Math. J. Okayama Univ. 27 (1985), 173—184

ON LATTICE POINTS IN PLANAR DOMAINS

WorLrcane MULLER and WErNER GEorG NOWAK

1. Introduction. Let % be a compact subset of R? bounded by a
(closed) smooth Jordan curve # which is defined by ¢(u,v) = 0 where ¢ is
analytic on ®and grad ¢ % (0, 0) throughout. For a large real parameter T,
denote by A(T) the number of lattice points (of the standard lattice Z?) in
the “blown up” domain T @(points at the boundary of any set involved are to
be counted with weight 1/2, throughout the paper), by V the area of % and
define the “lattice rest” by P(T): = A(T)—VT? The classical problems
of lattice point theory involve the order resp. the asymptotic behaviour of
P(T) for special domains Z. (See Fricker [3] for an enlightening survey.)

Under the assumption that the curvature x of € does not vanish any-

where, one obtains results quite similar to the case of the circle: It is known
(due to Van der Corput [13]) that

P(T) = O(T®) (1)
for some exponent § < 2/3, furthermore [9] that
P(T) = Q_(T"*(log T)'"*)
and [10]

[P ae = o).

For the case that the curvature x of @ has only zeros of order < n—2
(n = 3), Y. Colin de Verdiere [2] derived the estimate

P(T) = O(T'"'"),

using a modern method based on the theory of singularities.

Let P, be all points of @with x = 0 and let n;—2 denote the order of
these zeros (m; = 3), and suppose in addition that @ has rational slope in
each of the P, then a precise asymptotic formula for the lattice rest is
known, with an error term O(T?), § < 2/3, like in (1) : According to [8]

one has
P(T) = S5 Pl )T (T, (2)
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where the functions F;(T) are O(1) as T — oo and (in general) Q,(1) and
have been given explicitly (by absolutely convergent Fourier series) in [8].
(Observe that, since n, = 3, the main term here is at least of order T°%,
hence it actually dominates the error term.)

2. Statement of results. It is the objective of the present paper to
extend these investigations to the case that @ contains points @, with curva-
ture 0 and irrational slope £;. It turns out that, under suitable assumptions
about the "approximability” of the @; by rationals, these points @; contrib-
ute only a comparatively “small” amount to the lattice rest which is not
greater than the error term in the case x % 0.

Theorem. Let @ be a compact planar domain bounded by a closed smooth
Jordan curve € which is defined by ¢(u, v) = 0 where ¢(u, v) is an analytic
Jfunction on @ with grad ¢ % (0, 0). Suppose that the curvature x of € has
zeros exactly in two (finite) sets of points | Pl and 1Q;} with the following
properties :

(i) In the points P, the slope of € is rational and x has a zero of
order n;—2 (n; = 3).

(ii) In the points Q; the slope B, of € is irrational, and there exist
positive numbers ¢ and a; such that

|hBi—p| 2 ch™'"™ (3)

for any h € N and p € Z. Moreover, if m;—2 is the order of the zero
of xin Q; (m; =2 3), we suppose that

a; < (Smi_7)/(mi_2)(mz"3)- (4)
(If m; = 3, a, may be arbitrarily large.)

Then

ni—-1

P(T) = ; F,{T)T""™+0(T®°)

i =1

2 . , .
with an exponent § < —-, the O-constant depending on %. The functions

F;:(T) are bounded and (in general) Q.(1) and can be represented as in [8].

Corollary 1. If the curvature of @is 0 only in points Q; with irrational
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slope satisfying the above condition (ii), then

P(T) = 0(T°). (9<%)

Remarks. 1. By the celebrated theorem of Thue-Siegel-Roth (see e. g.
Cassels [1], p.104), for algebraic irrationals 8; the numbers a; in (3) can
be chosen arbitrarily small, hence (4) is certainly fulfilled. Therefore the
case that @ is an algebraic curve is completely contained in our theo-
rem. This result, in particular, improves and generalizes a work by M.
Tarnopolska-Weiss [12].

2. According to the metric theorem of Khintchine (see e. g. [6], p. 74),
the same is true for almost all numbers 8; (in the sense of Lebesgue mea-
sure). Thus we obtain the following corollary, which improves earlier
results of B. Randol [11], M. Tarnopolska-Weiss [12] and Y. Colin de
Verdiére [2].

Corollary 2. Let <% be as in the theorem (without any assumptions about
the boundary points with curvature 0 ). Consider the image @, of & under

a rotation by an angle t (with the origin as center ). Then for almost all
(0 < ¢ =2n) the lattice rest P{T) of T &, satisfies

PAT) = 0AT®)

2
with an exponent § < — not depending on .

3

3. Proof of the theorem. According to the discussion in [8], it suf-
fices to treat the problem for any single point @; of % with » = 0 and
irrational slope B;. (The points P, with rational slope have been dealt
with completely in [8].) By obvious symmetry considerations (cf. also [8]),
we only have to establish the following.

Proposition.. Let {(u, g(u)): a = u =< b! be a piece of the curve €, and
suppose that g”(a) =0, g(a) =L &€ Q, and g”(u) *+ 0, glu) > 0, g’(u)
bounded for a < u = b, The point Q = (a, gla)) may satisfy condition (ii)
of our theorem. Then for the lattice rest P*(T) of the domain aT < x < bT,
ogyga@;=T4i

T
PXT) = ¢(aT)T g(a)—¢(bT)T g(b) +O(T®)

) we have
s
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2
with 8 < 3 where ¢(z) =0 for z € Z, ¢(z) = z—[z] —% otherwise.

Proof. By Euler’s summation formula, we obtain for the corresponding
number of lattice points

AXT) = T (GE)—¢(Gh)) = [ Gla) dz—g(bT) GBT)+

aTsk<bT
bT
+9(aT) GaT) + [ 9(a) 6'(x) dz— 3* 9(Glk))
aT aTsksbT
(summation being extended over all integers of the interval indicated, the
terms corresponding to its boundary points (if these are integers) being
weighted with the factor %) Since, by the second mean-value theorem, the
second integral can be estimated by O(1), we only have to show that, for

some 8 < —,

3
¥ ¢(Gk)) = 0(T®). (5)

aTsksbT

To this end we split up the interval of summation : The sum

So:=_2* ¢(Glk))

WsksbT

where W = aT+T'"¢, ¢ > 0 some sufficiently small constant, is estimated
by a deep theorem of Van der Corput.

Lemma 1 (Van der Corput [13], Satz 2). Suppose thai the real-valued
function G(x) is five times continuously differentiable on a compact interval
I, and for any three integers p, q, v 2 0 withp+q+r = 3, for some n > 0,

|Gm+2)(x) G‘QH’(I) G‘”z’(x) | < |G’/ I) |17/3+n (6)

on I. Assume further that G'(x) is monotone and ¥ 0 on I and, for some

n' >0,
|G"x)| = [Gx) [*/*r 7. (7)

Then there exisis w > 0 (depending only on n and ') such that

Z’]* ¢(G(k)) <<_[!G"(x)!"“” dx+m.?x(|G”(.r)|‘”z). (8)
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We verify the conditions of this lemma for our function G(x) : By the assump-
tions of the proposition, in some neighbourhood of u = a (putting x =T u),
we have

9'(u) = ﬂ+j=§l_lq(u—a)"

with ¢p_; + 0, where m—2 is the order of the zero of x in (a,g{a)).
Therefore,
T u—a)" < |G(x)] € T (u—a)™*
and
G¥x) € T (u—a)™’ (G =2)
for a < u = b. Then (6) is true for sufficiently large T if

T—1+3n(u_a)—sm+7—-3n(m—21 — 0(1)

which, for u—a =2 T7¢, is obvious for sufficiently small » and e. In the
same way one verifies (7), arriving at

T—2+3ﬂ'(u___a)—m—’l—SY)'(m—2i — 0(1)-

From lemma 1 we therefore infer the estimate
b7 F+o)m-2) ,
S, K T"’!"_‘"V[W (%— > dx+ TO+em-Dr2 g Th-o (9)

with some w > 0.

Secondly, we estimate the sum over V= k = W, where V= aT+T"'?,
A= (3m—6)"'—¢, by a simpler version of the above lemma which is also
due to Van der Corput.

Lemma 1' (Van der Corput [14]). Suppose that a real-valued function
G(x) is twice continuously differentiable on a compact interval I and that
G"(x) is monotone and = 0 on I. Then the estimate (8) holds with w = 0.

Applying this lemma and recalling the bounds for |G(x)| given above,

we immediately infer that

* 2] 2 ,
GG < T (e <—3~) (9°)



178 W. MULLER and W. G. NOWAK

The remaining sum over aT = k < aT+ T'"* is now treated by a
completely different method : First of all, we know by the inequalities of
Erdos-Turdn and of Koksma (see e.g.[7], p. 112 and p. 143) that, for an

arbitrary positive integer H,

S+ = 5 $(Gk) < TAH+ 5| S(h) | (10)
where (with e(z) : = e*™%)

S(h): = 3 e(hG(k)).

aTskgV

We now consider an arc &, of a circle with radius ¢T'~* joining the points
(aT, G(aT)) and (V, G(V)), choosing the constant ¢ so large that the slope
of @, is bounded. Writing @, : y = Flx), aT = x < V (and assuming that
F(x) = G(x) on this interval), we see that F'(x) € 1, |F”(x)| > T*",
and therefore, by another estimate of Van der Corput (cf. [7], p. 17, theorem
2.7.), for h = T,

S,(h): = e(hF(k)) € RITH (11)

aTs ks V

By Poisson’s formula, we get

Syh): =_ 3 (elhF(k))—e(hG(k))

RV
14

=) (e(hF(x))—e(hG(x))) e(kx) dx+0O(1)

k€Z JaT

= 2mih 3 _Lfe(kx—l—hy) dxdy+0(1), (12)

where # is the plane region bounded by @, and the curve & : y = G(x),
aT £ x £ V. Therefore our task will be almost done if we establish the
following

Lemma 2. With the above notations and assumpiions,
Ik) s = [ elkx) dx < [KIHThy 54 k|2, (13)
B
where k= (k, k) € (Z*—{(0,0))), 7"—
line to the curve @, in (aT, G(aT)) and the vector + k (such that 0 < y <

v is the angle belween the tangent
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m—2

7”), pi= and m—2 is the order of the zero of x in (aT, G(aT)),
m & 3.

Remark. Earlier results on such Fourier transforms of plane regions
(which are not quite appropriate for our purpose) have been obtained by

Hlawka [5], Herz [4] and Randol [11].

Proof of lemma 2. Putting v(x): = (2xi|k|) 'e(kx)k, where k, =
|k|~'k, we infer from the divergence theorem that

1(k) =Ldiv o(x) dx =Lu(x>n* do=+ [ + (14)

€ L)

where n* is the outward normal vector of 5% with length unity. We write
u = u(s) for the natural parametrization of the curve T~'@, (s the arclength
with s = 0 corresponding to the point (a, g(a))), put x = Tu and define
f(s) : = kou(s). By Frenet's equations for plane curves,

F(s) = kot(s).  [f'(s) = kon(s)x(s), (15)

where t(s) is the tangent vector and n(s) is the normal vector of T '@,
(both of length unity) and x(s) denotes the curvature. Then we obtain

.= @rilkD T ["e(TIkIf(5)) konls) ds (16)

where L € T~? is the arclength of T '@,.

If |f(0) = % then (for T sufficiently large)|f(s)| > 1 on 0 £

s £ L, and the second mean-value theorem vields

f<< k|-
¥2

which is even stronger than (13).

V3
2
and hence |k,n(s)| > 1 on 0 < s < L (T sufficiently large). Using (15)
and recalling that x(s) has a zero of order m—2 at s = 0, we thus

get-

Therefore we may suppose that |f(0)| < % Then |k,n(0)| >

RO
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for 0 = s = L. Now denote by s, the number where | f(s)| attains its mini-
mumon 0 = s = L. We claim that, throughout this interval,
|f(s)]> min(7*]|s—so|, 7). (18)

By the monotonicity of f(s) (cf. (17)), there are three possibilities:either
f(ss) =0ors;,=0o0r s, = L.
If f'(s)) =0, ss & 0, we conclude that
()] > [ f(s)—=Ff(so)| > l[ o™ tda| > ™' =P >
S
> |s—so|s;"'2 (19)

and, on the other hand,
S
7 < lsinyl = [£(0)] € If(s0)=7(0)] € ["om*da < 577", (20)

which together yields
[£(s)] > s —s0l. (21)
If s, = 0, we simply get
|f(s)] > [£(0)] = |siny[ > 7. (22)

The same is true for s, = L, |f(L)]| = %]f’(O) |, whereas for s, =

L, [f(L)l < %If’(0)| the estimates (19), (20) and (21) are valid again.

This completes the proof of (18).
We now put 8: = (T|k|7*)~'* and split up the integral in (16),
obtaining

[=cxrrn [+ [ )<

I1IS—8gIKT  18-8gl=C

L |k|PAT 2y~ 2l 4 k| 2y, (23)

where we have estimated the first integral trivially and the second one by the
second mean-value theorem, making use of (18).

The circle arc ®, now can be dealt with by a simplified version of the
above reasoning. Defining f(s) and s, as before (with @, instead of ®,) and
observing that T '@ has constant curvature of order T?, we either get



ON LATTICE POINTS IN PLANAR DOMAINS 181

(for 17(0)| 2 )

f<< |k|?

1
or (for | f(0)] < —2—)
8
S 2 1) =1 > | [Crdol > [s—sol.  (24)
So
Using the same argument as in (23) (replacing (18) by (24)), we obtain
[ < 1k

which, together with (14) and (23), completes the proof of lemma 2.

We now enter this result into (12) and sum over all & € Z and over
h =1,..., H (according to (10)), H= T at our disposition, Let as before
t(0) = (z,, 7,) denote the tangent vector of the curve v = g(u) at u = a,

then (for A € N) we define k(h) € Z such that |k(h)+he,/ 7| < % We

note that A € |k(h)| € A and that 7,/7; = £8 € Q. By the assumptions
of our proposition (in particular (3)), we conclude that, for k = (k(h), k),

y>siny = |k(R)n,+he] k| > h | Kh)+he/ | >R (25)

Using lemma 2, we get

2 [ ICk(R), h)| < T 33 hoesstsemny 33 o & (26)
& T\~H-1/+uesan | fiva
For k % k(h) we obtain
y> (k*+h) " ke, the,| > (B4+A%) "2 k—k(R) |
and therefore, again by lemma 2, for fixed h € N
M‘Zm',zml(k. h) € mez (K*4h?) 34 | k—k(h) |5+

+ k(h)
+k2m)(k2+h2)-%|k—k(h) I_l £ Tl/zfm(x?-l-hz)'“_a)/‘ |I—k(h) |_; dr+
+h 1+ Z Ik I_llk—k(h)l—l < h—1/2T1/2+h_,(1+logh) < PRy

0% k% k(h)

(substituting x = hu and recalling that A € |k(h)| € k). Summing over
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h =1,..., Hwe thus get
S5 S Ik, k)| € HAT'™, (27)
h=1 k=xkth)
Finally we infer from (11) that
i 1
hz_]lflS,(h)l & H'* T2, (28)
collect the results (12), (26), (27) and (28) to enter them into (10),
obtaining

S < TI_AH_l-l'TUZ(HI/Z+H—”“””+am)+H”a. (29)

We now distinguish two cases : 1/2 < —1/24+u(l1+a/2) and 1/2 =
—1/24+u(1+a/2). In the first case (which is equivalent to a > 2/(m—2)),
we choose H = [T -2AMi+ui2+al] *thap the first three terms on the right hand
side of (29) are

<< Tl—A—(l—Zi\)/(l-{-l.l(?*— a[').

To make this exponent < 2/3 (for suitable ¢ > 0), it suffices that

1 1-2/3(m=2) _2

1= 3(m—2) 14+42+a) 3

which is true for m = 3, a arbitrary, or for m = 4,
a < (3m—7)/(m—2)(m—3).

To ensure that the last term in (29), namely H'*?, is € T® 8 < 2/3, we
have to show that

(1+a)(1—3(m2—_2))(1 +u(2+a))" <

|t

or, equivalently (by a short computation),
am*—3m) < 3m*—11m+12.

This is obvious for m = 3, a arbitrary, whereas for m = 4, we may replace
a by its upper bound (3m—7)/(m—2)(m—3), arriving finally at

0 < (m—1)m—3)(3m—8).
If now @ < 2/(m—2) (which implies 1/2 > —1/2+4+ (1 +a/2)), we simply
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choose H = [T"~**] then the first three terms in (29) are € T* */* and
the last one is H'** < T®, § < 2/3, since

1 2 2 3m*—8m 2
(l+a)—3—(1— 3(m—2) ) é? 6(m—2)* < 3

for any m = 3. So in any case we obtain from (29) that

SKT° (B<%)

which, together with (9) and (9'), completes the proof of (5) and thereby
that of our theorem.
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