_{ρ} -factorizable operators and SQ_{ρ} -factorizable operators. In this section, we prove the results (2), (3) and (5) stated in Section 1. The following two propositions are analogues of the results of [2] and [7].

Proposition 4. Let 1 and let T be a continuous linear operator from a Banach space F into a Banach space E. Then the following are equivalent.

- (1) T is S_{ρ} -factorizable.
- (2) For each Banach space X with $X' \subset l_p$ and each $S \in L(X, E)$ with $\sum_n ||S(f_n)||^p < \infty$, TS is p-summing. Here $f_n = J'(e_n)$, where J is an isometric imbedding from X' into l_p .
- *Proof.* (1) \Rightarrow (2) easily follows from [11, Th. 3. 1]. On the other hand, let us assume that (2) is satisfied. In order to prove (1), we use the Maurey criterion [7] for the factorizability through a subspace of L_{ρ} . Let

 $|x_n|$ and $|y_n|$ be two sequences in F such that

$$\sum_{n} |\langle y_n, x' \rangle|^{\rho} \leq \sum_{n} |\langle x_n, x' \rangle|^{\rho}$$
 for all $x' \in F'$

and

$$\sum_n \|x_n\|^p < \infty.$$

Then by the same way as in the proof of Theorem 1, we can find an operator S in L(X, F) such that $S(f_n) = x_n$ for all n, where X is a Banach space with $X' \subset l_p$ and $|(\langle x_n, x' \rangle)_{n=1}^{\infty}; x' \in F'|$ is a dense subspace of X'. Define the operator $V: X' \to l_p$ by

$$V: (\langle x_n, x' \rangle)_{n=1}^{\infty} \to (\langle y_n, x' \rangle)_{n=1}^{\infty} \text{ for all } x' \in F'.$$

Then V is a continuous linear operator and there holds $SV'(e_n) = y_n$ for all n. From the assumption (2) it follows that TS is p-summing, and so is TSV'. Thus we get

$$\sum_{n} ||T(y_n)||^{\rho} = \sum_{n} ||TSV'(e_n)||^{\rho} < \infty.$$

By the Maurey criterion [7], T is S_p -factorizable, and the proof is completed.

Proposition 5. Let 1 and let T be a continuous linear operator from a reflexive Banach space F into a Banach space E. Then the following are equivalent.

- (1) T is SQ_{ρ} -factorizable.
- (2) For each $S \in L(l_{p'}, F)$ with $\sum_{n} ||S(e_n)||^p < \infty$, TS is p-summing.

Proof. (1) \Rightarrow (2) easily follows from [11, Th. 3. 1]. On the other hand, let us assume that (2) is satisfied. In order to prove (1), it is enough to show that T' is SQ_p -factorizable (see [11, Theorem 3. 1]). For the proof, we use the Kwapien criterion [2] for the factorizability through a subspace of a quotient of L_p . Let V be a p-integral operator from F' into a Banach space G. Since F is reflexive, by [9, Cor. 1], V is p-nuclear, and so it is factorized by the bounded linear operators U: $F' \to l_{\infty}$, D: $l_{\infty} \to l_p$ and W: $l_p \to G$, where D is a diagonal operator. Evidently, U'D' is a continuous linear operator from l_p into F, and there holds $\sum_n \|U'D'(e_n)\|^p < \infty$. From the assumption (2) it follows that TU'D' is p-summing, and so we get $(VT')' \in \Pi_p(G', E'')$. Thus by Kwapien [2, Cor. 7], T' is SQ_p -factorizable, and the proof is completed.

Now we prove the following main theorem extending the results of [1] and [7].

Theorem 3. Let $1 and suppose that a Banach space E has the property (1a). Then for each Banach space F, every operator of stable type p from F into E is <math>S_p$ -factorizable.

Proof. Let T be an operator of stable type p from F into E. Then for each Banach space X with $X' \subset l_p$ and each $S \in L(X, F)$ such that $\sum_n \|S(f_n)\|^p < \infty$, the series $\sum_n TS(f_n) \, \theta_n^{(p)}$ converges a.s. in E, where f_n is the same as in (2) of Proposition 4. But this means that TS is γ_p -Radonifying (see [1]), and so TS must be p-summing because E has the property (1a). By Proposition 4, it follows that T is S_p -factorizable, and the proof is completed.

Corollary 2. Let E be a Banach space having the property (1a) and F be a Banach space of stable type p, $1 . Then every continuous linear operator from F into E is <math>S_p$ -factorizable.

Corollary 3. Let E be a Banach space of type (B_p) and F be a Banach space of stable type p. $1 . Then every continuous linear operator from F into E is <math>S_p$ -factorizable.

Corollary 4 (Maurey [7]). Let E be a Banach space of stable cotype 2 and F be a Banach space of stable type 2. Then every continuous linear operator from F into E is Hilbertian. In particular, if E is both of stable type 2 and of stable cotype 2, then E is isomorphic to a Hilbert space.

Corollary 5. Let E be a Banach space of stable type p with 1 . Then the following are equivalent.

- (1) E is of S_{ρ} type.
- (2) E has the property (1a).
- (3) E is of type (S).
- (4) E is of type (B_p) .
- (5) E belongs to the class (V_p) .

Theorem 4. Let 1 . Then the following properties of a Banach space E are equivalent.

(1) E is of stable type p and of S_p type.

(2) For each Banach space X with $X' \subset l_p$, we have

$$R_{\rho}(X, E) = \Pi_{\rho}(X, E).$$

Proof. The assertion follows from Corollary 5 and [4, Th. 2].

Remark. Corollaries 3, 5 and Theorem 4 become false in the case p=2. It is known that E has the property (2) of Theorem 4 for p=2 if and only if E is of stable cotype 2 (see [6]).

Finally, we prove the following theorem extending the results of [4] and [5].

Theorem 5. Let 1 and suppose that a Banach space <math>E satisfies the condition $R_p(l_p, E) \subset \Pi_p(l_p, E)$. Then for each reflexive Banach space E, every operator of stable type E from E into E is SQ_p -factorizable.

Proof. Let T be an operator of stable type p from F into E. Then for each $S \in L(l_{p'}, F)$ with $\sum_{n} ||S(e_n)||^p < \infty$, the series $\sum_{n} TS(e_n) \theta_n^{(p)}$ converges a.s. in E. But this means that TS is γ_p -Radonifying, and so by the assumption, TS is p-summing. By Proposition 5, it follows that T is SQ_p -factorizable, and the proof is completed.

Corollary 6. Let $1 and let E be a Banach space belonging to the class <math>V_p(i)$. Then for each reflexive Banach space F, every operator of stable type p from F into E is SQ_p -factorizable.

REFERENCES

- DANG HUNG THANG and NGUYEN DUY TIEN: Mappings of stable cylindrical measures in Banach spaces, Theory Prob. Appl., 27 (1982), 525-535.
- [2] S. KWAPIEN: On operators factorizable through L_{ρ} space, Bull. Soc. Math. France, Mem. 31-32~(1972),~215-225.
- [3] W. LINDE: Operators generating stable measures on Banach spaces, Z. Wahrscheinlichkeitstheorie verw. Geb. 60 (1982), 171-184.
- [4] W. LINDE, V. MANDREKAR and A. WERON: p-stable measures and p-absolutely summing operators, Lecture Notes in Math., No. 828, pp. 167-178, Springer-Verlag, New York 1980.
- [5] V. MANDREKAR and A. WERON: α -stable characterization of Banach apaces (1 $< \alpha < 2$), J. Multivariate Anal. 11 (1981), 572-580.
- [6] B. MAUREY: Espaces de cotype p, 0 , Seminairé Maurey-Schwartz 1972—73, Exposé VII.
- [7] B. MAUREY: Un théorème de prolongement, C. R. Acad. Sci. Paris, A279, 26 (1974), 329-332.

- [8] D. MOUCHTARI: Sur l'existence d'une topologie du type Sazonov sur une espace de Banach, Seminairé Maurey-Schwartz 1975-76, Exposé XVII.
- [9] A. PERSSON: On some properties of p-nuclear and p-integral operators, Studia Math., 33 (1969), 213-222.
- [10] A. PIETSCH: Operator ideals, Berlin: Akademie-Verlag 1978.
- [11] Y. TAKAHASHI and Y. OKAZAKI: Characterizations of subspaces, quotients and subspaces of quotients of L_p , to appear.
- [12] N. Z. TIEN and A. WERON: Banach spaces related to α-stable measures, Lecture Notes in Math., No. 828, pp. 309-317, Springer-Verlag, New York 1980.

DEPARTMENT OF MATHEMATICS
YAMAGUCHI UNIVERSITY
AND
KYUSHU UNIVERSITY

(Received April 30, 1985)