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AN ORE EXTENSION OVER A V-HC ORDER

Dedicated to Professor Hisao Tominaga on his 60th birthday
Kazuo KISHIMOTO, Hipetostt MARUBAYASHI and Axira UEDA

The polynomial ring over a hereditary noetherian prime ring (an HNP
ring for short) is not an HNP ring. This leads us to the concept of VHC
order in a simple artinian ring in [8] (in [4], Fujita defined a +-HC order
which is a little more general concept of VHC order) and the following
problems naturally raise: If R is a v-HC order in a simple artinian ring Q,
then so are R[x; o] and R[x : d]. where ¢ is an automorphism of R and d is
a derivation of R. In [9], one of the authors proved that R[x ;o] is a +-HC
order with enough v-invertible ideals if R is a v.-HC order with enough +-in-
vertible ideals.

In this paper, we define a d-v-HC order with enough d-v-invertible
ideals, and we prove the following theorem; R is a d-v-HC order with enough
d-v-invertible ideals if and only if R[x ;d] is a v-HC order with enough
v-invertible ideals (cf. § 1 for the definitions).

The theorem will be proved in § 2 by pointing out all maximal wv-inver-
tible ideals of R[x ; d] which are derived from R and Q[x ; d].

In §1, we define the concepts of d-v-ideals and d-v-invertible ideals, and
give some elementary properties of them, some of which are used to prove
the theorem.

In § 3, we briefly discuss on the set of all d-vinvertible ideals of
Rlx ;d] and the class group of R[x:d] which extend Chamarie’s results in
the case of a Krull order. Any maximal d-v-ideal of a d-v-HC order is not
necessarily a prime ideal (even a semi prime ideal) as it is seen in Eaxmple
1 of §3, and we give some examples of d-v-HC orders with enough d-v-inver-
tible ideals.

Concerning terminologies which are not defined in this paper, we refer

to [8].

1. Throughout this paper, R will be an order with a derivation d in a
simple artinian ring Q. First of all, we recall some notations and definitions
in [8) and [4]. Let X and Y be subsets of Q Then we use the following
notations; (X:Y),=1s€ Q| sYS Xland(X:Y),=1{1€ Q| YIS X|.
Let I be a right R-ideal. We define I, = (R:(R: I),),. and if I = I,, then it

107



108 K. KISHIMOTO, H. MARUBAYASHI and A. UEDA

is called a right v-R-ideal (a right v-ideal if there are no confusions). Simi-
larly we define ,J = (R:(R:J).), for any left R-ideal Jand Jis called a left
videal if ,J= J. An R-ideal A is called a v-ideal if ,A= A= A,. An
integral and v-ideal is simply called a v-ideal of R. A w.ideal is called a
v-invertible if (A(R: A),), = R= ((R:A),). Note that a v-ideal A is »-
invertible if and only if O{A) = R = O(A) by Lemma 1.1 of [4], where
0(A) =1q€ Q| AgS A/, a right order of A, and O(A) =1a€Q|qA
€ Al, a left order of A. If A is v-nvertible, then by Lemma 1.1 of [4],
(R:A), =(R:A), which is denoted by A~'. A y.ideal A of R is called
y-idempotent if (A?) = 4 = (A4Y),. Let #=%(R) be a right Gabriel topol-
ogy corresponding to the torsion theory cogenerated by E(Q/R) (E(M)
denotes the injective hull of a right R-module M). Then € = { C : right ideal
of RI(R:77'C) = R for any r € R{, where +"'C={x€ R|rmx € C/,
by Porposition 5.5 of [13, p. 147]. Let I be a right R-ideal and put cl(I)
={qg€ Q| qCE I for some CE €|. If I = cl(I), then [ is called a right
closed R-ideal. Similarly we can define the left Gabriel topology €' on R and
a left #'-closed ideal. Fujita considered the following conditions :

(K): LA(R:A),) = OfA) for any ideal A of R such that A= ,A and
((R:B);B), = OB) for any ideal B of R such that B= B,,

(C) : R satisfies the maximum condition on right @-closed ideals of R as
well as left @'-closed ideals of R.

If an order R satisfies (K) and (C), then it is called a v-HC order. R
is said to have enough v-invertible ideals if any v-ideal of R contains a v-in-
vertible ideal of R. We note that I is closed if = I,. Hence if R satisfies
(K), then R satisfies the maximum condition on one-sided v-ideals of R. An
R-ideal [ is called a d-stable ideal (a d-ideal) if d(I) & I A v-ideal which is
dstable is called a d-v-invertible ideal. We consider the following condition :

(K): LA(R: A),) = O(A) for any d-ideal of R such that A = ,A4 and
((R:B).B)y = O/{B) for any d-ideal of R such that B= B,.

If an order R satisfies (K') and (C), then it is called a d-v-HC order,
and R is said to have enough d-v-invertible ideals if any d-v-ideal of R contains
a d-v-invertible ideal of R.

We denote by R[x;d] the Ore extension of R in an indeterminate x.
Any element in R[x; d] has the following form: 237, r.x' (r, € R) with mul-
tiplication defined by xr = rx+d(r) for every r € R. A subset S of R is
said to be a regular Ore set if any element of S is regular in R and R satis-
fies the left and right Ore conditions with respect to S. The quotient ring of
R with respect to S is denoted by R, and d is extended to a derivation of R,
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in the following way : d(ac™') = d(a)c™'—ac 'd(c)c™', where ¢ € R and
¢ € S. As it is easily seen, the following mapping : q(x) = 2, g’ =
2tod(q.) x' is a derivation of Q[x ;d] which extends the derivation d of Q.
We denote it by d again. Then we note that any R[x ;d]-ideal I in Q[x;d]
is d-stable, because d(q(x)) = xq(x) —q(x)x € I for any q(x) € I. Let¥
be the set of all regular elements of R. Then € is a regular Ore set of
R[x;d] and R[x:;dle = Q[x;d]. Futhermore, Q[x;d] is a prime, left
and right principal ideal ring [1]. So it has a classical quotient ring
Q(Q[x ; d]) which is simple artinian. Hence R[x:d] is an order in
Q(Q[x ; d]).

In studying the structure of R{x;d]. d-v-ideals and d-v-invertible ideals
play an important rdle. So first we shall give some elementary properties of
d-v-ideals and d-v-invertible ideals, and the proofs of them are all straight-
foward :

Proposition 1.1. (1) Let I be a right (left) d-R-ideal. Then so is
(R:I);({R:1I),) and thus L{,I) is also d-stable.

(2) Let A be a d-R-ideal. Then AR[x ;d] is an R[x ; d]-ideal denoted
by Alx:d], and O(A) and O-(A) are also d-stable.

(3) Let A and B be d-R-ideals. Then so is AB and ABR[x;d] =
Alx;d] Blx;d].

(4) Let I be a right R-ideal and J a left R-ideal. Then (R[x:d] :
IR(x;d));=R[x;d)(R:I), and (R[x:d]:R[x:;d]J)r =(R:J).Rlx;d].
In particular, (IR(x :d]))y = LR[x:d)] and ,(R[x;d]J) = R[x:;d].J.

(5) Let A be a d-v-ideal. Then so is Alx:d].

(6) Let A be a d-v-invertible ideal. Then so is Alx;d] and (Alx;
d)'= A" [x:d].

(7) Let A be a d-stable and v-idempotent ideal of R (a d-v-idempotent
ideal). Then so is Alx ;d].

Lemma 1.2. Let R be a dv-HC order.

(1) If A is ad-ideal of R, then A, = ,A.

(2) If A is a d-R-ideal and there is a d-v-invertible ideal B such that
B™' 2 A, then Ay = LA

Proof. As in Lemma 1.5 and Corollary 1.6 of [4].

A d-videal M of R is called maximal if it is maximal amongst all d-v-
ideals of R. As it is easily seen from an example at the end of this paper,
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we can’t expect that any maximal d-v-ideal is a prime ideal (even a semi-prime
ideal). But we have the following nice property ;

Lemma 1.3. Let R be an order with a derivation d and lei M be a d-
prime ideal of R, i.e., ABS M implies either AS Mor B& M, where A
and B are d-ideals of R, then M[x ;d] is a prime ideal.

Proof. Let a and b be ideals of R[x;d] such that ab & M[x;d], and
assume that b 2 M[x;d]. Put C(b) = {b, ]| bpx"+---+b, € b} U 10},
Then C(b) is a d-ideal of R and C(b) 2 M. Let alx) = apx™+ -+ a, € a.
For any b, € C{(b), there is b{x) € b such that »(x) = bnac"-i—-;-—i-bo € b.
Since a(x)b(x) € M[x;d], it follows that anb, € M. So a,C(b) S M and
am € M. Repeating this process, we obtain a{x) € M[x:d], and so a &
M[x;d], proving the lemma.

As a corollary to Lemma 1. 3, we have

Corollary 1.4. Let R be a d-v-HC order and let M be a maximal d-v-
ideal of R, then M is a d-prime ideal and so M[x;d] is a prime ideal of
Rlx:d].

Proof. Let Aand B be d-ideals of Rand ABE M. Assume that B2 M,
then B, =2 M and B, is d-stable. So B, = R. Hence A= Ar = AB, &
(AB,), = (AB), = M by lemma 1.1 of [7]. It follows that M is d-prime.

Lemma 1.5. Let R be a dv-HC order. Then a maximal d-v-ideal of R

is either v-idempotent or v-inveriible.
Proof. As in Lemma 1.5 of [7].

A finite set of distinet maximal d-ideals M,,..., M, of R which are v-
idempotent is called a d-vcycle if 0.(M,) = O,(M.),..., O M,) = O(M,).
A maximal d-v-ideal M which is v-invertible is also considered as a d-v-cycle,
because O M) = O(M).

The following proposition will be proved by combining the methods in [7]
with Corollary 1. 4, and these will be used in § 2 to study the structure of
Rlx:d].

Proposition 1.6. Let R be a d-v-HC order. Then
(1) Let M, be a maximal d-v-ideal such that M, is v-idempotent and it



AN ORE EXTENSION OVER A V.HC ORDER 111

contains a d-v-invertible ideal X of R. Then there exist maximal d-v-ideals
M,,....Mp such that M; =2 X. M, is v-idempotent and M,.,..., My is a d-v-cycle.

(2) Let P be an ideal of R. Then P is a maximal d-v-invertible ideal
of R(maximal amongst all d-v-invertible ideals of R) if and only if it is an
intersection of a d-v-cycle.

(3) If R has enough d-v-invertible ideals, then the set Di(R) of all d-v-
invertible ideals is a free abelian group generated by maximal d-v-invertible
ideals.

2. In this section, we shall prove the main theorem mentioned in the
introduction. Let us start off the following lemma whose proof is similar to
one of Theorem 3. 1.8 of [3].

Lemma 2.1. Let R be an order in Q. Then Rlx;d] satisfies the
condition(C) if R satisfies the condition(C).

Let R be an order in @ satisfying the maximum condition on one-sided v-
ideals of R and let & be a set consisting of v-invertible ideals of R which is
closed by “v-multiplication”,i.e., if X and Y &%, then (XY), €&. Then
T=U X '(X€E¥) is an overring of R and we have the following :

Lemma 2.2. (1) IfXEY, then XE€Y, where§ = | I: right ideal of
R | Hom(R/I, E(Q/T)) = 0}.

(2) T = Ry, where Ry denoies the ring of right quotients of R with
respect to §.

(3) ForanyI €9, there exists X € & such that I, 2 X.

Proof. (1) Let X be a d-winvertible ideal of R. If Hom(R/X,
E(Q/T))# 0, then there is a non-zero f in it, in particular, f(1) # 0,
where 1 = [1+ X] in R/X. Since Q/ T is essential in E(Q/T), there is a
non zero element 7 in R such that f(1) € @/ T and f(1)r # 0. On the other
hand, 0 = f(X) 2 f{1)+X = [¢+ T] X. where g is in Q but not in T. Hence
gXET=U Y "' and ¢gX<S Y ! for some YEF, because X is finitely
generated as a right v-ideal. It follows that g € (Y'X™ '), =(XY) '€ T.
This is a contradiction.

(2) From(l), Rx2 T. So R/ TE QTS E(Q/T). This implies
that R,/ T is §-torsion free. On the other hand, R,/R — R,/ T — 0 is exact
and R./R is G-torsion. Hence Ry/ T is §-torsion. It follows that R/ T = 0,
i.e., Rg = T.
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(3) For[ €%, we have(R:I), S Rs= T. Since (R :1I),is finitely
generated as a left v-ideal, (R:I),XE R for some X €&. This implies
XE I,.

Remark. Put §' = |J; left ideal of R| Homxz(R/J,E(Q/T)) = 0}
(E'(N) denotes the injective hull of a left R-module N). Then, by the left
version of Lemma 2. 2, we have T = 4R (; R denotes the ring of quotients of
R with respect to §').

Lemma 2.3. Under the same assumption as in Lemma 2. 2, let I be a
right R-ideal. Then

(1) (IT)U = (IvT)v-

(2) Let J be an R-ideal. Then(IT), = (I(JT),)».

Proof. (1) It is clear that (IT), € (I,T),. To prove the converse
inclusion, let ¢ be a unit in Q such that ITE ¢T. Then ¢"'IE T. Since
¢~ 'I is finitely generated as a right v-ideal, there exists X € % such that
IS (' Dy=c¢c'I, EX". Hence I ,SE cX 'S c¢Tand so I, TE ¢T.
This implies that (I, T), & (IT), by Proposition 4.1 of [7] and thus (IT),
= (LT)y.

(2) is proved by the same way as in (1).

For a d-v-HC order R, we put Ry = U X', where X runs over all d-v-
invertible ideals of R. Then R, is an overring of R and d(R;) & Rs. We
have

Lemma 2.4. Let R be a d-v-HC order. Then

(1) Rais ad-v-HC order.

(2) Assume that T has enough d-v-invertible ideals. Then Ry has no
proper d-v-ideals of Rs and Ralx;d] is a Krull order in the sense of [3].

Proof. (1) Because the set of all d-v-invertible ideals of R is closed
by the v-multiplication, R, satisfies (C) by Lemma 2. 4 of [8] and Lemma
2.2. To prove that R, satisfies (K'), we adopt the method used in Propo-
sition 4.1 of [4]. Let A' be any d-ideal of R, such that 4' = ,A". We put
A= AN R. Then by Lemma 2.2 and Lemma 2.3 of (8], sA={¢€ Q]
JgS Afor some JEF'| = A S As=1q€ Q| qIE A for some I € F|,
where & = { I: right ideal | Homg( R/I E(Q/R4)) = 0} and & = | J: left ide-
al | Homg(R/J,E(Q/R4)) = 0}, (E(Q/R4) denotes the left R-injective hull
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of Q/Rd)- Hence v(A'(Rd: A)z) =2 v(:i'A(Rd H AF)z) =2 D(RdA(R : A)z) =
s((A(R:A))) = 50,(A). Since ,(A(Rq4:A),) is a right O,(A)-module
and1 € 0,(A), we have ,(A(Rs:A),) = 0,(A’). It is proved by the
similar way that ((Rq : B').B’"), = 0.(B’) for any d-ideal B’ of R4 such that
B' = B',. Hence R, is a d-v-HC order.

(2) Let A be any d-ideal of R such that A'= A',. Then A= A' =
N R is a d-v-ideal of R by Lemma 2. 3 of [8]. So there exists a d-v-inver-
tible ideal X of R contained in A. Hence we have R, 2 A' = A; 2 X;= R,
by Lemma 2.3 of [8] and Lemma 2. 2., and so A' = Ry. Hence R, has no
proper d-videals. To prove that R4[x;d] is a Krull order, let B be any
dideal of R, and let g be any element in O,(B). Then ¢BS B implies that
gB, < B,. But B, = R, because B, is a d-v-ideal, and so ¢ € Rs. Hence
0{B) = R, and similary O,{B) = R4. So Rs[x:d] is a maximal order by
Proposition 3. 1. 4 of [3].

Let R be an order in Q. We denote by S(R), the Asano overring of R,
i.e., S(R) = U X' (X runs over all wv-invertible ideals of R). Let A be
an ideal of R. If C(A) = !¢ € R| c is regular mod A} is a regular Ore
set, then we denote R by R..

Lemma 2.5. Let R be a d-v-HC order and let B be any maximal d-v-
invertible ideal of R. Then

(1) Blx;d] is a semi-prime ideal of R(x ;d] and intersection of a cycle
in the sense of [9].

(2) Rlx;dlsixial exists and is an HNP ring whose Jacobson radical
Blx:d]Rlx ; dlsix:a) is a unique maximal invertible ideal.

Proof. (1) By Proposition 1.6, B= M,N...N\M,, where M,,.... M,
is a d-vcycle. Hence B{x:d] = Mi[x;d]N...NM,[x;d] is a semi-prime
ideal by Corollary 1. 4. Furthermore, since O M;[x;d]) = 0. M;)[x:d]
= Oz(MzH)l:I 5 d] = Ol(Mi+l[I 5 d]) and ((Mi[l' > d]z)v = (Mtz[x H d]),, =
(M3 olx;d] = M[x;d}. Thus M,[x;d]..... Ma[x;d] is a cycle in the
sense of [9].

(2) This follows form Lemma 2.1 of [9], Lemma 2.1 and (1).

Lemma 2.6. Let R be a d-v-HC order with enough d-v-invertible ideals.
Then

(1) Rlx;d] = (N Rlx:dlaxa) N Ralx;d], where B runs over all
d-v-invertible ideals of R.
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(2) Ralx;d] = S(R[x;d]) N Q[x:d].

Proof. The lemma is proved by the exact same way as in Lemma 2. 9
of [9].

Lemma 2.7. Let R be a d-v-HC order with enough d-v-invertible ideals
and let A' be any non-zero ideal of Qlx :d]. Then

(1) A=A N Rlx;d] is a v-invertible ideal of R[x; d].

(2) A=(4,"...A") = (A4,)N...N(A"™), for some n, > 0, where

A, is a maximal v-ideal of R[x ;d] which is v-invertible.

Proof. As in Lemma 2. 12 of [9].

Theorem 2.8. Let R be an order with a derivaiion d in a simple
artinian ring Q. Then R is a d-v-HC order with enough d-v-invertible ideals
if and only if R[x;d] is a v-HC order with enough v-invertible ideals.

Proof. To prove the necessity, let R be a d-»-HC order with enough
d-vinvertible ideals. Then R[x;d] satisfies (C) by Lemma 2.1. Next we
shall prove that R[x ; d] has enough v-invertible ideals. To do this let A
be any ideal of R[x;d] such that A, = A. (i) In the case AN R # 0,
(AN R),is a y-ideal by Lemma 1. 2, because A is a d-ideal. Hence there
is a d-v-invertible ideal X of R suchthat(AN R), 2 X. Then X[x;d] is
a v-invertible ideal of R[x;d] which is contained in A. (ii) In the case
AN R=0. Because Q[x;d] = R[x;d], is hereditary, where & is the
set of all regular elements in R, AQ[x ;d] is an ideal of Q[x ;d] by Lemma
2.3 of [4]. So B= AQ[x;d] N R[x;d] is a w-invertibie ideal of R[x :d]
by Lemma 2. 7. If A= B, then there is nothing to state any more. Assume
that B2 A. Then C=|r € R| rBE Al is a non-zero and d-ideal of R,
because BQ[x:d] = AQ[x;d], A and B are both dstable, and B is finitely
generated as a right v-ideal, Hence C[x;d] is an ideal of R[x ; d] such that
Clx;d]BE A. So C= C,by Lemma 1.1 of [8], because Bis v-invertible.
Since C is a v-ideal by Lemma 1. 2, there is a d-w-invertible ideal D of R
such that DS C. Then(D[x:d]B)y S A, = A and (D[x;d] B), is a dv-
invertible ideal of R[x;d]. Thus every ideal A of R[x;d] such that
A, = A contains a v-invertible ideal of R[x;d]. In particular, R[x;d]
has enough v-invertible ideals. To prove that R[x ;d] satisfies (K), let C
be any ideal of R[x; d] such that C = C,. By Lemma 2. 6, we have R[x;d]
=(N Rlx; dlsza) N QLx:d]NS(R[x:d]) and so I, =(NIR[x ; dlaz:ai) N
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IQ[x ;d] N (I,S(R[x;d])), by the same way as in Lemma 2.7 of [2],
where I = (R[x ;d] : C)-C. Since Rlx;d]sz.a and Q[x ; d] are hereditary,
we have IR[x;dlaza = (R[x;d]sza: CRIx; dlaizia)rCRIx s dlpiziar =
O.(CR[x;d]) by using Lemma 2.3 of [8] (also see Lemma 2.3 of [4]).
Similarly, IQ[x;d] = 0.CQ[x:d]). To prove that (I,S(R[x:d])), =
S(R[x;d]), let Ybe a v-invertible ideal of R[x:d] which is contained in C
(the existence of Y is guarenteed by the proof above). So it follows that
S(R[z:d]) 2 (CS(R[x;d]))» 2 (YS(R[x:d]))y, = S(R[x:d]) (the last
equality follows from Lemma 2.3 of [8] and Lemma 2.2), and S(R[x:d]) &
(Rlx;d] :C)rS(R[x:d]) € Y 'S(R[x:d]) € S(R[x;d]). Hence (((R[x;
d]: C):C)»S(R[x;d]))s = ((R[x:d] : C){CS(R[x;d]))s)» = S(R[x:d])
by Lemma 2. 3. Thus we have I, 2 1 and so I, = 0,(C) as desired. Simi-
larly, we can prove O,(D) = (D(R[x;d] : D),) for any ideal D of R with
D= ,D, finishing the proof of the necessity. The sufficiency of the theorem
follows from the following Lemmas 2.9, 2.10 and 2. 13.

Lemma 2.9. Let Rlx:d] be a v-HC order with enough v-invertible
ideals. Then R satisfies (K').

Proof. Let A be a d-ideal of R such that ,4 = A. Then A[x;d] is an
ideal of R[x ;d] which is a v-ideal. So R[x:d].(A(R:A)) =,(Alx;d]
(Rlx:d]) : Alx;d])) = OAlx:d])) = 0A)[x;d]. Hence ,(A(R:A))
= 0[(A). It is proved similarly that ((R : B),B), = O, B) for any d-ideal
B of R such that B, = B. Hence R satisfies (K’).

Lemma 2.10. Let Rlx;d] be a v-HC order with enough v-invertible
ideals. Then R satisfies(C).

Proof. Let E and E* be the injective hulls of Q/R and Q(R[x;d]/
R[x;d]) as a right R-module and a right R[x ; d]-module respectively. First
we show that E* is injective as a right R-module. Let A be any right ideal
of R and let f be any Rhomomorphism from A to E*. Then AR[x:d] is a
right ideal of R[x;d] and the mapping f* : AR[x;d] = E* given by f'(anx™+
ot ao) = flam)x™++-+ f(a,) is an R[x;d]-homomorphism, where q; € A.
Hence there is an element ¢ in E* such that f'(a(x)) = ta(x) for any a(x) €
AR[x;d]. Then f(a) = ta for any a € A. So E* is injective as a right
R-module. It follows that ES E*, because Q/RS Q(R[x:d])/R[x:;d] &
E*. So R satisfies (C) by Proposition 2. 4 of [13, p. 264].
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Lemma 2.11. Let Rlx:d] be a v-HC order with enough v-invertible
ideals, and let M be a maximal v-ideal of R[x:;d]. Then M= A= A'N
Rlx;d] for some maximal ideal A’ of Qx;d], or M=(MN R)[x: d] and
M N R is a maximal d-v-ideal if M\ R# 0. Furthermore, A=A N R[x;

d] (A’ is a maximal ideal of Q[x ; d]) is a maximal v-ideal and v-invertible.

Proof. (i) In the case MN R=0. There is a maximal ideal A’ of
Q[x ;d] such that MQ[x:d] S A'E Q[x;d]. So ME MQ[x;d] N RE
AS R[x;d] and A is a v-ideal. Hence M = A. (ii) In the case M N R #
0. MN Ris a dprime ideal of R. So (M N R)[z;d] is a prime ideal of
R[x;d] by Lemma 1.3. Hence (MN R)[x;d] is a maximal v-ideal by
Lemma 1. 2 of [10], and so M N R is a maximal d-v-ideal of R. Finally for
any maximal ideal A' of Q[x;d], A= A"N R[x;d] is clearly a prime »-
ideal. So it is a maximal v-ideal by Lemma 1.2 of [10]. It follows that
either A is v-idempotent or v-invertible by Lemma 1.5 of [8]. Assume that
A is vidempotent. Then AQ[x :;d] is also v-idempotent. This is a contra-
diction. Hence A is v-invertible.

Lemma 2.12. Let Rlx;d] be a v-HC order with enough v-invertible
ideals and let P be a maximal v-invertible ideal of R[x;d]. Then either
P=A=A NR[x;d] or P= M[x;d]lN...NMn[x;d], where A’ is a
maximal ideal of Q[x ; d], Mi,..., Mn is a d-v-cycle of R and P, = M,N...N

M, is a maximal d-v-invertible ideal of R[x ; d].

Proof. (i) In the case PN R=0. There is a maximal ideal A’ of
Q[x :d] such that PQ[x:d] S A' S Q[x;d]. So PS A. This implies
that P= A. (ii) In the case PN R# 0. Since it is a d-v-ideal of R,
(PN R)[x:d] is a videal of R{x;d], and by Lemma 1. 12 of [8], there is
a cycle Ny, ..., Nn. Since N, is a maximal v-ideal, N, = 4 or N, = M;[x;d],
where M, = N, N R by Lemma 2.11.1f N, = A, then Q[x;d] =(PN R)-
Qlx:d] S N.Q[x;d] = A’ by Lemma 2. 3 of [8], a contradiction. So N,
= MJ[x:d], and M,,..., M, is a dcycle of R by Proposition1.1. Hence
P=M[x:;d]N...NMu[x;d] = Po[x;d], Po= M,N...N\ M, is a maximal
d-v-invertible ideal by Proposition 1. 6.

Lemma 2.13. Let R[x:d] be a v-HC order with enough v-invertible
ideals. Then R has enough d-v-invertible ideals.

Proof. Let V be any d-v-ideal of R. Then by Theorem 2. 23 of [8] and
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Lemma 2. 11, we have R[x;:d]=(NRlx:d]l)N{NR[x:d].)NS(R[x:d]),
where P and A are as in Lemma 2.11. Since R[x:d]A = Q[x:d].. by
Proposition 1.1 of [7], it follows that VR[x;d], = R[x;d].. Further-
more, (VS(R[x:d])» = S(R[x:d]), because V[x:d] contains a winvertible
ideal of R[x;d]. Thus we have V[x:d]=(NVlx:d]R[x:d],)N(NR[x;
d].)N S(R[x;d]). So there are finitely many maximal v-invertible ideals
Pi,..., Py of Rlx;d] such that R[x:d]p, 2 V[x;d]R[x:d]s. Since each
R[x;d]s, is an HNP ring whose Jacobson radical P, = P;R[x;d]s is a
unique maximal invertible ideal, we have V{x ;d]R[x :d]p, 2 P,™ for some
n; > 0. Thus it follows that V[x:;d] 2 (P,Rlx:d],)"N...N (PxR[x;
d]pk)nkn R[l‘ ,d] =2 (P]nl)vn---n(Pknk)v = (le---Pknk)u:(Pmnln-Pkunk[I;
d])vZ(Pwn'---Pkunk)v[x;d]- Hence V;D(Pmm---Pkonk)m and(Plom---Pko"k)v
is a d-v-invertible ideal of R.

Corollary 2.14. Let R be a d-v-HC order with enough d-v-invertible
ideals. Then R[x :d]=(NR(x;d]aza) V(NR[x:d]s) NS(R[x:d]), where
B runs over all maximal d-v-invertible ideals of R, A= A'NR[x:;d]. and A'
runs over all maximal ideal of Qlx;d). Furthermore, Rlx;d]sz.a is an
HNP ring whose Jacobson radical is a unique maximal invertible ideal, Rlx;
dls is a local, Dedekind prime ring and S(R[x;d]) is a v-simple(i.e., it
has no proper v-ideal of S(R[x;d])) and a Krull order.

Proof. Since Q[x;d] is a Dedekind prime ring, we have Q[x:d] =
NQlx;dls)NS(R[x;d]), where A’ runs over all maximal ideals of Q[x:
d] and Q[x;d]. is a local Dedekind prime ring by Theorem 3.1 of [5].
Put A= A" N Rlx;d]. Then Rlx:;d], = Qlx;d].. Hence the assertion
follows from Theorem 2. 23 of [8] and Theorem 2. 8 (note that S(R[x;d])
€ S(Q[x:d])), see the proof of Lemma 2. 15 of [9]).

3. Let R be an order in @ and let A be any R-ideal such that aR = A=
Ra for some a,a € Q. Then Ra= A = aR by the same way as in [6, p.
37]. We denote by IX R) the group consisting of all v-invertible ideals in
which the multiplication is given by X Y= (XY), for any X, Y€ D(R) and
denote by P(R) the subgroup of D(R) consisting of all principal R-ideals.
Put C(R) = D(R)/P(R). called the class group of R. Similarly we can
define C4(R) = D4(R)/P4(R). the d<lass group of R, where P,(R) = DAR)
N P(R). Now let R be a d-v-HC order with enough d-v-invertible ideals,

then we have the following :
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(1) The set {Blx:d], A| B: maximal d-v-invertible ideal of R and
A= A" N Rlx:d]. where A" is a maximal ideal of Q[x;d]! is the full set
of maximal v-invertible ideals of R[x :d] (see the proof of Corollary 4.13
of [11]).

(2) Let I be a p-invertible ideal such that Q[x;d] 2 Iand INQF# 0.
Then I N Q is wv-invertible and I =(IN Q)[x;d] (see the proof of Lemma
2.18 of [9]).

In case R is a Krull order, Chamarie has proved the property (2) above
by using a complex lemma (see Lemma 3. 3.1 of [3]) and he has obtained the
following proposition in case R is a Krull order.

Proposition 3.1. ([3, Theorem 3. 3.5]) Let R be a d-v-HC order with
enough d-v-invertible ideals. Then

(1) D(R[x;d]) = Do(R) & D(Q[x:d]).

(2) The mapping f: D R) = D(R[x:d]) given by f(a) = alx;d].
where a € Dy(R), induces the epimorphism f: Co{R) = C(R[x;d]) and if

R is a domain, then f is an isomorphism.

Proof. (1) follows from Theorem 1. 13 of [8], Proposition 1.6, Theo-
rem 2. 8 and property (1) above. (2) follows from the proof of Theorem
3.3.5 of [3].

We shall end this paper with several examples. We have pointed out in
the papragraph before Lemma 1.3 that a maximal d-v-ideal is not necessary
to be a prime ideal as it is seen in the following example (even it is not a
semi-prime ideal). Note that any maximal v-ideal is a prime ideal (see Lemma
1.4 of [8]). Let o be any automorphism of a v-HC order R. Then we note
that any maximal o-invariant, 1-ideal is also a prime ideal. Furthermore,
any maximal o-invariant, v-invertible ideal is a semi-prime ideal. But in
case of a derivation type, a maximal d-v-invertible ideal is not necessary to
be a semi-prime ideal. This is also seen in Example 1.

Example 1. Let & be a field of char(k) = p# 0. Put R = K[x. x.],
the polynomial ring over % in two indeterminates x, and x:. Then R is a com-
mutative Krull ring. Let d = x,8,+ x93, be a derivation of R, where J;x;
= 8y. Put A, = (1) and A, = (x,), the principal ideals generated by x, and
x, respectively. Then A, and A, are maximal v-ideals (of course, these are
maximal v-invertible ideals of R), but not d-stable. On the other hand,
A”N A,” is clearly a maximal d-v-ideal of R and also a maximal d-v-invertible
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ideal of R, because R is a Krull order. Obviuously A,”" A,” is not semi-
prime.

Let R be a d-v-HC order with enough d-v-invertible ideals. Then
Example 1 also shows that all generators of D4(R) are not necessary to be
semi-prime, though Ds(R) is a free abelian group.

Example 2. Let R be Krull order in the sense of [3] and let d be any
derivation of R. Then R is a d-v-HC order with enough d-v-invertible ideals.

Example 3. Let R be a v-HC order with enough v-invertible ideals.
Put R = T[x] and let d be the usual derivation of R. Then R is a d-v-HC
order with enough d-v-invertible ideals. In particular, if T is not Krull, then
R is not Krull, either. Futhermore, the following result hold :

(1) D«R) = D(T) ® Ds(Q[x]), where Q is a quotient ring of T.

(2) If Char(T) = 0, then D/(Q[x]) = 0.

(3) If Char(T) = p+# 0, then Dy(Q[x]) # 0.

Proof. By Theorem 2. 16 of [9], R = T[x] is a v-HC order and hence
it is clearly a d-v-HC order. It is proved by similar way as in the proof of
Theorem 2. 8 that R has enough d-v-invertible ideals. Next assume that T is
not Krull. Then there is an ideal 4 of T such that either O,(4) 2 T or
0-(A) 2 T by Proposition 3.1 of [12, p.7]. If 0,(4) 2 T, then 0,(A[x])
= 0(A)[x] 2 T[x]. This shows that R is not maximal. (1) follows from
Theorem 2. 19 of [9] and Proposition 1. 6. (2) Since any ideal of Q[x] is
principal, it is not dstable if Char(T) = 0. Hence Dg(Q[x]) = 0. (3) The
ideal (x*), generated by x”, is clearly dstable. So Ds(Q[x]) # 0.
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